Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Biochem Biophys Res Commun ; 642: 167-174, 2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36584480

RESUMO

The Golgi apparatus is vital for protein modification and molecular trafficking. It is essential for nerve development and activity, and damage thereof is implicated in many neurological diseases. Primary familial brain calcification (PFBC) is a rare inherited neurodegenerative disease characterized by multiple brain calcifications. SLC20A2, which encodes the inorganic phosphate transporter 2 (PiT-2) protein, is the main pathogenic gene in PFBC. The PiT-2 protein is a sodium-dependent phosphate type III transporter, and dysfunction leads to a deficit in the cellular intake of inorganic phosphate (Pi) and calcium deposits. Whether the impaired Golgi apparatus is involved in the PFBC procession requires elucidation. In this study, we constructed induced pluripotent stem cells (iPSCs) derived from two PFBC patients with different SLC20A2 gene mutations (c.613G > A or del exon10) and two healthy volunteers as dependable cell models for research on pathogenic mechanism. To study the mechanism, we differentiated iPSCs into neurons and astrocytes in vitro. Our study found disruptive Golgi structure and damaged autophagy in PFBC neurons with increased activity of mTOR. We also found damaged mitochondria and increased apoptosis in the PFBC dopaminergic neurons and astrocytes. In this study, we prove that dysfunctional PiT-2 leads to an imbalance of cellular Pi, which may disrupt the Golgi apparatus with impaired autophagy, mitochondria and apoptosis in PFBC. Our study provides a new avenue for understanding nerve damage and pathogenic mechanism in brain calcifications.


Assuntos
Calcinose , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Fosfatos/metabolismo , Calcinose/metabolismo , Complexo de Golgi/metabolismo , Mutação , Encéfalo/metabolismo
2.
J Pharmacol Sci ; 148(1): 152-155, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34924120

RESUMO

Type-III sodium-dependent phosphate transporters 1 and 2 (PiT 1 and PiT 2, respectively) are proteins encoded by SLC20A1 and SLC20A2, respectively. The ubiquitous distribution of SLC20A1 and SLC20A2 mRNAs in mammalian tissues supports the housekeeping maintenance and homeostasis of intracellular inorganic phosphate (Pi), which is absorbed from interstitial fluid for normal cellular functions. SLC20A2 variants have been found in patients with idiopathic basal ganglia calcification (IBGC), also known as Fahr's disease or primary familial brain calcification (PFBC). Thus, disrupted Pi homeostasis is considered one of the major factors in the pathogenic mechanism of IBGC. In this paper, among the causative genes of IBGC, we focused specifically on PiT2, and its potential for a therapeutic target of IBGC.


Assuntos
Doenças dos Gânglios da Base/genética , Calcinose/genética , Doenças Neurodegenerativas/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Animais , Doenças dos Gânglios da Base/metabolismo , Doenças dos Gânglios da Base/terapia , Calcinose/metabolismo , Calcinose/terapia , Homeostase/genética , Humanos , Terapia de Alvo Molecular , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/terapia , Fosfatos/metabolismo , RNA Mensageiro , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
3.
Neuropathology ; 42(2): 126-133, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35026865

RESUMO

We describe a postmortem case of familial idiopathic basal ganglia calcification (FIBGC) in a 72-year-old Japanese man. The patient showed progressive cognitive impairment with a seven-year clinical course and calcification of the basal ganglia, thalami, and cerebellar dentate nuclei. A novel heterozygous missense variant in SLC20A2 (c.920C>T/p.P307L), a type III sodium-dependent phosphate transporter (PiT-2), was subsequently identified, in addition to typical neuropathological findings of FIBGC, such as capillary calcification of the occipital gray matter, confluent calcification of the basal ganglia and cerebellar white matter, widespread occurrence of vasculopathic changes, cerebrovascular lesions, and vascular smooth muscle cell depletion. Immunohistochemistry for PiT-2 protein revealed no apparent staining in endothelial cells in the basal ganglia and insular cortex; however, the immunoreactivity in endothelial cells of the cerebellum was preserved. Moreover, Western blot analysis identified preserved PiT-2 immunoreactivity signals in the frontal cortex and cerebellum. The variant identified in the present patient could be associated with development of FIBGC and is known to be located at the large intracytoplasmic part of the PiT-2 protein, which has potential phosphorylation sites with importance in the regulation of inorganic phosphate transport activity. The present case is an important example to prove that FIGBC could stem from a missense variant in the large intracytoplasmic loop of the PiT-2 protein. Abnormal clearance of inorganic phosphate in the brain could be related to the development of vascular smooth muscle damage, the formation of cerebrovascular lesions, and subsequent brain calcification in patients with FIBGC with SLC20A2 variants.


Assuntos
Doenças dos Gânglios da Base , Células Endoteliais , Idoso , Doenças dos Gânglios da Base/patologia , Calcinose , Células Endoteliais/metabolismo , Humanos , Masculino , Doenças Neurodegenerativas , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Fator de Transcrição Pit-1/metabolismo
4.
Adv Exp Med Biol ; 1362: 27-35, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35288870

RESUMO

The blood level of phosphate is tightly regulated in a narrow range. Hyperphosphatemia and hypophosphatemia both lead to the development of diseases, such as hyperphosphatemic tumoral calcinosis and rickets/osteomalacia, respectively. Although several humoral factors have been known to affect blood phosphate levels, fibroblast growth factor 23 (FGF23) is the principal hormone involved in the regulation of blood phosphate. This hormone is produced by bone, particularly by osteocytes and osteoblasts, and has the effect of lowering the blood level of phosphate in the renal proximal tubules. Therefore, some phosphate-sensing mechanism should exist, at least in the bone. However, the mechanisms through which bone senses changes in the blood level of phosphate, and through which the bone regulates FGF23 production remain to be fully elucidated. Our recent findings demonstrate that high extracellular phosphate phosphorylates FGF receptor 1c (FGFR1c). Its downstream extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK signaling pathway regulates the expression of several transcription factors and the GALNT3 gene, which encodes GalNAc-T3, which plays a role in the regulation of posttranslational modification of FGF23 protein, which in turn enhances FGF23 production. The FGFR1c-GALNT3 gene axis is considered to be the most important mechanism for regulating the production of FGF23 in bone in the response to a high phosphate diet. Thus-in the regulation of FGF23 production and blood phosphate levels-FGFR1c may be considered to function as a phosphate-sensing molecule. A feedback mechanism, in which FGFR1c and FGF23 are involved, is present in blood phosphate regulation. In addition, other reports indicate that PiT1 and PiT2 (type III sodium-phosphate cotransporters), and calcium-sensing receptor are also involved in the phosphate-sensing mechanism. In the present chapter, we summarize new insights on phosphate-sensing mechanisms.


Assuntos
Hiperfosfatemia , Hipofosfatemia , Osso e Ossos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Humanos , Hiperfosfatemia/genética , Fosfatos/metabolismo
5.
J Cell Physiol ; 236(10): 7176-7185, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33738792

RESUMO

The sodium-dependent phosphate transporters Pit 1 and Pit 2 belong to the solute carrier 20 (SLC20) family of membrane proteins. They are ubiquitously distributed in the human body. Their crucial function is the intracellular transport of inorganic phosphate (Pi) in the form of H2 PO4- . They are one of the main elements in maintaining physiological phosphate homeostasis. Recent data have emerged that indicate novel roles of Pit 1 and Pit 2 proteins besides the well-known function of Pi transporters. These membrane proteins are believed to be precise phosphate sensors that mediate Pi-dependent intracellular signaling. They are also involved in insulin signaling and influence cellular insulin sensitivity. In diseases that are associated with hyperphosphatemia, such as diabetes and chronic kidney disease (CKD), disturbances in the function of Pit 1 and Pit 2 are observed. Phosphate transporters from the SLC20 family participate in the calcification of soft tissues, mainly blood vessels, during the course of CKD. The glomerulus and podocytes therein can also be a target of pathological calcification that damages these structures. A few studies have demonstrated the development of Pi-dependent podocyte injury that is mediated by Pit 1 and Pit 2. This paper discusses the role of Pit 1 and Pit 2 proteins in podocyte function, mainly in the context of the development of pathological calcification that disrupts permeability of the renal filtration barrier. We also describe the mechanisms that may contribute to podocyte damage by Pit 1 and Pit 2.


Assuntos
Hiperfosfatemia/metabolismo , Rim/metabolismo , Fosfatos/metabolismo , Podócitos/metabolismo , Insuficiência Renal Crônica/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Calcificação Vascular/metabolismo , Homeostase , Humanos , Hiperfosfatemia/patologia , Hiperfosfatemia/fisiopatologia , Rim/patologia , Rim/fisiopatologia , Masculino , Podócitos/patologia , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/fisiopatologia , Calcificação Vascular/patologia , Calcificação Vascular/fisiopatologia
6.
Int J Mol Sci ; 22(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467106

RESUMO

The intestinal absorption of phosphate (Pi) takes place transcellularly through the active NaPi-cotransporters type IIb (NaPiIIb) and III (PiT1 and PiT2) and paracellularly by diffusion through tight junction (TJ) proteins. The localisation along the intestines and the regulation of Pi absorption differ between species and are not fully understood. It is known that 1,25-dihydroxy-vitamin D3 (1,25-(OH)2D3) and phosphorus (P) depletion modulate intestinal Pi absorption in vertebrates in different ways. In addition to the apical uptake into the enterocytes, there are uncertainties regarding the basolateral excretion of Pi. Functional ex vivo experiments in Ussing chambers and molecular studies of small intestinal epithelia were carried out on P-deficient goats in order to elucidate the transepithelial Pi route in the intestine as well as the underlying mechanisms of its regulation and the proteins, which may be involved. The dietary P reduction had no effect on the duodenal and ileal Pi transport rate in growing goats. The ileal PiT1 and PiT2 mRNA expressions increased significantly, while the ileal PiT1 protein expression, the mid jejunal claudin-2 mRNA expression and the serum 1,25-(OH)2D3 levels were significantly reduced. These results advance the state of knowledge concerning the complex mechanisms of the Pi homeostasis in vertebrates.


Assuntos
Homeostase , Absorção Intestinal , Eliminação Intestinal , Fósforo na Dieta/metabolismo , Fósforo/deficiência , Animais , Calcitriol/sangue , Duodeno/metabolismo , Cabras , Íleo/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Proteínas Cotransportadoras de Sódio-Fosfato/genética , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo
7.
Kidney Int ; 98(2): 343-354, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32624180

RESUMO

Chronic kidney disease is characterized as impaired renal function along with the imbalance and dysregulation of mineral metabolism; recognized as chronic kidney disease-mineral and bone disorder. Hyperphosphatemia, characterized by altered phosphate homeostasis along with elevated fibroblast growth factor-23 and intact parathyroid hormone, is such an alteration of mineral metabolism. We discovered a novel inhibitor, EOS789, that interacts with several sodium-dependent phosphate transporters (NaPi-IIb, PiT-1, and PiT-2) known to contribute to intestinal phosphate absorption. This inhibitor dose-dependently increased the fecal phosphorus excretion rate and inversely decreased the urinary phosphorus excretion rate in normal rats, suggesting inhibition of intestinal phosphorus absorption. In rats with adenine-induced hyperphosphatemia, EOS789 markedly decreased the serum phosphate, fibroblast growth factor-23, and intact parathyroid hormone below values found in normal control rats. Notably, this pan-phosphate transporter inhibitor exhibited a more potent effect on serum phosphate than a NaPi-IIb-selective inhibitor in rats with hyperphosphatemia indicating that PiT-1 and PiT-2 play important roles in intestinal phosphate absorption. Moreover, in a long-term study, EOS789 sustained the suppression of serum phosphorus in parallel with fibroblast growth factor-23 and intact parathyroid hormone and ameliorated ectopic calcification of the thoracic aorta. Additionally, EOS789 treatment also ameliorated kidney deterioration in rats with progressive kidney injury, probably due to the strict phosphate control. Thus, EOS789 has potent efficacy against hyperphosphatemia and its complications and could provide a significant benefit to patients who are ineffectively treated with phosphate binders.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Hiperfosfatemia , Insuficiência Renal Crônica , Animais , Humanos , Hiperfosfatemia/tratamento farmacológico , Minerais , Proteínas de Transporte de Fosfato , Fosfatos/metabolismo , Ratos , Insuficiência Renal Crônica/tratamento farmacológico
8.
J Biol Chem ; 293(6): 2102-2114, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29233890

RESUMO

Extracellular phosphate (Pi) can act as a signaling molecule that directly alters gene expression and cellular physiology. The ability of cells or organisms to detect changes in extracellular Pi levels implies the existence of a Pi-sensing mechanism that signals to the body or individual cell. However, unlike in prokaryotes, yeasts, and plants, the molecular players involved in Pi sensing in mammals remain unknown. In this study, we investigated the involvement of the high-affinity, sodium-dependent Pi transporters PiT1 and PiT2 in mediating Pi signaling in skeletal cells. We found that deletion of PiT1 or PiT2 blunted the Pi-dependent ERK1/2-mediated phosphorylation and subsequent gene up-regulation of the mineralization inhibitors matrix Gla protein and osteopontin. This result suggested that both PiTs are necessary for Pi signaling. Moreover, the ERK1/2 phosphorylation could be rescued by overexpressing Pi transport-deficient PiT mutants. Using cross-linking and bioluminescence resonance energy transfer approaches, we found that PiT1 and PiT2 form high-abundance homodimers and Pi-regulated low-abundance heterodimers. Interestingly, in the absence of sodium-dependent Pi transport activity, the PiT1-PiT2 heterodimerization was still regulated by extracellular Pi levels. Of note, when two putative Pi-binding residues, Ser-128 (in PiT1) and Ser-113 (in PiT2), were substituted with alanine, the PiT1-PiT2 heterodimerization was no longer regulated by extracellular Pi These observations suggested that Pi binding rather than Pi uptake may be the key factor in mediating Pi signaling through the PiT proteins. Taken together, these results demonstrate that Pi-regulated PiT1-PiT2 heterodimerization mediates Pi sensing independently of Pi uptake.


Assuntos
Fosfatos/metabolismo , Multimerização Proteica , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Animais , Transporte Biológico , Sistema de Sinalização das MAP Quinases , Mamíferos , Fosfatos/fisiologia , Fosforilação , Ligação Proteica , Transdução de Sinais
9.
J Cell Physiol ; 233(3): 2324-2331, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28722801

RESUMO

Primary familial brain calcification (PFBC) is an autosomal dominant rare disorder characterized by bilateral and symmetric brain calcifications, and neuropsychiatric manifestations. Four genes have been linked to PFBC: SLC20A2, PDGFRB, PDGFB, and XPR1. In this study, we report molecular and clinical data of a PFBC patient carrying a novel SLC20A2 mutation and we investigate the impact of the mutation on PiT-2 expression and function. Sanger sequencing of SLC20A2, PDGFRB, PDGFB, XPR1 led to the identification of a novel duplication of twelve nucleotides (c.1876_1887dup/ p.Trp626_Thr629dup) in SLC20A2 gene. SLC20A2 encodes for a cell membrane transporter (PiT-2) involved in maintenance of inorganic phosphate homeostasis. We performed an analysis of expression and functionality of PiT-2 protein in patient primary cultured fibroblasts. In patient fibroblasts, the mutation does not affect PiT-2 expression but alter sub-cellular localization. The Pi-uptake assay revealed a less Pi depletion in patient than in control fibroblasts, suggesting that SLC20A2 duplication may impair Pi internalization. This is the first study reporting sub-cellular expression analysis of mutant PiT-2 in primary cultured fibroblasts from a PFBC patient, showing that p.Trp626_Thr629dup in SLC20A2 alters PiT-2 sub-cellular localization and reduces Pi-uptake, leading to onset of PFBC in our patient.


Assuntos
Encefalopatias/genética , Calcinose/genética , Fibroblastos/metabolismo , Mutação , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Idoso , Transporte Biológico , Encefalopatias/diagnóstico , Encefalopatias/metabolismo , Calcinose/diagnóstico , Calcinose/metabolismo , Células Cultivadas , Análise Mutacional de DNA , Fibroblastos/patologia , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Imageamento por Ressonância Magnética , Masculino , Fenótipo , Fosfatos/metabolismo , Cultura Primária de Células , Transporte Proteico , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Receptor do Retrovírus Politrópico e Xenotrópico
10.
Kidney Int ; 94(4): 716-727, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30041812

RESUMO

PiT-2, a type III sodium-dependent phosphate transporter, is a causative gene for the brain arteriolar calcification in people with familial basal ganglion calcification. Here we examined the effect of PiT-2 haploinsufficiency on vascular calcification in uremic mice using wild-type and global PiT-2 heterozygous knockout mice. PiT-2 haploinsufficiency enhanced the development of vascular calcification in mice with chronic kidney disease fed a high-phosphate diet. No differences were observed in the serum mineral biomarkers and kidney function between the wild-type and PiT-2 heterozygous knockout groups. Micro computed tomography analyses of femurs showed that haploinsufficiency of PiT-2 decreased trabecular bone mineral density in uremia. In vitro, sodium-dependent phosphate uptake was decreased in cultured vascular smooth muscle cells isolated from PiT-2 heterozygous knockout mice compared with those from wild-type mice. PiT-2 haploinsufficiency increased phosphate-induced calcification of cultured vascular smooth muscle cells compared to the wild-type. Furthermore, compared to wild-type vascular smooth muscle cells, PiT-2 deficient vascular smooth muscle cells had lower osteoprotegerin levels and increased matrix calcification, which was attenuated by osteoprotegerin supplementation. Thus, PiT-2 in vascular smooth muscle cells protects against phosphate-induced vascular calcification and may be a therapeutic target in the chronic kidney disease population.


Assuntos
Fosfatos/metabolismo , Insuficiência Renal Crônica/complicações , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Calcificação Vascular/genética , Animais , Biomarcadores/sangue , Densidade Óssea/genética , Feminino , Haploinsuficiência , Heterozigoto , Camundongos , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Osteoprotegerina/metabolismo , Fosfatos/administração & dosagem , Insuficiência Renal Crônica/sangue , Uremia/complicações , Calcificação Vascular/sangue
11.
Biochem Biophys Res Commun ; 495(1): 553-559, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29133259

RESUMO

Normal bone mineralization requires phosphate oversaturation in bone matrix vesicles, as well as normal regulation of phosphate metabolism via the interplay among bone, intestine, and kidney. In turn, derangement of phosphate metabolism greatly affects bone function and structure. The type III sodium-dependent phosphate transporters, PiT-1 and PiT-2, are believed to be important in tissue phosphate metabolism and physiological bone formation, but their requirement and molecular roles in bone remain poorly investigated. In order to decipher the role of PiT-2 in bone, we examined normal bone development, growth, and mineralization in global PiT-2 homozygous knockout mice. PiT-2 deficiency resulted in reduced vertebral column, femur, and tibia length as well as mandibular dimensions. Micro-computed tomography analysis revealed that bone mineral density in the mandible, femur, and tibia were decreased, indicating that maintenance of bone function and structure is impaired in both craniofacial and long bones of PiT-2 deficient mice. Both cortical and trabecular thickness and mineral density were reduced in PiT-2 homozygous knockout mice compared with wild-type mice. These results suggest that PiT-2 is involved in normal bone development and growth and plays roles in cortical and trabecular bone metabolism feasibly by regulating local phosphate transport and mineralization processes in the bone. Further studies that evaluate bone cell-specific loss of PiT-2 are now warranted and may yield insight into complex mechanisms of bone development and growth, leading to identification of new therapeutic options for patients with bone diseases.


Assuntos
Densidade Óssea , Desenvolvimento Ósseo , Doenças Ósseas/metabolismo , Doenças Ósseas/patologia , Osso e Ossos/patologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética
12.
Br J Nutr ; 119(12): 1346-1354, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29845902

RESUMO

To investigate the P absorption and gene expression levels of related co-transporters, type IIb sodium-dependent phosphate co-transporter (NaPi-IIb), inorganic phosphate transporter 1 (PiT-1) and inorganic phosphate transporter 2 (PiT-2) in the small intestine of broilers, 450 1-d-old Arbor Acres male broilers were randomly allocated to one of three treatments with ten replicate cages of fifteen birds per cage for each treatment in a completely randomised design. Chickens were fed a diet with no added inorganic P (containing 0·06 % non-phytate P (NPP)) or with either 0·21 or 0·44 % NPP for 21 d. Plasma P concentration in the hepatic portal vein, mRNA and protein expression levels of NaPi-IIb, PiT-1 and PiT-2 were determined at 7, 14 and 21 d of age. The results showed that the concentration of P in plasma in the hepatic portal vein increased as dietary NPP increased (P<0·0001). At 14 and 21 d of age, the increase in dietary NPP inhibited (P<0·003) NaPi-IIb mRNA expression level in the duodenum, as well as PiT-1 mRNA and protein expression levels in the ileum, but promoted NaPi-IIb protein expression level (P<0·002) and PiT-2 mRNA and protein expression levels (P<0·04) in the duodenum. These results suggest that NaPi-IIb, PiT-1 and PiT-2 might be important P transporters in the small intestine of broilers. Higher intestinal P absorption may be achieved by up-regulating the protein expression levels of NaPi-IIb and PiT-2 and down-regulating the protein expression of PiT-1.


Assuntos
Proteínas Aviárias/genética , Galinhas/genética , Galinhas/metabolismo , Intestino Delgado/metabolismo , Proteínas de Transporte de Fosfato/genética , Fósforo na Dieta/farmacocinética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/genética , Ração Animal/análise , Animais , Proteínas Aviárias/metabolismo , Galinhas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Absorção Intestinal/genética , Absorção Intestinal/fisiologia , Intestino Delgado/crescimento & desenvolvimento , Masculino , Proteínas de Transporte de Fosfato/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/metabolismo
13.
Am J Physiol Gastrointest Liver Physiol ; 312(4): G355-G366, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28232455

RESUMO

Apical inorganic phosphate (Pi) transport in the small intestine seems to be mainly mediated by the sodium/Pi cotransporter NaPi2b. To verify this role, we have studied the combined effects of pH, phosphonoformate, and Pi deprivation on intestinal Pi transport. Rats were fed, ad libitum, three fodders containing 1.2, 0.6, or 0.1% Pi for 1, 5, or 10 days. Pi deprivation (0.1%) increased both sodium-activated and sodium-independent Pi transport in brush-border membrane vesicles from the duodenum and jejunum for all three times. Alkaline pH inhibited Pi transport, despite the increasing concentration of [Formula: see text] (NaPi2b substrate), whereas acidity increased transport when the concentration of the PiT1/PiT2 substrate, [Formula: see text], was at its highest. The effect of Pi deprivation was maximal at acid pH, but both basal and upregulated transport were inhibited (70%) with phosphonoformate, an inhibitor of NaPi2b. PiT2 and NaPi2b protein abundance increased after 24 h of Pi deprivation in the duodenum, jejunum, and ileum, whereas PiT1 required 5-10 days in the duodenum and jejunum. Therefore, whereas transporter expressions are partially correlated with Pi transport adaptation, the pH effect precludes NaPi2b, and phosphonoformic acid precludes PiT1 and PiT2 as the main transporters. Transport and transporter expression were also inconsistent when feeding was limited to 4 h daily, because the 1.2% Pi diet paradoxically increased Pi transport in the duodenum and jejunum, but NaPi2b and PiT1 expressions only increased with the 0.1% diet. These findings suggest the presence of a major transporter that carries [Formula: see text] and is inhibited by phosphonoformate.NEW & NOTEWORTHY The combined effects of dietary inorganic phosphate (Pi) content, pH, and phosphonoformate inhibition suggest that the resulting apical Pi transport in the small intestine cannot be fully explained by the presence of NaPi2b, PiT1, or PiT2. We provide evidence of the presence of a new sodium-coupled Pi transporter that uses [Formula: see text] as the preferred substrate and is inhibited by phosphonoformate, and its expression correlates with Pi transport in all assayed conditions.


Assuntos
Duodeno/metabolismo , Absorção Intestinal/fisiologia , Jejuno/metabolismo , Microvilosidades/metabolismo , Fosfatos/metabolismo , Animais , Transporte Biológico , Duodeno/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Absorção Intestinal/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Microvilosidades/efeitos dos fármacos , Fosfatos/administração & dosagem , Ratos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/metabolismo
14.
Neuropathology ; 36(4): 365-71, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26635128

RESUMO

Idiopathic basal ganglia calcification (IBGC), or Fahr's disease, is a neurological disorder characterized by widespread calcification in the brain. Recently, several causative genes have been identified, but the histopathologic features of the brain lesions and expression of the gene products remain unclear. Here, we report the clinical and autopsy features of a 62-year-old Japanese man with familial IBGC, in whom an SLC20A2 mutation was identified. The patient developed mild cognitive impairment and parkinsonism. A brain CT scan demonstrated abnormal calcification in the bilateral basal ganglia, thalami and cerebellum. An MRI study at this point revealed glioblastoma, and the patient died 6 months later. At autopsy, symmetric calcification in the basal ganglia, thalami, cerebellar white matter and deeper layers of the cerebral cortex was evident. The calcification was observed in the tunica media of small arteries, arterioles and capillaries, but not in veins. Immunohistochemistry using an antibody against type III sodium-dependent phosphate transporter 2 (PiT-2), the SLC20A2 product, demonstrated that astrocytic processes were labeled in several regions in control brains, whereas in the patient, reactivity in astrocytes was apparently weak. Immunoblotting demonstrated a marked decrease of PiT-2 in the patient. There are few autopsy reports of IBGC patients with confirmation of the genetic background. The autopsy features seem informative for better understanding the histogenesis of IBGC lesions.


Assuntos
Doenças dos Gânglios da Base/genética , Doenças dos Gânglios da Base/patologia , Encéfalo/patologia , Calcinose/genética , Calcinose/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Doenças dos Gânglios da Base/complicações , Doenças dos Gânglios da Base/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/patologia , Calcinose/complicações , Calcinose/diagnóstico por imagem , Glioblastoma/complicações , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/diagnóstico por imagem , Linhagem
15.
Arterioscler Thromb Vasc Biol ; 33(11): 2625-32, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23968976

RESUMO

OBJECTIVE: Elevated serum phosphate has emerged as a major risk factor for vascular calcification. The sodium-dependent phosphate cotransporter, PiT-1, was previously shown to be required for phosphate-induced osteogenic differentiation and calcification of cultured human vascular smooth muscle cells (VSMCs), but its importance in vascular calcification in vivo and the potential role of its homologue, PiT-2, have not been determined. We investigated the in vivo requirement for PiT-1 in vascular calcification using a mouse model of chronic kidney disease and the potential compensatory role of PiT-2 using in vitro knockdown and overexpression strategies. APPROACH AND RESULTS: Mice with targeted deletion of PiT-1 in VSMCs were generated (PiT-1(Δsm)). PiT-1 mRNA levels were undetectable, whereas PiT-2 mRNA levels were increased 2-fold in the vascular aortic media of PiT-1(Δsm) compared with PiT-1(flox/flox) control. When arterial medial calcification was induced in PiT-1(Δsm) and PiT-1(flox/flox) by chronic kidney disease followed by dietary phosphate loading, the degree of aortic calcification was not different between genotypes, suggesting compensation by PiT-2. Consistent with this possibility, VSMCs isolated from PiT-1(Δsm) mice had no PiT-1 mRNA expression, increased PiT-2 mRNA levels, and no difference in sodium-dependent phosphate uptake or phosphate-induced matrix calcification compared with PiT-1(flox/flox) VSMCs. Knockdown of PiT-2 decreased phosphate uptake and phosphate-induced calcification of PiT-1(Δsm) VSMCs. Furthermore, overexpression of PiT-2 restored these parameters in human PiT-1-deficient VSMCs. CONCLUSIONS: PiT-2 can mediate phosphate uptake and calcification of VSMCs in the absence of PiT-1. Mechanistically, PiT-1 and PiT-2 seem to serve redundant roles in phosphate-induced calcification of VSMCs.


Assuntos
Músculo Liso Vascular/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Calcificação Vascular/fisiopatologia , Animais , Aorta/citologia , Aorta/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Músculo Liso Vascular/citologia , Fosfatos/metabolismo , RNA Mensageiro/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Uremia/genética , Uremia/metabolismo , Uremia/fisiopatologia , Calcificação Vascular/genética , Calcificação Vascular/metabolismo
16.
Neuron ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39019040

RESUMO

Aberrant inorganic phosphate (Pi) homeostasis causes brain calcification and aggravates neurodegeneration, but the underlying mechanism remains unclear. Here, we found that primary familial brain calcification (PFBC)-associated Pi transporter genes Pit2 and Xpr1 were highly expressed in astrocytes, with importer PiT2 distributed over the entire astrocyte processes and exporter XPR1 localized to astrocyte end-feet on blood vessels. This polarized PiT2 and XPR1 distribution endowed astrocyte with Pi transport capacity competent for brain Pi homeostasis, which was disrupted in mice with astrocyte-specific knockout (KO) of either Pit2 or Xpr1. Moreover, we found that Pi uptake by PiT2, and its facilitation by PFBC-associated galactosidase MYORG, were required for the high Pi transport capacity of astrocytes. Finally, brain calcification was suppressed by astrocyte-specific PiT2 re-expression in Pit2-KO mice. Thus, astrocyte-mediated Pi transport is pivotal for brain Pi homeostasis, and elevating astrocytic Pi transporter function represents a potential therapeutic strategy for reducing brain calcification.

17.
Neuron ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39121859

RESUMO

Primary familial brain calcification (PFBC) is a genetic neurological disease, yet no effective treatment is currently available. Here, we identified five novel intronic variants in SLC20A2 gene from six PFBC families. Three of these variants increased aberrant SLC20A2 pre-mRNA splicing by altering the binding affinity of splicing machineries to newly characterized cryptic exons, ultimately causing premature termination of SLC20A2 translation. Inhibiting the cryptic-exon incorporation with splice-switching ASOs increased the expression levels of functional SLC20A2 in cells carrying SLC20A2 mutations. Moreover, by knocking in a humanized SLC20A2 intron 2 sequence carrying a PFBC-associated intronic variant, the SLC20A2-KI mice exhibited increased inorganic phosphate (Pi) levels in cerebrospinal fluid (CSF) and progressive brain calcification. Intracerebroventricular administration of ASOs to these SLC20A2-KI mice reduced CSF Pi levels and suppressed brain calcification. Together, our findings expand the genetic etiology of PFBC and demonstrate ASO-mediated splice modulation as a potential therapy for PFBC patients with SLC20A2 haploinsufficiency.

18.
Cell Rep ; 43(5): 114220, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38735047

RESUMO

The suprachiasmatic nucleus (SCN) encodes time of day through changes in daily firing; however, the molecular mechanisms by which the SCN times behavior are not fully understood. To identify factors that could encode day/night differences in activity, we combine patch-clamp recordings and single-cell sequencing of individual SCN neurons in mice. We identify PiT2, a phosphate transporter, as being upregulated in a population of Vip+Nms+ SCN neurons at night. Although nocturnal and typically showing a peak of activity at lights off, mice lacking PiT2 (PiT2-/-) do not reach the activity level seen in wild-type mice during the light/dark transition. PiT2 loss leads to increased SCN neuronal firing and broad changes in SCN protein phosphorylation. PiT2-/- mice display a deficit in seasonal entrainment when moving from a simulated short summer to longer winter nights. This suggests that PiT2 is responsible for timing activity and is a driver of SCN plasticity allowing seasonal entrainment.


Assuntos
Núcleo Supraquiasmático , Animais , Núcleo Supraquiasmático/metabolismo , Camundongos , Neurônios/metabolismo , Locomoção , Camundongos Endogâmicos C57BL , Peptídeo Intestinal Vasoativo/metabolismo , Masculino , Ritmo Circadiano/fisiologia , Fotoperíodo , Camundongos Knockout , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Transporte de Fosfato/genética
19.
Neurosci Bull ; 39(1): 57-68, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35713844

RESUMO

PiT2 is an inorganic phosphate (Pi) transporter whose mutations are linked to primary familial brain calcification (PFBC). PiT2 mainly consists of two ProDom (PD) domains and a large intracellular loop region (loop7). The PD domains are crucial for the Pi transport, but the role of PiT2-loop7 remains unclear. In PFBC patients, mutations in PiT2-loop7 are mainly nonsense or frameshift mutations that probably cause PFBC due to C-PD1131 deletion. To date, six missense mutations have been identified in PiT2-loop7; however, the mechanisms by which these mutations cause PFBC are poorly understood. Here, we found that the p.T390A and p.S434W mutations in PiT2-loop7 decreased the Pi transport activity and cell surface levels of PiT2. Furthermore, we showed that these two mutations attenuated its membrane localization by affecting adenosine monophosphate-activated protein kinase (AMPK)- or protein kinase B (AKT)-mediated PiT2 phosphorylation. In contrast, the p.S121C and p.S601W mutations in the PD domains did not affect PiT2 phosphorylation but rather impaired its substrate-binding abilities. These results suggested that missense mutations in PiT2-loop7 can cause Pi dyshomeostasis by affecting the phosphorylation-regulated cell-surface localization of PiT2. This study helps understand the pathogenesis of PFBC caused by PiT2-loop7 missense mutations and indicates that increasing the phosphorylation levels of PiT2-loop7 could be a promising strategy for developing PFBC therapies.


Assuntos
Mutação de Sentido Incorreto , Fosfatos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III , Humanos , Membrana Celular , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética
20.
Front Endocrinol (Lausanne) ; 13: 921073, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465661

RESUMO

The common cellular origin between bone marrow adipocytes (BMAds) and osteoblasts contributes to the intimate link between bone marrow adipose tissue (BMAT) and skeletal health. An imbalance between the differentiation ability of BMSCs towards one of the two lineages occurs in conditions like aging or osteoporosis, where bone mass is decreased. Recently, we showed that the sodium-phosphate co-transporter PiT2/SLC20A2 is an important determinant for bone mineralization, strength and quality. Since bone mass is reduced in homozygous mutant mice, we investigated in this study whether the BMAT was also affected in PiT2-/- mice by assessing the effect of the absence of PiT2 on BMAT volume between 3 and 16 weeks, as well as in an ovariectomy-induced bone loss model. Here we show that the absence of PiT2 in juveniles leads to an increase in the BMAT that does not originate from an increased adipogenic differentiation of bone marrow stromal cells. We show that although PiT2-/- mice have higher BMAT volume than control PiT2+/+ mice at 3 weeks of age, BMAT volume do not increase from 3 to 16 weeks of age, leading to a lower BMAT volume in 16-week-old PiT2-/- compared to PiT2+/+ mice. In contrast, the absence of PiT2 does not prevent the increase in BMAT volume in a model of ovariectomy-induced bone loss. Our data identify SLC20a2/PiT2 as a novel gene essential for the maintenance of the BMAd pool in adult mice, involving mechanisms of action that remain to be elucidated, but which appear to be independent of the balance between osteoblastic and adipogenic differentiation of BMSCs.


Assuntos
Doenças Ósseas Metabólicas , Osteoporose , Feminino , Camundongos , Animais , Medula Óssea , Tecido Adiposo , Osteoporose/genética , Densidade Óssea
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa