Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Microb Ecol ; 87(1): 32, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228918

RESUMO

Alders are nitrogen (N)-fixing riparian trees that promote leaf litter decomposition in streams through their high-nutrient leaf litter inputs. While alders are widespread across Europe, their populations are at risk due to infection by the oomycete Phytophthora ×alni, which causes alder dieback. Moreover, alder death opens a space for the establishment of an aggressive N-fixing invasive species, the black locust (Robinia pseudoacacia). Shifts from riparian vegetation containing healthy to infected alder and, eventually, alder loss and replacement with black locust may alter the key process of leaf litter decomposition and associated microbial decomposer assemblages. We examined this question in a microcosm experiment comparing three types of leaf litter mixtures: one representing an original riparian forest composed of healthy alder (Alnus lusitanica), ash (Fraxinus angustifolia), and poplar (Populus nigra); one with the same species composition where alder had been infected by P. ×alni; and one where alder had been replaced with black locust. The experiment lasted six weeks, and every two weeks, microbially driven decomposition, fungal biomass, reproduction, and assemblage structure were measured. Decomposition was highest in mixtures with infected alder and lowest in mixtures with black locust, reflecting differences in leaf nutrient concentrations. Mixtures with alder showed distinct fungal assemblages and higher sporulation rates than mixtures with black locust. Our results indicate that alder loss and its replacement with black locust may alter key stream ecosystem processes and assemblages, with important changes already occurring during alder infection. This highlights the importance of maintaining heathy riparian forests to preserve proper stream ecosystem functioning.


Assuntos
Alnus , Ecossistema , Árvores , Rios/microbiologia , Biomassa , Nitrogênio , Folhas de Planta/microbiologia , Alnus/microbiologia
2.
Ecotoxicol Environ Saf ; 247: 114235, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36327782

RESUMO

Hexachlorocyclohexanes (HCHs) are persistent organochlorine pesticides with the adverse effects on human health and the environment. The effect of delta-isomer of hexachlorocyclohexane (δ-HCH) on germination, growth parameters and physiological parameters was studied in different Alnus glutinosa (L.) Gaertn. progeny of resistant genotypes to pathogen Phytophthora ×alni. Two experiments were performed: a short-term experiment to determine the effect of δ-HCH on total germination (GT), germination energy (GE), speed of germination (SG), shoot length and biomass of seedlings, and a long-term experiment devoted to remediation aspects. In addition, changes in the hormonal system of alders were monitored in both cases. Significant differences were found between the treated and control group in most of the evaluated characteristics. Also, the content of studied phytohormones differs between groups. Furthermore, the obtained results indicate genetically determined variability in response to δ-HCH. Of the six tested, the Brezové and Turany progeny seem to be suitable candidates for phytoremediation because of the adaptation to stress conditions or high remediation efficiency. The rest of tested progeny seems to be unsuitable due to higher mortality, lower remediation efficiency and higher levels of stress hormones resulting in significant decrease in biomass and plant height. Moreover, results indicate the role of the plant as a remediation accelerator, probably through released exudates, and a positive effect on the soil microbiome as the presence of plants increased the remediation efficiency by 20.85 - 35.89%. The obtained research findings may be helpful in better understanding the processes involved in removing these pesticides from the soil. Further research should be focused on rhizosphere microbiome, mechanism of in-plant isomerization and metabolites identification.


Assuntos
Alnus , Praguicidas , Phytophthora , Humanos , Genótipo , Solo
3.
Fungal Genet Biol ; 77: 12-21, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25732380

RESUMO

Alder decline has been a problem along European watercourses since the early 1990s. Hybridization was identified as the main cause of this emerging disease. Indeed, the causal agent, a soil-borne pathogen named Phytophthora alni subsp. alni (Paa) is the result of interspecific hybridization between two taxa, Phytophthora alni subsp. multiformis (Pam) and Phytophthora alni subsp. uniformis (Pau), initially identified as subspecies of Paa. The aim of this work was to characterize the ploidy level within the P. alni complex that is presently poorly understood. For that, we used two complementary approaches for a set of 31 isolates of Paa, Pam and Pau: (i) quantification of allele copy number of three single-copy nuclear genes using allele-specific real-time PCR and (ii) comparison of the genome size estimated by flow cytometry. Relative quantification of alleles of the three single-copy genes showed that the copy number of a given allele in Paa was systematically half that of its parents Pau or Pam. Moreover, DNA content estimated by flow cytometry in Paa was equal to half the sum of those in Pam and Pau. Our results therefore suggest that the hybrid Paa is an allotriploid species, containing half of the genome of each of its parents Pam and Pau, which in turn are considered to be allotetraploid and diploid, respectively. Paa thus results from a homoploid speciation process. Based on published data and on results from this study, a new formal taxonomic name is proposed for the three taxa Paa, Pam and Pau which are raised to species status and renamed P. ×alni, P. ×multiformis and P. uniformis, respectively.


Assuntos
Quimera/genética , Genoma , Phytophthora/classificação , Phytophthora/genética , Poliploidia , Alelos , Alnus/microbiologia , Quimera/classificação , Phytophthora/patogenicidade
4.
Sci Total Environ ; 947: 173619, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38825208

RESUMO

The globalization in plant material trading has caused the emergence of invasive pests in many ecosystems, such as the alder pathogen Phytophthora ×alni in European riparian forests. Due to the ecological importance of alder to the functioning of rivers and the increasing incidence of P. ×alni-induced alder decline, effective and accessible decision tools are required to help managers and stakeholders control the disease. This study proposes a Bayesian belief network methodology to integrate diverse information on the factors affecting the survival and infection ability of P. ×alni in riparian habitats to help predict and manage disease incidence. The resulting Alder Decline Network (ADnet) management tool integrates information about alder decline from scientific literature, expert knowledge and empirical data. Expert knowledge was gathered through elicitation techniques that included 19 experts from 12 institutions and 8 countries. An original dataset was created covering 1189 European locations, from which P. ×alni occurrence was modeled based on bioclimatic variables. ADnet uncertainty was evaluated through its sensitivity to changes in states and three scenario analyses. The ADnet tool indicated that mild temperatures and high precipitation are key factors favoring pathogen survival. Flood timing, water velocity, and soil type have the strongest influence on disease incidence. ADnet can support ecosystem management decisions and knowledge transfer to address P. ×alni-induced alder decline at local or regional levels across Europe. Management actions such as avoiding the planting of potentially infected trees or removing man-made structures that increase the flooding period in disease-affected sites could decrease the incidence of alder disease in riparian forests and limit its spread. The coverage of the ADnet tool can be expanded by updating data on the pathogen's occurrence, particularly from its distributional limits. Research on the role of genetic variability in alder susceptibility and pathogen virulence may also help improve future ADnet versions.


Assuntos
Alnus , Teorema de Bayes , Doenças das Plantas/microbiologia , Doenças das Plantas/estatística & dados numéricos , Phytophthora , Ecossistema , Europa (Continente)/epidemiologia , Florestas , Conservação dos Recursos Naturais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa