Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.624
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proteins ; 92(2): 236-245, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37818702

RESUMO

The subsequent biochemical and structural investigations of the purified recombinant α-l-rhamnosidase from Aspergillus oryzae expressed in Pichia pastoris, designated as rAoRhaA, were performed. The specific activity of the rAoRhaA wild-type was higher toward hesperidin and narirutin, where the l-rhamnose residue was α-1,6-linked to ß-d-glucoside, than toward neohesperidin and naringin with an α-1,2-linkage to ß-d-glucoside. However, no activity was detected toward quercitrin, myricitrin, and epimedin C. rAoRhaA kinetic analysis indicated that Km values for neohesperidin, naringin, and rutin were lower compared to those for hesperidin and narirutin. kcat values for hesperidin and narirutin were higher than those for neohesperidin, naringin, and rutin. High catalytic efficiency (kcat /Km ) toward hesperidin and narirutin was a result of a considerably high kcat value, while Km values for hesperidin and narirutin were higher than those for naringin, neohesperidin, and rutin. The crystal structure of rAoRhaA revealed that the catalytic domain was represented by an (α/α)6 -barrel with the active site located in a deep cleft and two ß-sheet domains were also present in the N- and C-terminal sites of the catalytic domain. Additionally, five asparagine-attached N-acetylglucosamine molecules were observed. The catalytic residues of AoRhaA were suggested to be Asp254 and Glu524, and their catalytic roles were confirmed by mutational studies of D254N and E524Q variants, which lost their activity completely. Notably, three aspartic acids (Asp117, Asp249, and Asp261) located at the catalytic pocket were replaced with asparagine. D117N variant showed reduced activity. D249N and D261N variants activities drastically decreased.


Assuntos
Aspergillus oryzae , Hesperidina , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Especificidade por Substrato , Cinética , Asparagina , Glicosídeo Hidrolases/química , Rutina , Glucosídeos
2.
Glycobiology ; 34(1)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-37944064

RESUMO

During the COVID-19 outbreak, numerous tools including protein-based vaccines have been developed. The methylotrophic yeast Pichia pastoris (synonymous to Komagataella phaffii) is an eukaryotic cost-effective and scalable system for recombinant protein production, with the advantages of an efficient secretion system and the protein folding assistance of the secretory pathway of eukaryotic cells. In a previous work, we compared the expression of SARS-CoV-2 Spike Receptor Binding Domain in P. pastoris with that in human cells. Although the size and glycosylation pattern was different between them, their protein structural and conformational features were indistinguishable. Nevertheless, since high mannose glycan extensions in proteins expressed by yeast may be the cause of a nonspecific immune recognition, we deglycosylated RBD in native conditions. This resulted in a highly pure, homogenous, properly folded and monomeric stable protein. This was confirmed by circular dichroism and tryptophan fluorescence spectra and by SEC-HPLC, which were similar to those of RBD proteins produced in yeast or human cells. Deglycosylated RBD was obtained at high yields in a single step, and it was efficient in distinguishing between SARS-CoV-2-negative and positive sera from patients. Moreover, when the deglycosylated variant was used as an immunogen, it elicited a humoral immune response ten times greater than the glycosylated form, producing antibodies with enhanced neutralizing power and eliciting a more robust cellular response. The proposed approach may be used to produce at a low cost, many antigens that require glycosylation to fold and express, but do not require glycans for recognition purposes.


Assuntos
COVID-19 , Saccharomycetales , Vacinas , Humanos , COVID-19/diagnóstico , COVID-19/prevenção & controle , Teste para COVID-19 , Pichia/genética , Pichia/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas Recombinantes/química , Vacinas/metabolismo , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais
3.
Metab Eng ; 84: 59-68, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38839038

RESUMO

The development of a heme-responsive biosensor for dynamic pathway regulation in eukaryotes has never been reported, posing a challenge for achieving the efficient synthesis of multifunctional hemoproteins and maintaining intracellular heme homeostasis. Herein, a biosensor containing a newly identified heme-responsive promoter, CRISPR/dCas9, and a degradation tag N-degron was designed and optimized to fine-tune heme biosynthesis in the efficient heme-supplying Pichia pastoris P1H9 chassis. After identifying literature-reported promoters insensitive to heme, the endogenous heme-responsive promoters were mined by transcriptomics, and an optimal biosensor was screened from different combinations of regulatory elements. The dynamic regulation pattern of the biosensor was validated by the transcriptional fluctuations of the HEM2 gene involved in heme biosynthesis and the subsequent responsive changes in intracellular heme titers. We demonstrate the efficiency of this regulatory system by improving the production of high-active porcine myoglobin and soy hemoglobin, which can be used to develop artificial meat and artificial metalloenzymes. Moreover, these findings can offer valuable strategies for the synthesis of other hemoproteins.


Assuntos
Técnicas Biossensoriais , Heme , Hemeproteínas , Heme/biossíntese , Heme/genética , Heme/metabolismo , Hemeproteínas/genética , Hemeproteínas/metabolismo , Hemeproteínas/biossíntese , Transcriptoma/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo , Animais , Sistemas CRISPR-Cas , Engenharia Metabólica , Regiões Promotoras Genéticas
4.
Metab Eng ; 84: 1-12, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759777

RESUMO

The development of synthetic microorganisms that could use one-carbon compounds, such as carbon dioxide, methanol, or formate, has received considerable interest. In this study, we engineered Pichia pastoris and Saccharomyces cerevisiae to both synthetic methylotrophy and formatotrophy, enabling them to co-utilize methanol or formate with CO2 fixation through a synthetic C1-compound assimilation pathway (MFORG pathway). This pathway consisted of a methanol-formate oxidation module and the reductive glycine pathway. We first assembled the MFORG pathway in P. pastoris using endogenous enzymes, followed by blocking the native methanol assimilation pathway, modularly engineering genes of MFORG pathway, and compartmentalizing the methanol oxidation module. These modifications successfully enabled the methylotrophic yeast P. pastoris to utilize both methanol and formate. We then introduced the MFORG pathway from P. pastoris into the model yeast S. cerevisiae, establishing the synthetic methylotrophy and formatotrophy in this organism. The resulting strain could also successfully utilize both methanol and formate with consumption rates of 20 mg/L/h and 36.5 mg/L/h, respectively. The ability of the engineered P. pastoris and S. cerevisiae to co-assimilate CO2 with methanol or formate through the MFORG pathway was also confirmed by 13C-tracer analysis. Finally, production of 5-aminolevulinic acid and lactic acid by co-assimilating methanol and CO2 was demonstrated in the engineered P. pastoris and S. cerevisiae. This work indicates the potential of the MFORG pathway in developing different hosts to use various one-carbon compounds for chemical production.


Assuntos
Dióxido de Carbono , Formiatos , Engenharia Metabólica , Metanol , Saccharomyces cerevisiae , Formiatos/metabolismo , Metanol/metabolismo , Dióxido de Carbono/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Saccharomycetales/genética
5.
Metab Eng ; 84: 83-94, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38897449

RESUMO

Monoterpene indole alkaloids (MIAs) are a group of plant-derived natural products with high-value medicinal properties. However, their availability for clinical application is limited due to challenges in plant extraction. Microbial production has emerged as a promising strategy to meet the clinical demands for MIAs. The biosynthetic pathway of cis-trans nepetalactol, which serves as the universal iridoid scaffold for all MIAs, has been successfully identified and reconstituted. However, bottlenecks and challenges remain to construct a high-yielding platform strain for cis-trans nepetalactol production, which is vital for subsequent MIAs biosynthesis. In the present study, we focused on engineering of Pichia pastoris cell factories to enhance the production of geraniol, 8-hydroxygeraniol, and cis-trans nepetalactol. By targeting the biosynthetic pathway from acetyl-CoA to geraniol in both peroxisomes and cytoplasm, we achieved comparable geraniol titers in both compartments. Through protein engineering, we found that either G8H or CPR truncation increased the production of 8-hydroxygeraniol, with a 47.8-fold and 14.0-fold increase in the peroxisomal and cytosolic pathway strain, respectively. Furthermore, through a combination of dynamical control of ERG20, precursor and cofactor supply engineering, diploid engineering, and dual subcellular compartmentalization engineering, we achieved the highest ever reported production of cis-trans nepetalactol, with a titer of 4429.4 mg/L using fed-batch fermentation in a 5-L bioreactor. We anticipate our systematic metabolic engineering strategies to facilitate the development of P. pastoris cell factories for sustainable production of MIAs and other plant natural products.


Assuntos
Engenharia Metabólica , Monoterpenos Acíclicos/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Terpenos/metabolismo
6.
Appl Environ Microbiol ; 90(2): e0174023, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38193674

RESUMO

Pichia pastoris (P. pastoris) is one of the most popular cell factories for expressing exogenous proteins and producing useful chemicals. The alcohol oxidase 1 promoter (PAOX1) is the most commonly used strong promoter in P. pastoris and has the characteristic of biphasic expression. However, the inducer for PAOX1, methanol, has toxicity and poses risks in industrial settings. In the present study, analyzing transcriptomic data of cells collected at different stages of growth found that the formate dehydrogenase (FDH) gene ranked 4960th in relative expression among 5032 genes during the early logarithmic growth phase but rose to the 10th and 1st during the middle and late logarithmic growth phases, respectively, displaying a strict biphasic expression characteristic. The unique transcriptional regulatory profile of the FDH gene prompted us to investigate the properties of its promoter (PFDH800). Under single-copy conditions, when a green fluorescent protein variant was used as the expression target, the PFDH800 achieved 119% and 69% of the activity of the glyceraldehyde-3-phosphate dehydrogenase promoter and PAOX1, respectively. After increasing the copy number of the expression cassette in the strain to approximately four copies, the expression level of GFPuv driven by PFDH800 increased to approximately 2.5 times that of the strain containing GFPuv driven by a single copy of PAOX1. Our PFDH800-based expression system exhibited precise biphasic expression, ease of construction, minimal impact on normal cellular metabolism, and high strength. Therefore, it has the potential to serve as a new expression system to replace the PAOX1 promoter.IMPORTANCEThe alcohol oxidase 1 promoter (PAOX1) expression system has the characteristics of biphasic expression and high expression levels, making it the most widely used promoter in the yeast Pichia pastoris. However, PAOX1 requires methanol induction, which can be toxic and poses a fire hazard in large quantities. Our research has found that the activity of PFDH800 is closely related to the growth state of cells and can achieve biphasic expression without the need for an inducer. Compared to other reported non-methanol-induced biphasic expression systems, the system based on the PFDH800 offers several advantages, including high expression levels, simple construction, minimal impact on cellular metabolism, no need for an inducer, and the ability to fine-tune expression.


Assuntos
Metanol , Pichia , Saccharomycetales , Metanol/metabolismo , Pichia/genética , Pichia/metabolismo , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo
7.
J Med Virol ; 96(3): e29454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445768

RESUMO

Various vaccines have been challenged by SARS-CoV-2 variants. Here, we reported a yeast-derived recombinant bivalent vaccine (Bivalent wild-type [Wt]+De) based on the wt and Delta receptor-binding domain (RBD). Yeast derived RBD proteins based on the wt and Delta mutant were used as the prime vaccine. It was found that, in the presence of aluminium hydroxide (Alum) and unmethylated CpG-oligodeoxynucleotides (CpG) adjuvants, more cross-protective immunity against SARS-CoV-2 prototype and variants were elicited by bivalent vaccine than monovalent wtRBD or Delta RBD. Furthermore, a heterologous boosting strategy consisting of two doses of bivalent vaccines followed by one dose adenovirus vectored vaccine exhibited cross-neutralization capacity and specific T cell responses against Delta and Omicron (BA.1 and BA.4/5) variants in mice, superior to a homologous vaccination strategy. This study suggested that heterologous prime-boost vaccination with yeast-derived bivalent protein vaccine could be a potential approach to address the challenge of emerging variants.


Assuntos
COVID-19 , Vacinas , Animais , Camundongos , Vacinas Combinadas , Proteínas Fúngicas , Saccharomyces cerevisiae/genética , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação
8.
Biotechnol Bioeng ; 121(3): 971-979, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38088450

RESUMO

The methylotrophic yeast Pichia pastoris (Komagataella phaffii) is a highly distinguished expression platform for the excellent synthesis of various heterologous proteins in recent years. With the advantages of high-density fermentation, P. pastoris can produce gram amounts of recombinant proteins. While not every protein of interest can be expressed to such high titers, such as Baeyer-Villiger monooxygenase (BVMO) (AcPSMO) which is responsible for pyrazole sulfide asymmetric oxidation. In this work, an excellent yeast expression system was established to facilitate efficient AcPSMO expression, which exhibited 9.5-fold enhanced secretion. Subsequently, an ultrahigh throughput screening method based on fluorescence-activated cell sorting by fusing super folder green fluorescent protein (sfGFP) in the C-terminal of AcPSMO was developed, and directed evolution was performed. The protein expression level of the superior mutant AcPSMOP1 (S58T/T252P/E336N/H456D) reached 84.6 mg/L at 100 mL shaking flask, which was 4.7 times higher than the levels obtained with the wild-type. Finally, the optimized chassis cells were used for high-density fermentation on a 5-L scale, and AcPSMOP1 protein yield of 3.4 g/L was achieved, representing approximately 85% of the total protein secreted. By directly employing the pH-adjusted supernatant as a biocatalyst, 20 g/L pyrmetazole sulfide was completely transformed into the corresponding (S)-sulfoxide, with a 78.8% isolated yield. This work confers dramatic benefits for efficient secretion of other BVMOs in P. pastoris.


Assuntos
Oxigenases de Função Mista , Pichia , Saccharomycetales , Oxigenases de Função Mista/metabolismo , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Sulfóxidos/metabolismo , Sulfetos/metabolismo
9.
Biotechnol Bioeng ; 121(2): 735-748, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38037762

RESUMO

Glucose oxidase (EC 1.1.3.4, GOD) is a widely used industrial enzyme. To construct a GOD-hyperproducing Pichia pastoris strain, combinatorial strategies have been applied to improve GOD activity, synthesis, and secretion. First, wild-type GOD was subjected to saturation mutagenesis to obtain an improved variant, MGOD1 (V20W/T30S), with 1.7-fold higher kcat /KM . Subsequently, efficient signal peptides were screened, and the copy number of MGOD1 was optimized to generate a high-producing strain, 8GM1, containing eight copies of AOX1 promoter-GAS1 signal peptide-MGOD1 expression cassette. Finally, the vesicle trafficking of 8GM1 was engineered to obtain the hyperproducing strain G1EeSe co-expressing the trafficking components EES and SEC. 22, and the EES gene (PAS_chr3_0685) was found to facilitate both protein secretion and production for the first time. Using these strategies, GOD secretion was enhanced 65.2-fold. In the 5-L bioreactor, conventional fed-batch fermentation without any process optimization resulted in up to 7223.0 U/mL extracellular GOD activity (3.3-fold higher than the highest level reported to date), with almost only GOD in the fermentation supernatant at a protein concentration of 30.7 g/L. Therefore, a GOD hyperproducing strain for industrial applications was developed, and this successful case can provide a valuable reference for the construction of high-producing strains for other industrial enzymes.


Assuntos
Glucose Oxidase , Pichia , Saccharomycetales , Glucose Oxidase/genética , Glucose Oxidase/metabolismo , Pichia/metabolismo , Reatores Biológicos , Fermentação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Biotechnol Bioeng ; 121(7): 2091-2105, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38568751

RESUMO

Peroxisomal compartmentalization has emerged as a highly promising strategy for reconstituting intricate metabolic pathways. In recent years, significant progress has been made in the peroxisomes through harnessing precursor pools, circumventing metabolic crosstalk, and minimizing the cytotoxicity of exogenous pathways. However, it is important to note that in methylotrophic yeasts (e.g. Pichia pastoris), the abundance and protein composition of peroxisomes are highly variable, particularly when peroxisome proliferation is induced by specific carbon sources. The intricate subcellular localization of native proteins, the variability of peroxisomal metabolic pathways, and the lack of systematic characterization of peroxisome targeting signals have limited the applications of peroxisomal compartmentalization in P. pastoris. Accordingly, this study established a high-throughput screening method based on ß-carotene biosynthetic pathway to evaluate the targeting efficiency of PTS1s (Peroxisome Targeting Signal Type 1) in P. pastoris. First, 25 putative endogenous PTS1s were characterized and 3 PTS1s with high targeting efficiency were identified. Then, directed evolution of PTS1s was performed by constructing two PTS1 mutant libraries, and a total of 51 PTS1s (29 classical and 22 noncanonical PTS1s) with presumably higher peroxisomal targeting efficiency were identified, part of which were further characterized via confocal microscope. Finally, the newly identified PTS1s were employed for peroxisomal compartmentalization of the geraniol biosynthetic pathway, resulting in more than 30% increase in the titer of monoterpene compared with when the pathway was localized to the cytosol. The present study expands the synthetic biology toolkit and lays a solid foundation for peroxisomal compartmentalization in P. pastoris.


Assuntos
Engenharia Metabólica , Peroxissomos , Peroxissomos/metabolismo , Peroxissomos/genética , Engenharia Metabólica/métodos , Sinais de Orientação para Peroxissomos/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pichia/genética , Pichia/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
11.
Protein Expr Purif ; 218: 106441, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38367654

RESUMO

Nanobodies (Nbs) represent a class of single-domain antibodies with great potential application value across diverse biotechnology fields, including therapy and diagnostics. Thymic Stromal Lymphopoietin (TSLP) is an epithelial cell-derived cytokine, playing a crucial role in the regulation of type 2 immune responses at barrier surfaces such as skin and the respiratory/gastrointestinal tract. In this study, a method for the expression and purification of anti-TSLP nanobody (Nb3341) was established at 7 L scale and subsequently scaled up to 100 L scale. Key parameters, including induction temperature, methanol feed and induction pH were identified as key factors by Plackett-Burman design (PBD) and were optimized in 7 L bioreactor, yielding optimal values of 24 °C, 8.5 mL/L/h and 6.5, respectively. Furthermore, Diamond Mix-A and Diamond MMC were demonstrated to be the optimal capture and polishing resins. The expression and purification process of Nb3341 at 100L scale resulted in 22.97 g/L titer, 98.7% SEC-HPLC purity, 95.7% AEX-HPLC purity, 4 ppm of HCP content and 1 pg/mg of HCD residue. The parameters of the scaling-up process were consistent with the results of the optimized process, further demonstrating the feasibility and stability of this method. This study provides a highly promising and competitive approach for transitioning from laboratory-scale to commercial production-scale of nanobodies.


Assuntos
Anticorpos de Domínio Único , Linfopoietina do Estroma do Timo , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/metabolismo , Citocinas/metabolismo , Células Epiteliais , Diamante/metabolismo
12.
Protein Expr Purif ; 216: 106416, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38104790

RESUMO

A major cellobiohydrolase of Neurospora crassa CBH2 was successfully expressed in Pichia pastoris. The maximum Avicelase activity in shake flask among seven transformants which selected on 4.0 g/L G418 plates was 0.61 U/mL. The optimal pH and temperature for Avicelase activity of the recombinant CBH2 were determined to be 4.8 and 60 °C, respectively. The new CBH2 maintained 63.5 % Avicelase activity in the range of pH 4.0-10.4, and 60.2 % Avicelase activity in the range of 30-90 °C. After incubation at 70-90 °C for 1 h, the Avicelase activity retained 60.5 % of its initial activity. The presence of Zn2+, Ca2+ or Cd2+ enhanced the Avicelase activity of the CBH2, of which Cd2+ at 10 mM causing the highest increase. The recombinant CBH2 was used to enhance the Avicel hydrolysis by improving the exo-exo-synergism between CBH2 and CBH1 in N.crassa cellulase. The enzymatic hydrolysis yield was increased by 38.1 % by adding recombinant CBH2 and CBH1, and the yield was increased by 215.4 % when the temperature is raised to 70 °C. This work provided a CBH2 with broader pH range and better heat resistance, which is a potential enzyme candidate in food, textile, pulp and paper industries, and other industrial fields.


Assuntos
Celulose 1,4-beta-Celobiosidase , Neurospora crassa , Saccharomycetales , Celulose 1,4-beta-Celobiosidase/genética , Neurospora crassa/genética , Neurospora crassa/metabolismo , Cádmio , Pichia/genética , Pichia/metabolismo , Clonagem Molecular , Proteínas Recombinantes
13.
Microb Cell Fact ; 23(1): 131, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711081

RESUMO

BACKGROUND: Komagataella phaffii (Pichia pastoris) has emerged as a common and robust biotechnological platform organism, to produce recombinant proteins and other bioproducts of commercial interest. Key advantage of K. phaffii is the secretion of recombinant proteins, coupled with a low host protein secretion. This facilitates downstream processing, resulting in high purity of the target protein. However, a significant but often overlooked aspect is the presence of an unknown polysaccharide impurity in the supernatant. Surprisingly, this impurity has received limited attention in the literature, and its presence and quantification are rarely addressed. RESULTS: This study aims to quantify this exopolysaccharide in high cell density recombinant protein production processes and identify its origin. In stirred tank fed-batch fermentations with a maximal cell dry weight of 155 g/L, the polysaccharide concentration in the supernatant can reach up to 8.7 g/L. This level is similar to the achievable target protein concentration. Importantly, the results demonstrate that exopolysaccharide production is independent of the substrate and the protein production process itself. Instead, it is directly correlated with biomass formation and proportional to cell dry weight. Cell lysis can confidently be ruled out as the source of this exopolysaccharide in the culture medium. Furthermore, the polysaccharide secretion can be linked to a mutation in the HOC1 gene, featured by all derivatives of strain NRRL Y-11430, leading to a characteristic thinner cell wall. CONCLUSIONS: This research sheds light on a previously disregarded aspect of K. phaffii fermentations, emphasizing the importance of monitoring and addressing the exopolysaccharide impurity in biotechnological applications, independent of the recombinant protein produced.


Assuntos
Fermentação , Proteínas Recombinantes , Saccharomycetales , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Saccharomycetales/metabolismo , Saccharomycetales/genética , Biomassa , Técnicas de Cultura Celular por Lotes , Polissacarídeos/metabolismo , Polissacarídeos/biossíntese
14.
Microb Cell Fact ; 23(1): 116, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643119

RESUMO

BACKGROUND: Most recombinant Komagataella phaffii (Pichia pastoris) strains for protein production are generated by genomic integration of expression cassettes. The clonal variability in gene copy numbers, integration loci and consequently product titers limit the aptitude for high throughput applications in drug discovery, enzyme engineering or most comparative analyses of genetic elements such as promoters or secretion signals. Circular episomal plasmids with an autonomously replicating sequence (ARS), an alternative which would alleviate some of these limitations, are inherently unstable in K. phaffii. Permanent selection pressure, mostly enabled by antibiotic resistance or auxotrophy markers, is crucial for plasmid maintenance and hardly scalable for production. The establishment and use of extrachromosomal ARS plasmids with key genes of the glycerol metabolism (glycerol kinase 1, GUT1, and triosephosphate isomerase 1, TPI1) as selection markers was investigated to obtain a system with high transformation rates that can be directly used for scalable production processes in lab scale bioreactors. RESULTS: In micro-scale deep-well plate experiments, ARS plasmids employing the Ashbya gossypii TEF1 (transcription elongation factor 1) promoter to regulate transcription of the marker gene were found to deliver high transformation efficiencies and the best performances with the reporter protein (CalB, lipase B of Candida antarctica) for both, the GUT1- and TPI1-based, marker systems. The GUT1 marker-bearing strain surpassed the reference strain with integrated expression cassette by 46% upon re-evaluation in shake flask cultures regarding CalB production, while the TPI1 system was slightly less productive compared to the control. In 5 L bioreactor methanol-free fed-batch cultivations, the episomal production system employing the GUT1 marker led to 100% increased CalB activity in the culture supernatant compared to integration construct. CONCLUSIONS: For the first time, a scalable and methanol-independent expression system for recombinant protein production for K. phaffii using episomal expression vectors was demonstrated. Expression of the GUT1 selection marker gene of the new ARS plasmids was refined by employing the TEF1 promoter of A. gossypii. Additionally, the antibiotic-free marker toolbox for K. phaffii was expanded by the TPI1 marker system, which proved to be similarly suited for the use in episomal plasmids as well as integrative expression constructs for the purpose of recombinant protein production.


Assuntos
Pichia , Saccharomycetales , Pichia/metabolismo , Carbono/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Proteínas Recombinantes , Plasmídeos/genética
15.
Microb Cell Fact ; 23(1): 99, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566096

RESUMO

BACKGROUND: The yeast Komagataella phaffii has become a very popular host for heterologous protein expression, very often based on the use of the AOX1 promoter, which becomes activated when cells are grown with methanol as a carbon source. However, the use of methanol in industrial settings is not devoid of problems, and therefore, the search for alternative expression methods has become a priority in the last few years. RESULTS: We recently reported that moderate alkalinization of the medium triggers a fast and wide transcriptional response in K. phaffii. Here, we present the utilization of three alkaline pH-responsive promoters (pTSA1, pHSP12 and pPHO89) to drive the expression of a secreted phytase enzyme by simply shifting the pH of the medium to 8.0. These promoters offer a wide range of strengths, and the production of phytase could be modulated by adjusting the pH to specific values. The TSA1 and PHO89 promoters offered exquisite regulation, with virtually no enzyme production at acidic pH, while limitation of Pi in the medium further potentiated alkaline pH-driven phytase expression from the PHO89 promoter. An evolved strain based on this promoter was able to produce twice as much phytase as the reference pAOX1-based strain. Functional mapping of the TSA1 and HSP12 promoters suggests that both contain at least two alkaline pH-sensitive regulatory regions. CONCLUSIONS: Our work shows that the use of alkaline pH-regulatable promoters could be a useful alternative to methanol-based expression systems, offering advantages in terms of simplicity, safety and economy.


Assuntos
6-Fitase , Saccharomycetales , Pichia/metabolismo , Metanol/metabolismo , 6-Fitase/genética , 6-Fitase/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/metabolismo
16.
Microb Cell Fact ; 23(1): 55, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368340

RESUMO

BACKGROUND: Pichia pastoris is a widely utilized host for heterologous protein expression and biotransformation. Despite the numerous strategies developed to optimize the chassis host GS115, the potential impact of changes in cell wall polysaccharides on the fitness and performance of P. pastoris remains largely unexplored. This study aims to investigate how alterations in cell wall polysaccharides affect the fitness and function of P. pastoris, contributing to a better understanding of its overall capabilities. RESULTS: Two novel mutants of GS115 chassis, H001 and H002, were established by inactivating the PAS_chr1-3_0225 and PAS_chr1-3_0661 genes involved in ß-glucan biosynthesis. In comparison to GS115, both modified hosts exhibited a looser cell surface and larger cell size, accompanied by faster growth rates and higher carbon-to-biomass conversion ratios. When utilizing glucose, glycerol, and methanol as exclusive carbon sources, the carbon-to-biomass conversion rates of H001 surpassed GS115 by 10.00%, 9.23%, and 33.33%, respectively. Similarly, H002 exhibited even higher increases of 32.50%, 12.31%, and 53.33% in carbon-to-biomass conversion compared to GS115 under the same carbon sources. Both chassis displayed elevated expression levels of green fluorescent protein (GFP) and human epidermal growth factor (hegf). Compared to GS115/pGAPZ A-gfp, H002/pGAPZ A-gfp showed a 57.64% higher GFP expression, while H002/pPICZα A-hegf produced 66.76% more hegf. Additionally, both mutant hosts exhibited enhanced biosynthesis efficiencies of S-adenosyl-L-methionine and ergothioneine. H001/pGAPZ A-sam2 synthesized 21.28% more SAM at 1.14 g/L compared to GS115/pGAPZ A-sam2, and H001/pGAPZ A-egt1E obtained 45.41% more ERG at 75.85 mg/L. The improved performance of H001 and H002 was likely attributed to increased supplies of NADPH and ATP. Specifically, H001 and H002 exhibited 5.00-fold and 1.55-fold higher ATP levels under glycerol, and 6.64- and 1.47-times higher ATP levels under methanol, respectively, compared to GS115. Comparative lipidomic analysis also indicated that the mutations generated richer unsaturated lipids on cell wall, leading to resilience to oxidative damage. CONCLUSIONS: Two novel P. pastoris chassis hosts with impaired ß-1,3-D-glucan biosynthesis were developed, showcasing enhanced performances in terms of growth rate, protein expression, and catalytic capabilities. These hosts exhibit the potential to serve as attractive alternatives to P. pastoris GS115 for various bioproduction applications.


Assuntos
Metanol , Pichia , Saccharomycetales , Humanos , Pichia/metabolismo , Metanol/metabolismo , Glicerol/metabolismo , Trifosfato de Adenosina/metabolismo , Carbono/metabolismo , Parede Celular/metabolismo , Polissacarídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Appl Microbiol Biotechnol ; 108(1): 54, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38175240

RESUMO

Hyaluronidases catalyze the degradation of hyaluronan (HA), which is finding rising applications in medicine, cosmetic, and food industries. Recombinant expression of hyaluronidases in microbial hosts has been given special attention as a sustainable way to substitute animal tissue-derived hyaluronidases. In this study, we focused on optimizing the secretion of hyaluronidase from Homo sapiens in Pichia pastoris by secretion pathway engineering. The recombinant hyaluronidase was first expressed under the control of a constitutive promoter PGCW14. Then, two endoplasmic reticulum-related secretory pathways were engineered to improve the secretion capability of the recombinant strain. Signal peptide optimization suggested redirecting the protein into co-translational translocation using the ost1-proα signal sequence improved the secretion level by 20%. Enhancing the co-translational translocation by overexpressing signal recognition particle components further enhanced the secretory capability by 48%. Then, activating the unfolded protein response by overexpressing a transcriptional factor ScHac1p led to a secreted hyaluronidase activity of 4.06 U/mL, which was 2.1-fold higher than the original strain. Finally, fed-batch fermentation elevated the production to 19.82 U/mL. The combined engineering strategy described here could be applied to enhance the secretion capability of other proteins in yeast hosts. KEY POINTS: • Improving protein secretion by enhancing co-translational translocation in P. pastoris was reported for the first time. • Overexpressing Hac1p homologous from different origins improved the rhPH-20 secretion. • A 4.9-fold increase in rhPH-20 secretion was achieved after fermentation optimization and fed-batch fermentation.


Assuntos
Hialuronoglucosaminidase , Resposta a Proteínas não Dobradas , Animais , Humanos , Hialuronoglucosaminidase/genética , Transporte Proteico , Retículo Endoplasmático
18.
Biotechnol Appl Biochem ; 71(1): 123-131, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37846178

RESUMO

Recent studies in the biopharmaceutical industry have shown an increase in the productivity and production efficiency of recombinant proteins by continuous culture. In this research, a new upstream fermentation process was developed for the production of recombinant uricase in the methylotrophic yeast Pichia pastoris. Expression of recombinant protein in this system is under the control of the AOX1 promoter and therefore requires methanol as an inducing agent and carbon/energy source. Considering the biphasic growth characteristics of conventional fed-batch fermentation, physical separation of the growth and induction stages for better control of the continuous fermentation process resulted in higher dry-cell weight (DCW) and enhanced recombinant urate oxidase activity. The DCW and recombinant uricase activity enzyme for fed-batch fermentation were 79 g/L and 6.8 u/mL. During the continuous process, in the growth fermenter at a constant dilution rate of 0.025 h-1 , DCW increased to 88.39 g/L. In the induction fermenter, at methanol feeding rates of 30, 60, and 80 mL/h, a recombinant uricase activity was 4.13, 7.2, and 0 u/mL, respectively. The optimum methanol feeding regime in continuous fermentation resulted in a 4.5-fold improvement in productivity compared with fed-batch fermentation from 0.04 u/mL/h (0.0017 mg/mL/h) to 0.18 u/mL/h (0.0078 mg/mL/h).


Assuntos
Metanol , Saccharomycetales , Urato Oxidase , Fermentação , Urato Oxidase/genética , Urato Oxidase/metabolismo , Metanol/metabolismo , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes
19.
Cell Biochem Funct ; 42(5): e4087, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953407

RESUMO

ß-Nicotinamide mononucleotide (NMN) is a biologically active nucleotide that regulates the physiological metabolism of the body by rapidly increasing nicotinamide adenine dinucleotide (NAD+). To determine the safety and biological activity of NMN resources, we constructed a recombinant strain of P. pastoris that heterologously expresses nicotinamide-phosphate ribosyltransferase (NAMPT), and subsequently catalyzed and purified the expressed product to obtain NMN. Consequently, this study established a high-fat diet (HFD) obese model to investigate the lipid-lowering activity of NMN. The findings showed that NMN supplementation directly increased the NAD+ levels, and reduced HFD-induced liver injury and lipid deposition. NMN treatment significantly decreased total cholesterol (TC) and triglyceride (TG) in serum and liver, as well as alanine aminotransferase (ALT) and insulin levels in serum (p < .05 or p < .01). In conclusion, this study combined synthetic biology with nutritional evaluation to confirm that P. pastoris-generated NMN modulated lipid metabolism in HFD mice, offering a theoretical framework and evidence for the application of microbially created NMN.


Assuntos
Dieta Hiperlipídica , Metabolismo dos Lipídeos , Fígado , Camundongos Endogâmicos C57BL , Mononucleotídeo de Nicotinamida , Animais , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Fígado/metabolismo , Masculino , Nicotinamida Fosforribosiltransferase/metabolismo
20.
Biosci Biotechnol Biochem ; 88(5): 546-554, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38409797

RESUMO

Human lysozyme (hLYZ) has attracted considerable research attention due to its natural and efficient antibacterial abilities and widespread uses. In this study, hLYZ was modified to enhance its enzyme activity and expressed in a Pichia pastoris expression system. A combination mutant HZM(2R-K)-N88D/V110S demonstrated the highest enzyme activity (6213 ± 164 U/mL) in shake flasks, which was 4.07-fold higher when compared with the original strain. Moreover, the recombinant P. pastoris was inducted in a 3 L bioreactor plus methanol/sorbitol co-feeding. After 120 h induction, the antibacterial activity of hLYZ reached 2.23 ± 0.12 × 105 U/mL, with the specific activity increasing to 1.89 × 105 U/mg, which is currently the highest specific activity obtained through recombinant expression of hLYZ. Also, hLYZ supernatants showed 2-fold inhibitory effects toward Staphylococcus aureus and Micrococcus lysodeikticus when compared with HZM(2R-K). Our research generated a hLYZ mutant with high antibacterial capabilities and provided a method for screening of high-quality enzymes.


Assuntos
Antibacterianos , Muramidase , Proteínas Recombinantes , Staphylococcus aureus , Muramidase/genética , Muramidase/farmacologia , Muramidase/metabolismo , Antibacterianos/farmacologia , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Reatores Biológicos , Micrococcus/efeitos dos fármacos , Expressão Gênica , Mutação , Saccharomycetales/genética , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa