Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 384
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(49): e2310664120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38039272

RESUMO

In eukaryotes, targeted protein degradation (TPD) typically depends on a series of interactions among ubiquitin ligases that transfer ubiquitin molecules to substrates leading to degradation by the 26S proteasome. We previously identified that the bacterial effector protein SAP05 mediates ubiquitin-independent TPD. SAP05 forms a ternary complex via interactions with the von Willebrand Factor Type A (vWA) domain of the proteasomal ubiquitin receptor Rpn10 and the zinc-finger (ZnF) domains of the SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) and GATA BINDING FACTOR (GATA) transcription factors (TFs). This leads to direct TPD of the TFs by the 26S proteasome. Here, we report the crystal structures of the SAP05-Rpn10vWA complex at 2.17 Å resolution and of the SAP05-SPL5ZnF complex at 2.20 Å resolution. Structural analyses revealed that SAP05 displays a remarkable bimodular architecture with two distinct nonoverlapping surfaces, a "loop surface" with three protruding loops that form electrostatic interactions with ZnF, and a "sheet surface" featuring two ß-sheets, loops, and α-helices that establish polar interactions with vWA. SAP05 binding to ZnF TFs involves single amino acids responsible for multiple contacts, while SAP05 binding to vWA is more stable due to the necessity of multiple mutations to break the interaction. In addition, positioning of the SAP05 complex on the 26S proteasome points to a mechanism of protein degradation. Collectively, our findings demonstrate how a small bacterial bimodular protein can bypass the canonical ubiquitin-proteasome proteolysis pathway, enabling ubiquitin-independent TPD in eukaryotic cells. This knowledge holds significant potential for the creation of TPD technologies.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Proteínas de Transporte/metabolismo , Ligação Proteica , Eucariotos/metabolismo
2.
BMC Biol ; 22(1): 113, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750524

RESUMO

BACKGROUND: Protein posttranslational modifications (PTMs) are fast and early responses to environmental changes, including pathogen infection. Jujube witches' broom (JWB) is a phytoplasma disease causing great economic loss in jujube production. After phytoplasma infection, the transcriptional, translational, and metabolic levels in jujube were activated, enabling it to survive during phytoplasma invasion. However, no study has yet reported on PTMs in jujube. Lysine crotonylation (Kcr) and lysine succinylation (Ksu) have been popular studies in recent years and their function in plant phytoplasma-stress responses remains unclear. RESULTS: Here, 1656 crotonylated and 282 succinylated jujube proteins were first identified under phytoplasma-stress, of which 198 were simultaneously crotonylated and succinylated. Comparative analysis revealed that 656 proteins, 137 crotonylated and 43 succinylated proteins in jujube were regulated by phytoplasma infection, suggesting that Kcr was more universal than Ksu. Kcr differentially expressed proteins (DEPs) were related to ribosomes, photosynthetic and carbon metabolism, while Ksu DEPs were mainly involved in carbon metabolism, the TCA cycle and secondary metabolite biosynthesis. The crosstalk network among proteome, crotonylome and succinylome showed that DEPs related to ribosomal, peroxidases and glutathione redox were enriched. Among them, ZjPOD51 and ZjPHGPX2 significantly increased at the protein and Kcr level under phytoplasma-stress. Notably, 7 Kcr sites were identified in ZjPHGPX2, a unique antioxidant enzyme. After inhibitor nicotinamide (NAM) treatment, GPX enzyme activity in jujube seedlings was reduced. Further, site-directed mutagenesis of key Kcr modification sites K130 and/or K135 in ZjPHGPX2 significantly reduced its activity. CONCLUSIONS: This study firstly provided large-scale datasets of Kcr and Ksu in phytoplasma-infected jujube and revealed that Kcr modification in ZjPHGPX2 positively regulates its activity.


Assuntos
Phytoplasma , Doenças das Plantas , Proteínas de Plantas , Ziziphus , Ziziphus/microbiologia , Ziziphus/metabolismo , Phytoplasma/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Doenças das Plantas/microbiologia , Processamento de Proteína Pós-Traducional , Estresse Fisiológico , Lisina/metabolismo
3.
J Biol Chem ; 299(4): 103052, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813236

RESUMO

Phytoplasmas are insect-borne bacterial pathogens capable of secreting effectors into host cells and interfering with host plant defense response processes. Previous studies have found that the Candidatus Phytoplasma tritici effector SWP12 binds to and destabilizes the wheat transcription factor TaWRKY74, increasing wheat susceptibility to phytoplasmas. Here, we used a Nicotiana benthamiana transient expression system to identify two key functional sites of SWP12 and screened a series of truncated mutants and amino acid substitution mutants to determine whether they inhibit Bax-induced cell death. Using a subcellular localization assay and online structure analysis websites, we found that structure rather than intracellular localization probably affects the function of SWP12. D33A and P85H are two inactive substitution mutants, neither of which interacts with TaWRKY74, and P85H does not inhibit Bax-induced cell death, suppress flg22-triggered reactive oxygen species (ROS) bursts, degrade TaWRKY74, or promote phytoplasma accumulation. D33A can weakly suppress Bax-induced cell death and flg22-triggered ROS bursts and degrade a portion of TaWRKY74 and weakly promote phytoplasma accumulation. S53L, CPP, and EPWB are three SWP12 homolog proteins from other phytoplasmas. Sequence analysis revealed that D33 was conserved in these proteins, and they exhibited the same polarity at P85. Transient expression in N. benthamiana showed that these proteins could inhibit Bax-induced cell death and suppress ROS bursts. Our findings clarified that P85 and D33 of SWP12 play critical and minor roles, respectively, in suppressing the plant defense response and that they play a preliminary role in determining the functions of homologous proteins.


Assuntos
Phytoplasma , Phytoplasma/química , Phytoplasma/metabolismo , Proteínas de Bactérias/metabolismo , Aminoácidos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo , Plantas/metabolismo , Doenças das Plantas/microbiologia
4.
BMC Plant Biol ; 24(1): 576, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890568

RESUMO

BACKGROUND: Little leaf disease caused by phytoplasma infection is a significant threat to eggplant (also known as brinjal) cultivation in India. This study focused on the molecular characterisation of the phytoplasma strains and insect vectors responsible for its transmission and screening of brinjal germplasm for resistance to little leaf disease. RESULTS: Surveys conducted across districts in the Tamil Nadu state of India during 2021-2022 showed a higher incidence of phytoplasma during the Zaid (March to June), followed by Kharif (June to November) and Rabi (November to March) seasons with mean incidence ranging from 22 to 27%. As the name indicates, phytoplasma infection results in little leaf (reduction in leaf size), excessive growth of axillary shoots, virescence, phyllody, stunted growth, leaf chlorosis and witches' broom symptoms. PCR amplification with phytoplasma-specific primers confirmed the presence of this pathogen in all symptomatic brinjal plants and in Hishimonus phycitis (leafhopper), providing valuable insights into the role of leafhoppers in disease transmission. BLAST search and phylogenetic analysis revealed the phytoplasma strain as "Candidatus Phytoplasma trifolii". Insect population and disease dynamics are highly influenced by environmental factors such as temperature, relative humidity and rainfall. Further, the evaluation of 22 eggplant accessions revealed immune to highly susceptible responses where over 50% of the entries were highly susceptible. Finally, additive main effect and multiplicative interaction (AMMI) and won-where biplot analyses identified G18 as a best-performing accession for little leaf resistance due to its consistent responses across multiple environments. CONCLUSIONS: This research contributes essential information on little leaf incidence, symptoms, transmission and resistance profiles of different brinjal genotypes, which together ensure effective and sustainable management of this important disease of eggplants.


Assuntos
Resistência à Doença , Phytoplasma , Doenças das Plantas , Folhas de Planta , Solanum melongena , Solanum melongena/microbiologia , Solanum melongena/genética , Doenças das Plantas/microbiologia , Phytoplasma/fisiologia , Resistência à Doença/genética , Folhas de Planta/microbiologia , Índia , Filogenia , Animais , Hemípteros/microbiologia , Incidência , Insetos Vetores/microbiologia
5.
Plant Dis ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587800

RESUMO

Recurrent epiphytotics of X-disease, caused by 'Candidatus Phytoplasma pruni', have inflicted significant losses on commercial cherry and peach production across North America in the last century. During this period, there have been multiple studies reporting different disease phenotypes, and more recently, identifying different strains through sequencing core genes, but the symptoms have not, to date, been linked with genotype. Therefore, in this study we collected and assessed differing disease phenotypes from multiple U.S. states and conducted multi-locus sequence analysis on these strains. We identified a total of five lineages associated with the induction of X-disease on commercial Prunus species and two lineages that were associated with wild P. virginiana. Despite a century of interstate plant movement, there were regional trends in terms of lineages present, and lineage-specific symptoms were observed on P. avium, P. cerasus, and P. virginiana, but not on P. persica. Cumulatively, these data have allowed us to define 'true' X-disease-inducing strains of concern to the stone fruit industry across North America, as well as potential sources of infection that exist in the extra-orchard environment.

6.
Plant Dis ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411606

RESUMO

Praxelis clematidea is an invasive herbaceous plant belonging to Asteraceae family. From August to November 2020, the plants showing severe witches'-broom symptoms were found in farms and roadsides from Ding'an of Hainan Province, a tropical island of China. The disease symptoms were suggestive of phytoplasma infection. For pathogen detection, P. clematidea samples consisting of six symptomatic and three asymptomatic plants were collected from the farms and roadsites of Ding'an with 40 % incidence by conducting surveys and statistics. Total nucleic acids were extracted using 0.10 g of fresh leaf tissues of the plant through CTAB DNA extraction method. Conserved gene sequences of 16S rRNA and secA genes from phytoplasma were amplified by direct PCR using primer pairs of R16mF2/R16mR1 and secAfor1/secArev3, respectively. R16mF2/R16mR1 PCR amplicons were obtained for all symptomatic samples but not from the symptomless plants. The amplicons were purified and sequenced by Biotechnology (Shanghai) Co., Ltd. (Guangzhou, China). Sequences of 16S rRNA gene (1323 bp) and secA (732 bp) were obtained and all the gene sequences were identical, designated as PcWB (Praxelis clematidea witches'-broom)-hnda. Representative sequencs were deposited in Genbank with accession numbers of PP098736 (16S rDNA) and PP072216 (secA). Nucleotide BLAST (Basic Local Alignment Search Tool) search based on 16S rRNA gene sequences indicated that PcWB-hnda had 100% sequence identity (1323/1323) with 'Candidatus Phytoplasma asteris'-related strains belonging to 16SrI group like Waltheria indica virescence phytoplasma (MW353909) and Capsicum annuum yellow crinkle phytoplasma (MT760793); had 99.62 % sequence identity (1321/1326) with the phytoplasma strains of 16SrI group such as Oenothera phytoplasma (M30790). RFLP (Restriction Fragment Length Polymorphism) pattern derived from 16Sr RNA gene sequences by iPhyClassifier showed identical (similarity coefficient=1.00) to the reference pattern of 16SrI-B subgroup (GenBank accession number: AP006628). The results obtained demonstrate that the phytoplasma strain PcWB-hnda under study is a member of 16SrI-B subgroup. A BLAST search based on secA gene sequences indicated that PcWB-hnda shares 100% sequence identity (732/732 bp) with Pericampylus glaucus witches'-broom phytoplasma (MT875200), 99% sequence identify (728/732 bp) with onion yellows phytoplasma OY-M(AP006628), and 99% sequence identify (729/732 bp) with rapeseed phyllody phytoplasma isolate RP166 (CP055264), among other phytoplasma strains that belong to 16SrI group. Previous studies demonstrated that P. clematidea can be infected by phytoplasmas affiliate to the 16SrII group (GenBank accession number: KY568717 and EF061924) in Hainan Island of China. To our knowledge, this is the first report of a natural infection of P. clematidea by a group 16SrI phytoplasma in the Island of China. 16SrI group can infect agronomic important species such as areca palm in the island and P. clematidea can be a reservoir of 16SrI phytoplasmas. Therefore, it is necessary to search of potential vectors of the pathogens, which would contribute to epidemiological monitoring and prevention of the related diseases.

7.
Plant Dis ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243180

RESUMO

Chinaberry (Melia azedarach), belonging to the family of Meliaceae, is an ornamental tree distributes across southern of China. In the autumn of 2021, In an area of 400 acres located in Wanning city of Hainan Province, a tropical island in China, with coordinates of 110°28'42.72″E, 19°2'9.96″N, about 20 % (100) of the chinaberry trees showed disease symptoms included chlorotic leaves. The disease symptoms were consistent with infections by a phloem-limited prokaryotic pathogen phytoplasma. The samples of six symptomatic and three asymptomatic were collected for pathogen detection. To identify the pathogen, total nucleic acids were extracted from 0.10 g fresh leaf tissues from the diseased and healthy plant using CTAB DNA extraction method based on Doyle and Doyle. Three primer pairs of R16mF2/R16mR1, secAfor1/secArev3 and fTuf1/rTuf1 were used for specific identification of phytoplasma conserved gene fragments of 16S rDNA, secA and tuf, PCR amplification. Target PCR bands were amplified from the DNA of six diseased chinaberry samples, but not from the DNA of the healthy samples. The products of amplified were cloned and sequenced by Biotechnology (Shanghai) Co., Ltd. (Guangzhou, China). The phytoplasma gene sequences of 16S rRNA, secA and tuf were obtained and all the sequences were identical with the length of 1336 bp, 710 bp and 955 bp, respectively. Representative sequence data for strain MaCL-hn were deposited in Genbank under accession Nos. OR438638 (16S rDNA), OR513089 (secA) and OR860415 (tuf). The phytoplasma strain identified in the study was described as chinaberry chlorotic leaf (MaCL) phytoplasma, MaCL-hn strain. BLAST search based on 16S rRNA genes showed that 43 strains in 16SrI group 'Candidatus Phytoplasma asteris' showed 100% similarity with the 16SRNA sequence of MaCL-hn. BLAST search based on secA genes showed that 9 strains in the phytoplasma group showed 100% similarity with the 16SRNA sequence of MaCL-hn. BLAST search based on tuf genes showed that 21 strains in the phytoplasma group showed 100% similarity with the 16SRNA sequence of MaCL-hn. RFLP analysis based on iPhyClassifier indicated that the MaCL-hn strain was a member of 16SrI-B subgroup with a similarity coefficient 1.00 to the reference phytoplasma strain (AP006628). Phylogenetic tree was constructed based on 16S rRNA by MEGA 11.0 using neighbor-joining (NJ) method with 1000 bootstrap value. The results showed that the MaCL-hn strains were clustered into one clade with 16SrI group 'Ca. Phytoplasma asteris' related strains with 99 % bootstrap value. Multilocus sequence analysis (MLSA) based on the concatenated sequences with the length of 3001 bp including the sequences of 16S rRNA, secA and tuf showed that the MaCL-hn strains were clustered into one clade with the phytoplasma strains in the group with 100 % bootstrap value. To our knowledge, this is the first report that chinaberry can be infected by 'Ca. Phytoplasma asteris'-related strains belonging to 16SrI-B subgroup on Hainan Island of China. This finding in the study will contribute to the epidemic monitoring and the preventive management of the phytoplasmas and their related diseases.

8.
Plant Dis ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687571

RESUMO

Ipomoea biflora L., commonly known as morning glory, is an herbaceous vine plant in the Convolvulaceae family and is widespread at low elevations in Taiwan and other East Asian countries. In September 2023, six I. biflora plants exhibiting small leaves, leaf yellowing, and shoot proliferation were observed in a vacant lot in Taiwan Agricultural Research Institute (TARI), Wufeng District, Taichung, Taiwan, representing 100% disease incidence in the area. All the symptomatic morning glory climbed onto Murraya paniculata L. (common jasmine orange) which however showed no similar symptoms. The total DNA (two samples for each plant) from leaf tissues of three symptomatic morning glory plants, two asymptomatic morning glory plants, and one asymptomatic common jasmine orange was isolated by the CTAB method (Fulton et al. 1995) and used for PCR with the universal primers, P1 (Deng and Hiruki 1991)/P7 (Schneider et al. 1995), to amplify a fragment containing partial 16S rDNA. Expected 1.8-kb bands were amplified from DNA extracted from all symptomatic plants, whereas no PCR product was detected from that of the asymptomatic I.biflora and M. paniculata plants. Six PCR products were cloned and sequenced in the Biotechnology Center DNA-sequencing facility at National Chung Hsing University, and one representative sequence was selected and deposited in GenBank. BLAST analysis revealed that the obtained 16S rDNA sequence (PP230905) shared 99.92% identity with the following phytoplasma strains: rapeseed phyllody phytoplasma (CP055264), plumbago auriculata leaf yellowing phytoplasma (MN239503), and aster yellows phytoplasma (MK992774), which all belong to the 16SrI subgroup. The query 16S rDNA sequence shares 99.84% identity with that of the 'Candidatus Phytoplasma asteris' reference strain (M30790), suggesting that the phytoplasma is a 'Ca. Phytoplasma asteris'-related strain. A virtual restriction fragment length polymorphism (RFLP) analysis was conducted using iPhyClassifier tool (Zhao et al. 2009), and the pattern derived from the 16S rDNA fragment of the I. biflora phytoplasma was identical (similarity coefficient 1.00) to the reference pattern of 16SrI, subgroup B (onion yellows phytoplasma OY-M; AP006628). Six total DNA samples from symptomatic plants were used as templates to amplify 842 bp secA sequences with SecAfor1 and SecArev3 primers (Hodgetts et al. 2008), and one representative sequence was deposited in GenBank. The partial secA sequence (PP263636) showed 98.22% identity with that of Trema levigatum witches'-broom phytoplasma (MW032212) that also belongs to the 16SrI group (Wan et al. 2021). Phylogenetic analysis of both 16S rDNA and secA confirmed I. biflora phytoplasma as 16SrI, subgroup B. Taken together, we concluded that the morning glory phytoplasma in this study was a 'Ca. Phytoplasma asteris'-related strain belonging to the 16SrI group. To the best of our knowledge, this is the first report of a phytoplasma-infected I. biflora in Taiwan, suggesting morning glory as a new natural host of 16SrI phytoplasmas, alongside other plants like roselle and citrus (Tseng et al. 2014; Feng et al. 2015).

9.
Plant Dis ; 108(6): 1703-1718, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38175658

RESUMO

Phytoplasmas are a group of plant prokaryotic pathogens distributed worldwide. To comprehensively reveal the diversity of the pathogens and the diseases they cause on Hainan, a tropical island with abundant biodiversity in China, a survey of phytoplasmal diseases was performed from 2009 to 2022. Herein, molecular identification and genetic analysis were conducted based on the conserved genes of phytoplasmas. The results indicated that phytoplasmas could be detected in 138 samples from 18 host plants among 215 samples suspected to be infected by the pathogens. The phytoplasma strains from 27 diseased samples of 4 host plants belonged to the 16SrI group and the strains from 111 samples of 14 hosts belonged to the 16SrII group. Among them, 12 plants, including important tropical cash crops such as Phoenix dactylifera, cassava, sugarcane, and Piper nigrum, were first identified as hosts of phytoplasmas on Hainan Island. Based on BLAST and iPhyClassifier analyses, seven novel 16Sr subgroups were proposed to describe the relevant phytoplasma strains, comprising the 16SrI-AP, 16SrI-AQ, and 16SrI-AR subgroups within the 16SrI group and the 16SrII-Y, 16SrII-Z, 16SrII-AB, and 16SrII-AC subgroups within the 16SrII group. Genetic variation and phylogenetic analysis indicated that the phytoplasma strains identified in this study and those reported previously on Hainan Island mainly belong to four 16Sr groups (including I, II, V, and XXXII) and could infect 44 host plants, among which the 16SrI and 16SrII groups were the prevalent 16Sr groups associated with 43 host plant species. The diversity of host plants infected by the phytoplasmas made it difficult to monitor and control their related diseases. Therefore, strengthening inspection and quarantine during the introduction and transit of the related phytoplasmal host crops would effectively curb the spread and prevalence of the phytoplasmas and their related lethal diseases.


Assuntos
Filogenia , Phytoplasma , Doenças das Plantas , RNA Ribossômico 16S , Phytoplasma/genética , Phytoplasma/classificação , Phytoplasma/isolamento & purificação , China , RNA Ribossômico 16S/genética , Doenças das Plantas/microbiologia , Ilhas , Variação Genética , Plantas/microbiologia , Biodiversidade
10.
Plant Dis ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861468

RESUMO

Momordica charantia, also known as bitter melon, bitter gourd, and bitter squash, is a member of the Cucurbitaceae family and is widely grown in tropical and subtropical regions for its edible fruit and medicinal properties (Alves et al. 2017). In April 2022, bitter melon plants exhibiting stem fasciation and excessive tendril symptoms were observed in a 50-acre vegetable farm in Yijia Village, Weishan Yizu Huizu Autonomous County, Dali, Yunnan Province, China (Fig. 1). The farm primarily grew tomatoes, but around 400 bitter melon plants were planted in spots where tomatoes failed to establish. One plot had a 40% incidence rate, with four out of ten bitter melon plants showing symptoms. Scattered cases were observed in other plots, leading to an overall disease incidence rate of around 2% for the entire farm. Phytoplasma infection was suspected due to symptomatic plants growing in the same province as previously reported cases of phytoplasma diseases, such as happy tree (Camptotheca accuminata) witches'-broom disease, and the presence of phytoplasma-transmitting leafhoppers (Qiao et al. 2023). DNA was extracted from four symptomatic samples and two healthy controls collected from the abovementioned plot with a 40% disease incidence using Bioteke's Plant Genomic DNA Extraction Kit and then tested for phytoplasma infection. A nested PCR assay was conducted using primer pair P1/16S-SR followed by P1A/16S-SR to amplify the near full-length phytoplasma 16S rDNA (about 1.5kb) as previously described (Lee et al. 2004). None of the healthy controls tested positive for phytoplasma infection, while three out of four symptomatic plants showed positive results. The amplicons from the nested PCR were cloned into the pCRII-TOPO vector as previously described (Lee et al. 2004). The resulting clones were sequenced, and the representative sequence was deposited into GenBank (accession number PP489216). The iPhyClassifier (Zhao et al. 2009) was employed to determine the phytoplasma species and group/subgroup associated with the bitter melon stem fasciation (BMSF) disease. The results indicated that the diseased bitter melon plants were infected with a strain related to 'Candidatus Phytoplasma malaysianum' (EU371934), with a 98.07% sequence identity. The similarity coefficient was 1.00 compared to the reference strain of 16SrXXXII-D (GenBank accession: MW138004). The phytoplasma strain associated with BMSF disease was designated as BMSF1. In addition, the same DNA samples underwent further characterization of the BMSF strains. A nested PCR was conducted using primer pair rpL2F3/rpIR1A, followed by rp(III)-FN/rpIR1A to amplify a phytoplasma-specific rp gene segment (about 1.2 kb) (Martini et al. 2007; Davis et al. 2013). Three out of four samples tested positive, consistent with the 16S rRNA gene amplification results. Similarly, a primer pair L15F1/MapR1 followed by secYF1(III)/secYR1(III) was used to amplify a phytoplasma-specific partial spc operon (about 1.7 kb) that includes the complete secY gene and partial rpl15 and map genes, as previously described (Lee et al. 2010). The obtained rp and partial spc amplicons were cloned and sequenced (GenBank accession numbers PP464295 and PP464296). The rp and secY gene sequences were searched against the non-redundant nucleotide collection in the NCBI database using BLASTN. The top hit for the rp gene was 'Ca. Phytoplasma luffae' (CP054393), with 83.24% identity (1068/1283 base-matching). The top hit for the secY gene was also 'Ca. Phytoplasma luffae' (CP054393), with 72.53% identity (1294/1784 base-matching). The percent identity of the BMSF sequences compared to the top hit is low since no other group 16SrXXXII rp and secY gene sequences are available for comparison. A subgroup 16SrXXXII-D phytoplasma strain has been previously reported associated with Camptotheca acuminata witches'-broom (Qiao et al. 2023) and Trema tomentosa witches'-broom (Yu et al. 2021) in China. To our knowledge, bitter melon represents a new host of 'Candidatus Phytoplasma malaysianum'-related strains, and this is the first report of BMSF disease in China. The findings suggest that 'Candidatus Phytoplasma malaysianum'-related strains infect not only ornamental plants but also crops.

11.
Plant Dis ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319623

RESUMO

Chrysanthemum morifolium (Asteraceae) is commonly grown as commercial cut flowers or pot mums worldwide. Common diseases of chrysanthemum include bacterial blight, fungal diseases, viruses, and phytoplasmas (Verma et al. 2003; Taloh et al. 2020). In June 2022, C. morifolium plants showing virescence, stunting, witches' broom, and phyllody symptoms were observed in 10 plants representing 10% of the estimated 100 plants in a field in Taichung City, Taiwan (Fig. S1). Three symptomatic samples along with three asymptomatic ones were collected for further study. Nested PCR was performed with two primer sets, P1/P7 (Deng and Hiruki 1991; Schneider et al. 1995) and R16F2n/R16R2 (Gundersen and Lee 1996) to amplify nearly full-length of 16S rDNA from the collected samples. The target 1.2-kb DNA band was only amplified from the symptomatic chrysanthemum plants. The amplicons were sequenced and a representative sequence deposited in GenBank under accession number OR501416. This sequence was used to search GenBank database by the Basic Local Alignment Search Tool (BLAST) program through the web service of National Center for Biotechnology Information (NCBI). In the 16S rDNA analyses, the three randomly picked amplicons from chrysanthemum phyllody phytoplasma (CPP) shared 100% identity with one another, and all shared 99.5% identity with the, 'Candidatus Phytoplasma australasiae' reference phytoplasma strain (Y10097). Further analysis using iPhyClassifier (Wei et al. 2007) revealed that CPP was most similar to the pattern of the peanut witches' broom phytoplasma in the 16SrII-A subgroup (GenBank Acc. No. L33765), with a pattern similarity coefficient of 1.0. For confirmation, the secY gene was amplified by secY-F/R primers (Li et al. 2014), the 1.2-kb band was sequenced and deposit in GenBank (Acc. No. OR508986). BLAST analysis showed that the secY sequence of CPP shared 99.93% of sequence identities to several 'Ca. P. australasiaticum' strains (MN543069, CP097312, CP120449, KC953013, MW085916, MW070030, CP040925). The phylogenetic tree analysis based on the secY gene by MEGA11 employing maximum-likelihood algorithm was performed and the bootstrap value was set as 1000 times for support of the stability for the clades. The result showed that CPP is closely related to other strains in 16SrII group (Fig. S2). Taken together, CPP is a 'Ca. P. australasiaticum' related-strain in 16SrII-A subgroup. This is the first report of chrysanthemum as a host of this phytoplasma in Taiwan, and might have an impact to the horticultural industry and the growers.

12.
Plant Dis ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38379222

RESUMO

Cumin (Cuminum cyminum L.), is an important export-oriented seed spice crop for India. Cumin is popularly used for flavouring food, including soups, pickles and vegetables, and for herbal medicine. India is the largest producer, consumer and exporter of cumin seed with an annual production of 0.795 million tones over an area of 1.09 million hectares. During 2020-21, India exported about 0.299 million tons of cumin worth of Rs 33280 million (Anonymous, 2021). Recently, phytoplasma suspected symptoms were observed in cumin at Agricultural Research Station, Mandor, Jodhpur, Rajasthan, India from 2019. The symptoms related to phytoplasma infection were first recorded after 70-75 days of sowing in the month of January of the years 2019 to 2022. The major symptoms recorded were yellowing, phyllody, witches-broom, yellowing and deformed elongated seeds. Disease incidence was recorded as 0.25-1.0%, 0.5-1.5%, 0.5-2.5 % and 0.5-10.6% during the years 2019, 2020, 2021 and 2022, respectively using quadrate method. In 2022, among different genotypes assessed GC 4, MCU 73, MCU 105, and MCU 32 exhibited lower disease incidences ranging from 0.5% to 1.5%, while MCU 78 recorded the highest disease incidence at 10.6%. To detect the association of phytoplasma with symptomatic cumin samples, genomic DNA was extracted from four representative cumin genotypes (CuPP-MND-01 to CuPP-MND-04) and one asymptomatic cumin plant using the Qiagen DNeasy plant mini kit (Germany). The extracted DNA was amplified using nested PCR assays with universal phytoplasma detection primers for 16S rRNA gene (P1/P7 and R16F2n/R16R2) (Schneider et al., 1995; Gundersen and Lee, 1996) and secA gene specific primers (SecAfor1/SecArev3 followed by nested PCR primers SecAfor5/ SecArev2) (Hodgetts et al. 2008; Bekele et al. 2011). The amplicons of ∼1.25 kb with 16S rRNA gene and ∼600 bp with secA gene specific primers were amplified in all symptomatic cumin plant samples and positive control of brinjal little leaf. PCR amplified products from the four selected positive samples (CuPP-MND-01 to CuPP-MND-04) of 16S rRNA gene and secA gene, were sequenced from both ends. The 1,245 bp sequences were deposited in GenBank (OQ299007-10), which showed 100% sequence identity with each other and 99.4% identity with 'Candidatus Phytoplasma citri' reference strain (GenBank accession: U15442) (Rodrigues Jardim et al. 2023). The phylogenetic analysis and virtual RFLP analysis using 17 restriction enzymes of 16S rRNA gene sequences through iPhyclassifier allowed affiliating the cumin phytoplasma strains with 16SrII-C subgroup strain with a similarity coefficient of 1 to the reference pattern of 16Sr group II, subgroup C (GenBank accession: AJ293216) (Zhao et al. 2009). In addition, the phylogenetic analysis of the secA gene-based sequences (OQ305073-76) further confirmed the close association of 16SrII-C group phytoplasmas with phyllody and witches' broom disease of cumin. Earlier 16SrII-C subgroup phytoplasma has been reported from various crops and weeds in India (Rao et al. 2021). However, no phytoplasma association has been reported earlier with cumin in India and abroad. To the best of our knowledge, this is the first report on the association of 16SrII-C group phytoplasma causing phyllody, witches' broom in cumin genotypes. This report has economic and epidemiological implications and needs immediate attention to reduce export losses due to phytoplasma disease in cumin and to prevent the potential spread to other crops.

13.
Plant Dis ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311796

RESUMO

Phytoplasmas are phloem-limited plant pathogenic prokaryotes which can not be cultured in vitro. The pathogens could cause various plant symptoms such as witches'-broom, virescence, and leaf yellows. Ipomoea obscura is a valuable plant species belonging to the family Convolvulaceae, mainly used as a traditional Chinese medicine used to treat diseases such as dehydration and diuresis. In western countries it is commonly referred to as 'obscure morning glory'. During 2020 to 2021, plants showing abnormal symptoms including witches'-broom, internode shortening, and small leaves were found in Hainan Province, a tropical island of China. Approximately 30 % of I. obscura plants in the sampling regions which spanned 400 acres, showed symptoms. In order to identify the associated pathogen, six symptomatic samples and three asymptomatic samples were collected and total DNA were extracted from 0.10 g fresh plant leaf tissues using CTAB DNA extraction method. 16S rRNA and secA gene fragments, specific to phytoplasmas, were PCR amplified using primers R16mF2/R16mR1 and secAfor1/secArev3. The target PCR bands were obtained from the DNA of six symptomatic samples, whereas not from the DNA of the asymptomatic samples. The PCR products of phytoplasma 16S rRNA and secA gene obtained from the diseased samples were cloned and sequenced by Biotechnology (Shanghai) Co., Ltd. (Guangzhou, China). The 16S rRNA and secA gene sequences identified in the study were all identical with the length of 1330 bp (GenBank accession: OR625212) and 720 bp (OR635662) respectively. According to methods and protocols of phytoplasma identification and classification (Wei and Zhao, 2022), the phytoplasma strain identified in the study was described as Ipomoea obscura witches'-broom (IoWB) phytoplasma, IoWB-hnld strain. The partial 16S rRNA gene sequence of IoWB showed 100 % sequence identity over the full 1330 bp sequence to phytoplasmas belonging to 16SrII group like cassava witches'-broom phytoplasma (KM280679). The BLAST search of the 720 bp partial secA gene fragment of IoWB showed 100% sequence identity for the full sequence to phytoplasmas belonging to 16SrII group like 'Sesamum indicum' phyllody phytoplasma (OQ420657). RFLP analysis based on the 16S rRNA gene using iPhyClassifier demonstrated that the IoWB strain was a member of 16SrII-A subgroup with the similarity coefficient 1.00 to the reference phytoplasma strain (L33765). Phylogenetic analysis based on 16S rRNA and secA genes by MEGA 7.0 employing neighbor-joining (NJ) method with 1000 bootstrap value indicated that IoWB-hnld was clustered into one clade with the phytoplasmas belonging to 16SrII group, with 98% and 100% bootstrap value separately. To our knowledge, this is the first report that Ipomoea obscura can be infected by phytoplasmas belonging to 16SrII-A subgroup in China. This report adds to the host range of 'Ca. Phytoplasma aurantifolia', documenting the symptoms on I. obscura which will assist in monitoring and control of the associated pathogen.

14.
Plant Dis ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687574

RESUMO

Silver bluestem [Bothriochloa laguroides (DC.) Herter] is a warm-season grass native to Texas. This perennial grass plays a crucial role in maintaining ecological balance and supporting wildlife in the region. In September 2022, while investigating the ecological impact of invasive grass species on a grassland located near Pipe Creek (TX), B. laguroides plants were observed showing symptoms that included yellowing of the blades and occasionally brown discoloration of the midveins and stems (Fig. S1). Disease incidence was estimated as 2% of silver bluestem plants in the 2 hectares surveyed. To investigate the possibility of a phytoplasma association with the symptoms, four symptomatic and four asymptomatic leaf samples were collected for further study. Total DNA was extracted from leaf midribs using a DNeasy Plant Mini Kit (Qiagen). The DNA extracts were tested using a phytoplasma-specific quantitative PCR assay (Hodgetts et al. 2009), which identified two out of the four symptomatic B. laguroides samples as positive for phytoplasmas. A semi-nested PCR assay for amplification of the 16S rRNA gene fragment was then performed on these samples with primers P1/16S-SR followed by P1A/16S-SR (Deng, and Hiruki 1991; Lee et al. 2004), and two additional housekeeping genes (tuf and secA) were amplified as previously described (Makarova et al. 2012; Hodgetts et al. 2008; Bekele et al. 2011). All amplicons of the expected size, 1.5 kb (16S rRNA), 0.4 kb (tuf) and 0.6 kb (secA), were purified and bi-directionally sequenced using primers from each gene second round PCR amplification. Analysis of the sequences derived from the three gene fragments revealed no variation between the two plant samples and confirmed they originated from a phytoplasma, termed strain TXSB-2 (Texas Silver Bluestem). Sequences from a single B. laguroides plant DNA extract were deposited in GenBank with accession numbers OR711913 (16S rRNA), OR709687 (tuf) and OR709688 (secA). A BLAST search of the 16S rRNA gene sequence from TXSB-2 against the NCBI nucleotide database, showed 99.58% sequence identity with an unclassified phytoplasma clone 139-1 from a leafhopper collected in Australia (MW281491) (Fig. S2). The partial nucleotide sequence of the tuf and secA genes showed 90.60% and 89.78% similarity, respectively, to the corresponding genes in 'Ca. P. sacchari' strain SCWL1 (CP115156) associated with sugarcane in China. The iPhyClassifier, an interactive online tool for phytoplasma identification and classification (Zhao et al. 2009), was used to determine the 'Candidatus Phytoplasma' species affiliation and group/subgroup classification status of this phytoplasma strain. The result showed that the TXSB-2 16S rDNA shared 98.94% sequence identity with that of the 'Ca. P. sacchari' reference strain (GenBank accession: MN889545), indicating TXSB-2 is a 'Ca. P. sacchari'-related strain. The result from virtual restriction fragment length polymorphism (RFLP) analysis of the 16S rDNA F2nR2 fragment revealed that TXSB-2 possessed a collective RFLP pattern that is distinct from the reference patterns of all established phytoplasma ribosomal subgroups and is proposed as the representative strain of a new subgroup designated as 16SrXI-H. 'Candidatus Phytoplasma sacchari' has been reported associated with sugarcane grassy shoot disease, which is considered among the most damaging diseases of sugarcane across parts of Southeast Asia and India (Kirdat et al. 2021). The same phytoplasma was recently confirmed infecting sorghum in India (Nithya et al. 2024). To our knowledge, this is the first report of a 'Ca. P. sacchari'-related strain infecting B. laguroides in the United States. Moreover, B. laguroides is a new host for strains related to 'Ca. P. sacchari'. Further investigation is required to elucidate the prevalence of this disease in the area, its natural vectors, and the potential consequences arising from this novel phytoplasma strain within its ecosystem in Texas.

15.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554056

RESUMO

Aster leafhopper (Hemiptera: Cicadellidae: Macrosteles quadrilineatus Forbes) is a polyphagous insect species that migrates into the upper Midwest of the United States and the Western Canadian Prairies. Populations of this insect are associated with the transmission of a plant pathogen (Candidatus Phytoplasma asteris, 16SrI) to several annual crops and perennial plant species. Previous studies suggest that aster leafhoppers can sometimes prefer less suitable hosts for their development and survival, yet it is unclear if this lower performance on certain plant species is associated with reduced or impaired probing behaviors due to characteristics of the plants. To characterize the probing behaviors of aster leafhoppers, direct current electropenetrography recordings of male and female adults on barley (Polaes: Poaceae: Hordeum vulgare L.) were combined with plant histology, allowing the identification of nine waveforms and their proposed biological meanings. For each waveform, the number of waveform events per insect (NWEI), the waveform duration per insect (WDI), the waveform duration per event per insect (WDEI), and the percentage of recording time were calculated and statistically compared between sexes. Male and female aster leafhoppers exhibited similar behavioral responses for most of these variables, except for the NWEI for waveforms associated with nonprobing activities and the pathway phase. In these cases, male aster leafhoppers exhibited a higher number of events than females. Comparison of the proposed waveforms in this study with previous work on other hemipteran species provided additional support to the interpretation of the biological activities associated with each waveform.


Assuntos
Hemípteros , Hordeum , Phytoplasma , Feminino , Animais , Hemípteros/fisiologia , Doenças das Plantas , Canadá , Phytoplasma/fisiologia
16.
Plant J ; 112(6): 1473-1488, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36380696

RESUMO

'Candidatus Phytoplasma tritici' ('Ca. P. tritici') is an insect-borne obligate pathogen that infects wheat (Triticum aestivum) causing wheat blue dwarf disease, and leads to yield losses. SWP12 is a potential effector secreted by 'Ca. P. tritici' that manipulates host processes to create an environment conducive to phytoplasma colonization, but the detailed mechanism of action remains to be investigated. In this study, the expression of SWP12 weakened the basal immunity of Nicotiana benthamiana and promoted leaf colonization by Phytophthora parasitica, Sclerotinia sclerotiorum, and tobacco mild green mosaic virus. Moreover, the expression of SWP12 in wheat plants promoted phytoplasma colonization. Triticum aestivum WRKY74 and N. benthamiana WRKY17 were identified as host targets of SWP12. The expression of TaWRKY74 triggered reactive oxygen species bursts, upregulated defense-related genes, and decreased TaCRR6 transcription, leading to reductions in NADH dehydrogenase complex (NDH) activity. Expression of TaWRKY74 in wheat increased plant resistance to 'Ca. P. tritici', and silencing of TaWRKY74 enhanced plant susceptibility, which indicates that TaWRKY74 is a positive regulator of wheat resistance to 'Ca. P. tritici'. We showed that SWP12 weakens plant resistance and promotes 'Ca. P. tritici' colonization by destabilizing TaWRKY74.


Assuntos
Phytoplasma , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Doenças das Plantas , Resistência à Doença/genética
17.
BMC Plant Biol ; 23(1): 251, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173622

RESUMO

Phytoplasmas are obligate cell wall-less prokaryotic bacteria that primarily multiply in plant phloem tissue. Jujube witches' broom (JWB) associated with phytoplasma is a destructive disease of jujube (Ziziphus jujuba Mill.). Here we report the complete 'Candidatus Phytoplasma ziziphi' chromosome of strain Hebei-2018, which is a circular genome of 764,108-base pairs with 735 predicted CDS. Notably, extra 19,825 bp (from 621,995 to 641,819 bp) compared to the previously reported one complements the genes involved in glycolysis, such as pdhA, pdhB, pdhC, pdhD, ackA, pduL and LDH. The synonymous codon usage bias (CUB) patterns by using comparative genomics analysis among the 9 phytoplasmas were similar for most codons. The ENc-GC3s analysis among the 9 phytoplasmas showed a greater effect under the selection on the CUBs of phytoplasmas genes than mutation and other factors. The genome exhibited a strongly reduced ability in metabolic synthesis, while the genes encoding transporter systems were well developed. The genes involved in sec-dependent protein translocation system were also identified.The expressions of nine FtsHs encoding membrane associated ATP-dependent Zn proteases and Mn-SodA with redox capacity in the Ca. P. ziziphi was positively correlated with the phytoplasma concentration. Taken together, the genome will not only expand the number of phytoplasma species and provide some new information about Ca. P. ziziphi, but also contribute to exploring its pathogenic mechanism.


Assuntos
Phytoplasma , Ziziphus , Phytoplasma/genética , Plantas/genética , Códon , Ziziphus/genética , Ziziphus/metabolismo , Mutação , Doenças das Plantas/microbiologia
18.
Plant Dis ; 107(9): 2624-2627, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36774570

RESUMO

Due to the devastating effects of butternut canker disease, efforts to protect the endangered butternut (Juglans cinerea) tree through resistance breeding have been a primary focus of forest restoration efforts. Walnut witches'-broom (WWB) disease poses a serious threat to these restoration efforts. This study sought to confirm the presence of the WWB disease phytoplasma, 'Candidatus Phytoplasma pruni', in butternut research plantings in Indiana using molecular methods and Sanger sequencing and to identify butternut families affected by the disease. We also sought to better understand the incidence of the WWB phytoplasma in asymptomatic trees and asymptomatic branches of symptomatic trees to better direct management decisions. Sanger sequencing confirmed the presence of the WWB phytoplasma in the butternut restoration plantings, the first confirmation in Indiana based on sequencing to our knowledge, in both symptomatic and some asymptomatic trees. In addition, the WWB phytoplasma was detected in asymptomatic branches of symptomatic trees, indicating that phytoplasma infection is not necessarily localized to symptomatic tissues in a tree. Trees with positive molecular confirmation of the WWB phytoplasma consisted of 23 different butternut families and one family of Japanese walnut (J. ailantifolia), which is considered to be one of the most susceptible species to WWB disease. Based on these findings, future studies should prioritize identifying the hybridity and pedigrees of families and their susceptibility to WWB disease to aid in butternut restoration efforts.


Assuntos
Juglans , Phytoplasma , Juglans/genética , Doenças por Fitoplasmas , Indiana , Doenças das Plantas , Filogenia , Melhoramento Vegetal , Phytoplasma/genética , Árvores
19.
Plant Dis ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923979

RESUMO

Ampelopsis grossedentata, commonly known as "Vine Tea" and well-recognized for its rich flavonoid content, is mainly distributed in the southern regions of the Yangtze River basin in China. These regions include Hunan, Hubei, Jiangxi, and Guizhou provinces. Vine Tea is mainly consumed as an herbal tea and has garnered attention for its reported health benefits, including antioxidant, anti-inflammatory, anti-tumor, anti-diabetic, and neuroprotective properties. It has been used to alleviate coughs and sore throats (Zhang et al., 2021; Wang et al., 2017; Gao et al., 2009). In the Zhangjiajie region of Hunan province alone, the Vine Tea planting area reached 7,670.5 hectares and produced commercial goods worth 1.417 billion RMB in 2022. In May 2021, leaf margins and veins fading to yellowing mottling, and crumpling of leaf blades in the shape of a boat symptoms were found in ~16% of Vine Tea plants in the Sanjiakuan Township, Yongding District, Zhangjiajie region (29°15'E, 110°30' N) (Figure 1a, b, c). (Figure 1a, b, c). Phytoplasma-like microbial cells (small oval shaped bacterial cells, around 1000 nm in size) were observed in sieve tube cells in the phloem of diseased leaves using transmission electron microscopy. No such cell was observed in the phloem of healthy leaves (Figure 2a, b). To investigate the potential association between phytoplasma and the observed symptoms of the diseased plants, total DNA was isolated from ten diseasedeaves and compared with ten healthy leaves from the same field using SteadyPure Plant Genomic DNA Extraction Kit. The isolated DNAs were analyzed first in a direct PCR using universal phytoplasma primer pair R16mF2/R16mR1 targeting the 16S rRNA gene (Gundersen and Lee 1996) and specific pair rpF1/rpR1 (Lee et al. 1998) targeting the DNA fragment encoding partial ribosomal proteins (rp) L22 (complete) and S3 and S19 (partial). The initial amplified products were used as templates and further amplified by nested PCR respectively with primer pair R16F2n/R16R2 for the 16S rRNA gene (Lee et al. 1998) and the rpF2/rpR2 primer pair for the rp gene (Martini et al. 2007). No amplification was obtained with DNA from healthy leaf samples using any of the four primer pairs. The amplified fragments from diseased leaves by nested PCR were cloned and sequenced (Qingke Biotech, China). The obtained sequences have been deposited in GenBank with accession numbers OR282806 for the 16S rRNA gene and GenBank OR353012 for the rp gene. BLASTn analysis revealed that the partial 16S rRNA gene sequence in our sample shared 99.4% nucleotide sequence identity with 'Candidatus Phytoplasma sp.' (MW364378) and 'Peony yellows phytoplasma' (KY814723) of the 16SrI group. Similarly, our rp gene sequence shared 99.6% nucleotide identity with the rpI group of phytoplasma such as the 'Balsamine virescence phytoplasma' (JN572890) and 'Paulownia witches'-broom phytoplasma' (HM146079). Phylogenetic analysis of the 16S rRNA and rp sequences using MEGA version 7.0 revealed that the phytoplasma strain associated with A. grossedentata yellow leaf syndrome in our study site belonged to the 16SrI (Candidatus Phytoplasma asteris) group of phytoplasma (Figure 3a, b). Using the interactive online phytoplasma classification tool iPhyClassifier (Zhao et al., 2009), virtual restriction fragment length polymorphism (RFLP) analysis of the 16S rRNA gene sequences showed our strain having a distinct RFLP map but was closest to that of the onion yellow phytoplasma 16SrI-B subgroup (GenBank accession number: AP006628), with a similarity coefficient of 0.94 (Figure 4a, b). To confirm phytoplasma transmission, healthy plants were inoculated with three scions of infected plants of A. grossedentata. After 16 days, the new leaves of the inoculated A. grossedentata showed yellow leaf symptoms (Figure 5a, b, c), akin to the symptoms originally observed in the field, and the outer contour of the leaf margin appeared chlorotic. After 26 days, primer pairs R16mF2/R16R1 and R16F2n/R16R2 were used for nested PCR detection of phytoplasma in symptomatic A. grossedentata leaves. Phytoplasma was detected in the first and second leaves of symptomatic branches and leaves while negative control showed no amplification. Sequencing of the amplified fragments showed 100% nucleotide identity to the strain from the grafting source. Our results indicated that the pathogen and the disease can be transmitted by tissue grafting, consistent with the biological characteristics of phytoplasma, and further confirmed that the phytoplasma was the pathogen of yellow leaf syndrome of A. grossedentata. Toour knowledge, this is the first report of phytoplasma of group 16SrI affecting A. grossedentata.

20.
Plant Dis ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37849283

RESUMO

British Columbia (BC) is the lead producer of sweet cherries in Canada with more than 2,000 ha in production and a farm gate value of over CAD$100 million annually. Since 2010, an outbreak of little cherry disease caused by Little cherry virus 1 (LChV1) and Little cherry virus 2 (LChV2), as well as X-disease (XD) caused by 'Candidatus Phytoplasma pruni' has caused significant economic losses in neighboring Washington State (WA), USA. LChV1 and LChV2 have long been known to occur in BC (Theilmann et al. 2002); however, 'Ca. P. pruni' has not yet been reported in BC. Due to its geographical proximity to WA State, the BC cherry industry expressed significant concerns about the possible presence of the phytoplasma in cherry orchards. Accordingly, the main objective of this study was to survey cherry orchards to determine whether 'Ca. P. pruni' was present in symptomatic trees in BC. A total of 118 samples of leaves and fruit stems from individual symptomatic trees were collected prior to harvest from nine cherry orchards and one nectarine orchard in the Okanagan and Similkameen Valleys in BC. Characteristic symptoms included small and misshapen fruit with poor color development. Samples were submitted to AGNEMA, LLC (Pasco, WA) for testing using qPCR TaqMan assays for LChV1 (Katsiani et al. 2018), LChV2 (Shires et al. 2022) and 'Ca. P. pruni' (Kogej et al. 2020). Test results showed 21 samples (17.8%) from three cherry orchards positive for LChV2 and 2 samples (1.7%) from one cherry orchard positive for 'Ca. P. pruni'. In order to confirm the identification of 'Ca. P. pruni', part of the 16S ribosomal RNA gene was amplified by nested PCR using the P1/P7 followed by R16F2n/R2 primer sets (Gundersen and Lee 1996) and Sanger sequenced. BC-XD-Pa-1 (GenBank Acc. No. OR539920) and BC-XD-Pa-2 (OR537699) were identical to one another and showed 99.92% identity to the 'Ca. P. pruni' reference strain CX-95 (JQ044397). Analysis using iPhyClassifier (Zhou et al. 2009) indicated that they were 16SrIII-A strains. Interestingly, the two partial 16S sequences showed 100% nucleotide identity to strain 10324 (MH810016) and others from WA. For additional confirmation, partial secA (Hodgetts et al. 2008) and secY (Lee et al. 2010) translocases were amplified and sequenced. As with the 16S sequences, secY sequences (OR542980, OR542981) showed 99.92% nucleotide identity to strain CX-95 (JQ268249), and 100% to strain 10324 (MH810035). The secA sequences (OR542978, OR542979) had nucleotide identities of 99.77% to strain CX (MW547067), and 100% to the Green Valley strain from California (EU168733). Accordingly, 'Ca. P. Pruni' was confirmed to be present in sweet cherry samples from BC. 'Ca. P. Pruni'-related strains have been previously reported to occur in Canada in commercial poinsettias (Euphorbia pulcherrima) (Arocha-Rosete et al. 2021). To our knowledge, this is the first report of 'Ca. P. Pruni' in sweet cherry in Canada. Due to the important economic value of sweet cherries in BC, these findings are highly significant and represent the first steps towards the development of a surveillance system for early detection of XD, and consequent implementation of management strategies, including vector control. As required by federal and provincial regulations, cherry trees infected with LChV2 and 'Ca. P. Pruni' found in the survey were removed by the growers.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa