RESUMO
Photo-responsive adsorption has emerged as a vibrant area because it provides a promising route to reduce the energy consumption of the traditional adsorption separation. However, the current methodology to fabricate photo-responsive sorbents is still subject to the photo-deforming molecular units. In this study, a new initiative of photo-dissociated electron-hole pairs is proposed to generate amazing adsorption activity, and prove its feasibility. Employing CuPP [PP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin] framework nanosheets compounded with graphene, binary film (BF) sorbents are successfully fabricated. The paradigmatic BF nanostructure brings about efficiently photo-excited electron-hole pairs with durable enough lifetime to meet the needs of microscopic adsorption equilibrium, which ultimately alters the electron density distribution of adsorption surface, and thus markedly modulates the adsorption activity. Therefore, an amazing photo-enhanced adsorption capability for the index gas CO can be gotten. Once exposed to the visible-light at 420 nm, the CO adsorption capacity (0 °C, 1 bar) is risen from 0.23 mmol g-1 in the darkness to 1.66 mmol g-1, changed by + 622%. This is essentially different from majority of current photo-responsive sorbents based on photo-deforming molecular units, of which adsorption capability is only decreased with photo-induction, and the maximum rate of change reported is just -54%.
RESUMO
Stimuli-responsive block copolymer nanoparticles (NPs) have received close attention in recent years owing to their tremendous application potential in smart materials. Azobenzene-containing NPs are widely studied due to the advantages of light as a stimulus and fast reversible trans-cis isomerization of azobenzene chromophores. However, the inefficient preparation process and difficult reversible transformation of morphologies limit their development. Herein it is demonstrated that the light-triggered reversible swelling behavior of wormlike NPs with high azobenzene content could be realized via confined deformation. These worms are prepared in large quantities via polymerization-induced self-assembly based on the copolymerization of 11-(4-(4-butylphenylazo)phenoxy)undecyl methacrylate (MAAz) and N-(methacryloxy)succinimide (NMAS) monomers. Upon UV/visible light irradiation, the reversible deformation of worms is achieved when the feed molar ratio of NMAS/MAAz is relatively high or via crosslinking using diamines, which leads to the reduction of the photoisomerization efficiency. The diameter variation of the worms is influenced by the amount and types of crosslinkers. Moreover, the scalability of this strategy is further proved by the fabrication of photo- and reductant-responsive crosslinked worms. It is expected that this study not only provides a new route to affording reversible photoresponsive NPs but also offers a unique insight into the reversible photodeformation mechanism of azobenzene-containing NPs.
Assuntos
Compostos Azo , Luz , Nanopartículas , Polimerização , Polímeros , Compostos Azo/química , Polímeros/química , Polímeros/síntese química , Nanopartículas/química , Tamanho da Partícula , Estrutura MolecularRESUMO
In this study, porous polymers with nitrogen heterocyclic core structures are synthesized through the condensation of enaminonitrile and terephthalaldehyde monomers. These polymers are used as a platform to store bioactive nitric oxide (NO) and control its release. NO loading is achieved by nitrosating the polymers with acidified nitrite, a process that also imparts photoresponsivity to the polymers. Polymer composition and porosity affect NO storage and release. It is observed that under UV light at 365 nm in a PBS solution, the polymers (NO@DHP-POP) can release NO in a manner fully controlled by UV lighting. Under experimental conditions, these porous polymers release NO at a rate of ≈10.0-50.0 µmol g-1 over 60 min. These findings demonstrate the potential of these polymers for integrating NO delivery into phototherapy applications.
Assuntos
Óxido Nítrico , Nitrogênio , Polímeros , Raios Ultravioleta , Óxido Nítrico/química , Porosidade , Polímeros/química , Polímeros/síntese química , Nitrogênio/química , Compostos Heterocíclicos/química , Estrutura Molecular , Propriedades de Superfície , Tamanho da PartículaRESUMO
Each phenotype is a product of the interaction of the genes and the environment. Although winter phenotype in seasonal mammals is heritable, its development may be modified by external conditions. In today's world, global climate change and increasing frequency of unpredictable weather events may affect the dynamic equilibrium between phenotypes. We tested the effect of changes in ambient temperature during acclimation to short photoperiod on the development of winter phenotypes in three generations of Siberian hamsters (Phodopus sungorus). Based on seasonal changes in fur colour, body mass, and expression of daily torpor we distinguished three different winter phenotypes: responding, non-responding, and partially-responding to short photoperiod. We found that warm spells in winter can increase the proportion of non-responding individuals in the population, while stable winter conditions can increase photoresponsiveness among the offspring of non-responders. We conclude that the polymorphism of winter phenotype is an inherent characteristic of the Siberian hamster population but the development of winter phenotype is not fixed but rather a plastic response to the environmental conditions.
Assuntos
Phodopus , Torpor , Humanos , Cricetinae , Animais , Estações do Ano , Phodopus/fisiologia , Aclimatação/fisiologia , Fotoperíodo , FenótipoRESUMO
Photoresponsive covalent organic frameworks (PCOFs) have emerged as attractive candidates for adsorption, but it is challenging to construct PCOF adsorbents due to structural order loss of covalent organic frameworks (COFs) after introducing photoresponsive motifs and/or tedious steps of postmodification. Here, a facile strategy is developed, by dispersing photoresponsive metal-organic polyhedra (PMOP) into COFs, to endow COFs with photoresponsive adsorption sites. As a proof-of-concept study, a COF with pore size of 4.5 nm and PMOP with suitable molecular size (4.0 and 3.1 nm for trans and cis configuration, respectively) are selected to meet the requirements of proper accommodation space, good guest dispersion, and free isomerization. The structure of COF is well preserved after introducing PMOPs. Interestingly, the obtained photoresponsive host-guest composite (PHGC) adsorbents exhibit photomodulated adsorption capacity on propylene (C3 H6 ) and the change in adsorption capacity can reach up to 43.3% and is stable during multiple cycles. Density functional theory calculations reveal that visible-light irradiation drives the azobenzene motifs in PHGCs to the trans configuration and the adsorption sites are fully open and interact with C3 H6 . UV-light irradiation makes the azobenzene motifs transform to the cis configuration, leading to the shield of the adsorption sites and the consequent release of C3 H6 .
RESUMO
Herein, novel photoresponsive spiropyran (SP)-based P(DEGMA-co-SpMA) copolymers with variable percentages of SP fractions are synthesized. The SP group present in these polymers exhibited the abilities of reversible photoisomerism. Their photoresponsive, structural, and thermal properties have been investigated and compared using various characterization techniques. These light-responsive copolymers are found to exhibit photoswitchable glass transition temperature (Tg ), high thermal stability (Td > 250°C), instant photochromism as well as fluorescence upon exposure to UV light. It is demonstrated that the Tg of these synthesized polymers increased when irradiated with UV light (λ = 365 nm), as a consequence of the photoisomerization of incorporated SP groups into their merocyanine form. This increase in Tg is attributed to an increase in polarity and a decrease in the overall entropy of the polymeric system when it switches from the ring-closed SP form (less-ordered state) to the ring-opened merocyanine form (more-ordered state). Therefore, such polymers with a unique feature of phototunable glass transition temperatures provide the possibility to be integrated into functional materials for various photoresponsive applications.
RESUMO
Photoresponsive polymers have attracted increasing interest owing to their potential applications in anticounterfeiting, information encryption, adhesives, etc. Among them, diarylethene (DAE)-containing polymers are one of the most promising photoresponsive polymers and have unique thermal stability and fatigue resistance compared to azobenzene- and spiropyran-containing polymers. Herein, the design of DAE-containing polymers based on different types of structures, including main chain polymers, side-chain polymers, and crosslinked polymers, is introduced. The mechanism and applications of DAE-containing polymers in anti-counterfeiting, information encryption, light-controllable adhesives, and photoinduced healable materials are reviewed. In addition, the remaining challenges of DAE-containing polymers are also discussed.
Assuntos
Polímeros , Polímeros/químicaRESUMO
Adopting only a small amount of azobenzene molecular to design liquid crystal photo-responsive materials capable of quick response and flexible adjustability is in high demand but is challenging. Herein, azobenzenemolecules into polyurethane elastomer containing crystalline structure for preparing azobenzene liquid-crystal elastomers (ALCEs) are demonstrated and this phenomenon of the synergistic effects between liquid crystal and crystalline phase is discovered. The key point of the work is that the synthetic ALCEs can utilize the reversible isomerism capability of azobenzene molecules under light irradiation, which can pry the motion of the macromolecular crystalline region in system to realize the large macroscopic deformation of the photo-responsive behavior. Obviously, the ALCEs sample containing azobenzene molecule and polyethylene glycol crystallization can quickly bend, illuminated by ultraviolet light and rapidly straighten under green light. Under the same ultraviolet irradiation, the bending speed, final bending angle, recovery rate and recovery ratio of ALCEs are larger than that of ALCEs without any crystalline structure. This ALCEs based on the synergistic effects between liquid crystal and crystalline phase can break through the current dilemma that the application of traditional azobenzene photo-responsive materials is limited by their concentration, greatly expanding the design thought and their scope of application.
Assuntos
Elastômeros , Cristais Líquidos , Elastômeros/química , Cristais Líquidos/química , Compostos Azo/química , PolietilenoglicóisRESUMO
Light-driven multicolor supramolecular systems mainly rely on the doping of dyes or a photo-reaction to produce unidirectional luminescence. Herein, we use visible light to drive the bidirectional reversible multicolor supramolecular shuttle from blue to green, white, yellow, up to orange by simple encapsulation of spiropyran-modified cyanostilbene (BCNMC) by the macrocyclic cucurbit[8]uril (CB[8]) monomer. The resultant host-guest complex displayed enhanced fluorescence properties, i.e. the multicolor fluorescence shuttle changed from blue to orange in the dark within 2â hours and reverted to the original state upon visible light irradiation for 30â s. Benefiting from the sensitivity of the spiropyran moiety to light, it can spontaneously isomerize from the ring-opened state to a ring-closed isomer in aqueous solution, and this photo-isomerization reaction is a reversible process under visible light irradiation, leading to the multicolor luminescence supramolecular shuttle as a result of intramolecular energy transfer. In addition, the light also drove the reversible conversion of the topological morphology of the host-guest complex from two-dimensional nanoplatelets to nanospheres. Different from the widely reported molecular rotaxane "shuttle", the spiropyran supramolecular shuttle confined in the macrocyclic host CB[8] not only modulated a reversible topological morphology by light but also exhibited multicolor luminescence, which was successfully applied in programmed and rewritable information encryption.
RESUMO
The photo-responsive adsorption has emerged as a vibrant area, but its current methodology is limited by the well-defined photochromic units and their molecular deformation driven by photo-stimuli. Herein, a methodology of nondeforming photo-responsiveness is successfully exploited. With the exploiting agent of Cu-TCPP framework assembled on the graphite and strongly interacted with it, the sorbent generates two kinds of adsorption sites, over which the electron density distribution of the graphite layer can be modulated at the c-axis direction, which can further evolve due to photo-stimulated excited states. The excited states are stable enough to meet the timescale of microscopic adsorption equilibrium. Independent of the ultra-low specific surface area of the sorbent (20â m2 g-1 ), the CO adsorption capability can be improved from 0.50â mmol g-1 at the ground state to 1.24â mmol g-1 (0 °C, 1â bar) with the visible light radiation, rather than the photothermal desorption.
RESUMO
Post-polymerization modification (PPM) offers a versatile approach for engineering multifunctional polymers, but this advantage has not been fully exploited to fabricate multifunctional liquid crystal polymers (LCPs). Here, we design a facile synthetic approach towards multifunctional LCP by combining the ring-opening metathesis polymerization (ROMP) with PPM, in which ROMP helps to prepare a reactive LCP precursor with high molecular weight, and PPM provides a facilitation to introduce functional groups into the precursor. Consequently, a photo- and humidity-responsive linear LCP (LLCP) is demonstrated to show the potential of this synthetic strategy to diversify functions of the LCPs. Under light irradiation and humidity changes, the deformation modes of the LLCP films are converted to complex shapes (bending, twisting, and curling). The obtained dual-responsive LLCP with high molecular weight possesses excellent processability and recyclability, making it possible to construct 3D shape actuators with programmable deformation behaviors under light/humidity.
RESUMO
We present the construction of a M2 L4 -type metal-organic nanocage featuring four endohedral Feringa's motor motifs and its adaptive encapsulation towards a C60 guest molecule. The structure of the cage, though complicated on the 1 H NMR spectrum due to the adoption of mixed ligands, was unambiguously characterized with a combination of ESI-MS, 2D DOSY, 13 C NMR and particularly the SAXS technique. The molecular motor within the cage demonstrated similar photophysical properties to the uncoordinated one, indicating the motor's function was not compromised when it was anchored in such a confined nanospace. Furthermore, the nanocage showed good guest encapsulation ability towards C60 , and a guest induced-fit behavior of the cage was revealed based on the extensive SAXS analysis and molecular dynamics simulation. The adaptive motorized nanocage reported here represents one of the very few examples of integrating individual motors into a discrete nanoconfined system and offers prospects to achieve its non-equilibrium functions.
Assuntos
Metais , Modelos Moleculares , Espalhamento a Baixo Ângulo , Difração de Raios X , LigantesRESUMO
Photoresponsive liquid crystal elastomers (LCEs) have aroused much attention due to their unique structures, properties, and potential applications. However, many reported photoresponsive LCEs show small photoinduced deformation with a slow deformation speed, which limits their application to a certain extent. In this article, multiple hydrogen bond component and biphenyl component was introduced into photoresponsive LCEs bearing cyanostilbene by copolymerization, and prepared a series of LCEs CSm-BPn (CS and BP means cyanostilbene and biphenyl component, respectively; m, n means the content ratio of CS and BP). All uniaxially oriented CSm-BPn fibers show photoinduced deformation behavior under 365 nm UV light except for CS0-BP5. The introduction of hydrogen bond and the decrease of glass transition temperature realize large deformation and fast deformation speed. Besides, the properties of LCEs are successfully regulated by changing the content ratio of each component. What's more interesting is that the addition of appropriate amount of biphenyl can significantly improve and manipulate the deformation property of the CSm-BPn fibers. The maximum bending angle can reach 175° , and the whole photoinduced deformation process only takes 11 s. The photoresponsive LCEs with such large bending angle and fast deformation rate are rarely reported.
Assuntos
Elastômeros , Cristais Líquidos , Elastômeros/química , Ligação de Hidrogênio , Cristais Líquidos/química , Temperatura , Raios UltravioletaRESUMO
Using atomic force microscopy, the photo-induced reversible changes in a block copolymer self-assembly containing an azobenzene ionic liquid, which undergoes sol-gel transition is directly observed. This is the first report on the sol-gel transition of an ABA-type block copolymer consisting of upper critical solution temperature (UCST)-type A blocks in a photoresponsive ionic liquid mixture. The sol-gel transition is accompanied by an order-to-disorder structural change, which subsequently induces a change in the ionic conductivity. Surprisingly, the photo-induced ionic conductivity and rheological changes occurs rapidly (≈30 s) despite the dense (≈80 wt%) polymeric system. The rapid structural change is probably attributable to the fast diffusion of the ionic liquid.
Assuntos
Líquidos Iônicos , Compostos Azo , Géis , PolímerosRESUMO
Hierarchical self-assembly is one of the most effective approaches to fabricate nature-inspired materials with subtle nanostructures. We report a distinct hierarchical self-assembly process of molecular double brushes (MDBs) with each graft site carrying a poly(azobenzene-acrylate) (PAzo) chain and a poly(ethylene oxide) (PEO) chain. Asymmetric tapered worm (ATW) nanostructures with chain-end reactivity assembling from the azobenzene-derived MDBs serve as primary subunits to prepare branched supermicelles by increasing water content (Cw ) in THF/water. Various natural Antedon-shaped multiarm worm-like aggregates (MWAs) can be created via the particle-particle connection of ATWs. Intriguingly, the azobenzene moieties undergo trans-cis isomerization upon UV irradiation and further promote a morphology evolution of MWAs. Multiscale supermicelles comprised of starfish shapes with differing central body and arm morphologies (e.g., compare to the biological specimens Luidia ciliaris and Crossaster papposus) were prepared by manipulating irradiation time.
RESUMO
Designing photo-responsive host-guest systems can provide versatile supramolecular tools for constructing smart systems and materials. We designed photo-responsive macrocyclic hosts, modulated by light-driven molecular rotary motors enabling switchable chiral guest recognition. The intramolecular cyclization of the two arms of a first-generation molecular motor with flexible oligoethylene glycol chains of different lengths resulted in crown-ether-like macrocycles with intrinsic motor function. The octaethylene glycol linkage enables the successful unidirectional rotation of molecular motors, simultaneously allowing the 1:1 host-guest interaction with ammonium salt guests. The binding affinity and stereoselectivity of the motorized macrocycle can be reversibly modulated, owing to the multi-state light-driven switching of geometry and helicity of the molecular motors. This approach provides an attractive strategy to construct stimuli-responsive host-guest systems and dynamic materials.
RESUMO
An amphiphilic phosphodiester-linked azobenzene trimer has been exploited in the development of stimuli-responsive, water-soluble supramolecular polymers. The trimer can reversibly undergo thermal and photoisomerization between Z- and E-isomers. Its self-assembly properties in aqueous medium have been investigated by spectroscopic and microscopic techniques, demonstrating that E- and Z-azobenzene trimers form supramolecular nanosheets and toroidal nanostructures, respectively. By virtue of the E/Z photoisomerization of the azobenzene units, the two different supramolecular morphologies can be switched by photoirradiation. The findings pave a way towards stimuli-responsive, water-soluble supramolecular polymers which hold great promise in the development of smart functional materials.
RESUMO
Photoswitchable compounds are promising materials for solar-thermal energy conversion and storage. In particular, photoresponsive azobenzene-containing compounds are proposed as materials for solar-thermal fuels. In this feature article, solar-thermal fuels based on azobenzene-containing polymers (azopolymers) are reviewed. The mechanism of azopolymer-based solar-thermal fuels is introduced, and computer simulations and experimental results on azopolymer-based solar-thermal fuels are highlighted. Different types of azopolymers such as linear azopolymers, 2D azopolymers, and conjugated azopolymers are addressed. The advantages and limitations of these azopolymers for solar-thermal energy conversion and storage, along with the remaining challenges of azopolymer-based solar-thermal fuels, are discussed.
Assuntos
Compostos Azo/química , Polímeros/química , Energia Solar , Isomerismo , Nanotubos de Carbono/química , Raios UltravioletaRESUMO
BACKGROUND: Shortening photoperiod triggers seasonal adjustments like cessation of reproduction, molting and heterothermy. However there is a considerable among-individual variation in photoresponsiveness within one population. Although seasonal adjustments are considered beneficial to winter survival, and natural selection should favor the individuals responding to changes in photoperiod (responders), the phenotype non-responding to changes in day length is maintained in population. Assuming the same resource availability for both phenotypes which differ in strategy of winter survival, we hypothesized that they should differ in life history traits. To test this we compared reproductive traits of two extreme phenotypes of Siberian hamster Phodopus sungorus - responding and non-responding to seasonal changes in photoperiod. We bred individuals of the same phenotype and measured time to first parturition, time interval between litters, offspring body mass 3, 10 and 18 days after birth and their growth rate. We also analyzed nest-building behavior. Additionally, we estimated the correlation between reproduction, and basal metabolic rate (BMR) and oxidative status in both phenotypes to infer about the effect of reproductive output on future investments in somatic maintenance. RESULTS: Prior to reproduction responding individuals were smaller than non-responding ones, but this difference disappeared after reproduction. Responding pairs commenced breeding later than non-responding ones but there was no difference in time interval between consecutive litters. Responders delivered smaller offspring than non-responders and more out of responding individuals built the nest during winter than non-responding ones. Reproduction did not affect future investments in somatic maintenance. Phenotypes did not differ in BMR and oxidative status after reproduction. However, concentration of reactive oxygen metabolites (ROM) was highest in responding males, and biological antioxidant potential (BAP) was higher in males of both phenotypes than in females. CONCLUSIONS: Delayed breeding in responding Siberian hamsters and high ROM concentration in male responders support our hypothesis that differences in adjustment to winter result in different life history characteristics which may explain coexistence of both phenotypes in a population. We propose that polymorphism in photoresponsiveness may be beneficial in stochastic environment, where environmental conditions differ between winters. We suggest that non-responding phenotype may be particularly beneficial during mild winter, whereas responders would be favored under harsh conditions. Therefore, none of the phenotypes is impaired when compared to the other.
RESUMO
Exploring dynamic bonds and their applications in fabricating dynamic materials has received great attention. A photoinduced [2]rotaxane-based dynamic mechanical bond (DMB) features visible-light-triggered dynamic bonding behavior that is essentially distinguished from conventional dynamic chemical bonds. In this DMB, a photoisomerizable ortho-fluoroazobenzene unit is introduced as a steric-controllable stopper, the visible-light-induced dynamic wagging movement of which enables the photoregulated threading of the macrocycle. This allows reversible inâ situ de-/reforming of the mechanical bond without involving dynamic chemical linkage. The DMB-cross-linked polymeric gel shows interesting photoinduced degradation behavior upon visible light irradiation. Benefiting from the distinctive dual dynamic nature of reversible bonding behavior and mechanical interlocked structure, this DMB is expected to serve as a new type of dynamic bond that can be applied in designing dynamic soft materials.