Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Chem Biodivers ; 20(12): e202300855, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37875463

RESUMO

Pimenta is a genus of flowering plants belonging to family Myrtaceae, native to the West Indies, Mexico, and South America. Numerous traditional uses were reported as anti-inflammatory, analgesic, antipyretic, sedative, diuretic, and sexual stimulant. This article aims to provide a comprehensive overview of the botany, traditional uses, phytochemical profile, and biological activities of genus Pimenta for future exploration of plant-based drugs and therapeutic approaches. The data were collected (up to date as of October 1, 2023) from several databases such as Web of Science, google scholar, science direct, Pubmed and Proquest. Pimenta species were reported to include various classes of phytochemicals like tannins, saponins, flavonoids, phenylpropanoids, monoterpenes, sesquiterpenes and essential oils. Quercetin glycosides and eugenol derivatives were the predominant compounds of this genus. Several biological activities have been reported such as antihypertensive, antioxidant, antimicrobial, antiviral, histidine decarboxylase inhibition, hypoglycemic, anticancer, anti-inflammatory, analgesic, antipyretic, acaricidal, anxiolytic, anti-depressant and anti-estrogenic. Several scientific reports have been published on various isolated phytochemicals and pharmacological properties of Pimenta species that confirm its ethnobotanical and traditional history. However, in vivo studies on different extracts and their phytoconstituents, alongside mechanistic analysis deserve more attention for drug researchers to provide better guidance to utilize Pimenta plants as medicinal resources for herbal formulations in different approaches.


Assuntos
Antipiréticos , Pimenta , Etnofarmacologia , Fitoterapia , Etnobotânica , Extratos Vegetais/química , Compostos Fitoquímicos/química , Analgésicos/farmacologia , Anti-Inflamatórios
2.
Molecules ; 27(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432065

RESUMO

Pimenta racemosa is a commonly known spice used in traditional medicine to treat several ailments. In this study, comprehensive phytochemical profiling of the essential oils and methanol extracts of P. racemosa leaves and stems was performed, alongside assessing their potential Helicobacter pylori inhibitory activity in vitro and in silico. The essential oils were chemically profiled via GC-MS. Moreover, the methanol extracts were profiled using HPLC-PDA-ESI-MS/MS. The antibacterial activity of the essential oils and methanol extracts against H. pylori was determined by adopting the micro-well dilution method. GC-MS analysis unveiled the presence of 21 constituents, where eugenol represented the major component (57.84%) and (59.76%) in both leaves and stems of essential oils, respectively. A total of 61 compounds were annotated in both leaves and stems of P. racemosa methanolic extracts displaying richness in phenolic compounds identified as (epi)catechin and (epi)gallocatechin monomers and proanthocyanidins, hydrolyzable tannin derivatives (gallotannins), flavonoids, and phenolic acids. The stem essential oil showed the most promising inhibitory effects on H. pylori, exhibiting an MIC value of 3.9 µg/mL, comparable to clarithromycin with an MIC value of 1.95 µg/mL. Additionally, in silico molecular modeling studies revealed that decanal, eugenol, terpineol, delta-cadinene, and amyl vinyl showed potential inhibitory activity on H. pylori urease as demonstrated by high-fitting scores indicating good binding to the active sites. These findings indicate that P. racemosa comprises valuable phytochemical constituents with promising therapeutic effects, particularly the stem, an economic agro-industrial waste.


Assuntos
Helicobacter pylori , Óleos Voláteis , Pimenta , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Cromatografia Gasosa-Espectrometria de Massas , Cromatografia Líquida , Metanol/química , Eugenol/farmacologia , Espectrometria de Massas em Tandem , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química
3.
Molecules ; 26(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34771106

RESUMO

Essential oils are biologically and environmentally safe pesticidal compounds yielded from aromatic plants. Spices are important sources of essential oils, and they are widely used in the medicine, food, and various other industries. Among the different spices, Allspice (Pimenta dioica) is underexplored in terms of its biological efficacy and a limited number of studies are available on the chemical composition of Allspice essential oil (AEO); thus, the present study evaluated the larvicidal property, the repellency, and the fumigant toxicity against common pests of stored products of AEO. AEO was found to inhibit the survival of larvae of such vectors as Aedis, Culex, and Armigeres species. Further, AEO was found to exert repellant effects against the pests of such stored products as Sitophilus, Callosobruchus, and Tribolium. Similarly, the fumigant toxicity was found to be high for AEO against these species. The contact toxicity of AEO was high against Sitophilus and Callosobruchus. Apart from that, the essential oil was found to be safe against a non-target organism (guppy fishes) and was found to be non-genotoxic in an Allium cepa model. Overall, the results of the present study indicate that the essential oil from Allspice could be used as an environmentally safe larvicidal and biopesticidal compound.


Assuntos
Culicidae/efeitos dos fármacos , Inseticidas/química , Inseticidas/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Pimenta/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Animais , Relação Dose-Resposta a Droga , Concentração Inibidora 50 , Larva/efeitos dos fármacos , Dose Letal Mediana , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química
4.
Molecules ; 26(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34641388

RESUMO

In response to the urgent need to control Coronavirus disease 19 (COVID-19), this study aims to explore potential anti-SARS-CoV-2 agents from natural sources. Moreover, cytokine immunological responses to the viral infection could lead to acute respiratory distress which is considered a critical and life-threatening complication associated with the infection. Therefore, the anti-viral and anti-inflammatory agents can be key to the management of patients with COVID-19. Four bioactive compounds, namely ferulic acid 1, rutin 2, gallic acid 3, and chlorogenic acid 4 were isolated from the leaves of Pimenta dioica (L.) Merr (ethyl acetate extract) and identified using spectroscopic evidence. Furthermore, molecular docking and dynamics simulations were performed for the isolated and identified compounds (1-4) against SARS-CoV-2 main protease (Mpro) as a proposed mechanism of action. Furthermore, all compounds were tested for their half-maximal cytotoxicity (CC50) and SARS-CoV-2 inhibitory concentrations (IC50). Additionally, lung toxicity was induced in rats by mercuric chloride and the effects of treatment with P. dioca aqueous extract, ferulic acid 1, rutin 2, gallic acid 3, and chlorogenic acid 4 were recorded through measuring TNF-α, IL-1ß, IL-2, IL-10, G-CSF, and genetic expression of miRNA 21-3P and miRNA-155 levels to assess their anti-inflammatory effects essential for COVID-19 patients. Interestingly, rutin 2, gallic acid 3, and chlorogenic acid 4 showed remarkable anti-SARS-CoV-2 activities with IC50 values of 31 µg/mL, 108 µg/mL, and 360 µg/mL, respectively. Moreover, the anti-inflammatory effects were found to be better in ferulic acid 1 and rutin 2 treatments. Our results could be promising for more advanced preclinical and clinical studies especially on rutin 2 either alone or in combination with other isolates for COVID-19 management.


Assuntos
Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Pimenta , Extratos Vegetais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Antivirais/química , Chlorocebus aethiops , Ácido Clorogênico/isolamento & purificação , Ácido Clorogênico/farmacologia , Ácidos Cumáricos/isolamento & purificação , Ácidos Cumáricos/farmacologia , Ácido Gálico/isolamento & purificação , Ácido Gálico/farmacologia , Humanos , Masculino , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pimenta/química , Extratos Vegetais/química , Ratos , Rutina/isolamento & purificação , Rutina/farmacologia , Células Vero
5.
BMC Complement Altern Med ; 18(1): 208, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976187

RESUMO

BACKGROUND: Pimenta racemosa tree has many traditional uses where its leaves are used as herbal tea for treatment of flatulence, gastric disorder, osteoarthritis, colds and fever in addition to its analgesic and anti-inflammatory activities. So, this study aimed to isolate phenolic constituents of 80% aqueous methanol extract (AME) of leaves and evaluate its biological activities. METHODS: The defatted AME was chromatographed and structures of the isolated compounds were elucidated using UV, NMR spectroscopy and UPLC-ESI-MS analysis. Antioxidant activity was investigated using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity. Anti-inflammatory activity was evaluated using carrageenan - induced paw oedema, while antinociceptive activity was determined by chemical and thermal stimuli. Anti-ulcerogenic effect of AME against gastric damage induced by ethanol in Wister male albino rats was evaluated. Also, hepatoprotective activity was investigated through determination of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) following oral administration of paracetamol. Both of Anti-ulcerogenic and hepatoprotective activities (125, 250 and 500 mg/kg b.wt.) were supported by histopathological examinations. RESULTS: Gallic acid (1), methyl gallate (2), avicularin (3), quercetin 3-O-ß-D-arbinopyranoside (4), quercetin 3-O-ß-D-glucopyranoside (5), quercetrin (6), cynaroside (7), strictinin (8), castalagin (9), grandinin (10) quercetin (11) and ellagic acid (12) were isolated. AME showed significant radical scavenging activity (SC50 = 4.6 µg/mL), promising anti-inflammatory effect through inhibition of oedema and antinociceptive activity by reduction in number of writhes after acetic acid injection and prolongation of reaction time towards the thermal stimulus. AME reduced the gastric mucosal lesions compared with ethanol control and ranitidine groups, ALT at the three doses and AST only at 125 and 250 mg/kg b.wt., when compared with paracetamol group. The results were confirmed by histopathological studies. CONCLUSION: P. racemosa leaves are rich in phenolic compounds and showed significant biological activities.


Assuntos
Analgésicos , Anti-Inflamatórios , Fenóis , Pimenta/química , Extratos Vegetais , Substâncias Protetoras , Analgésicos/química , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Comportamento Animal/efeitos dos fármacos , Edema/fisiopatologia , Feminino , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Fenóis/análise , Fenóis/química , Fenóis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Ratos , Ratos Wistar , Estômago/efeitos dos fármacos , Estômago/patologia
6.
Stud Mycol ; 81: 85-147, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26955199

RESUMO

Families and genera assigned to Tremellomycetes have been mainly circumscribed by morphology and for the yeasts also by biochemical and physiological characteristics. This phenotype-based classification is largely in conflict with molecular phylogenetic analyses. Here a phylogenetic classification framework for the Tremellomycetes is proposed based on the results of phylogenetic analyses from a seven-genes dataset covering the majority of tremellomycetous yeasts and closely related filamentous taxa. Circumscriptions of the taxonomic units at the order, family and genus levels recognised were quantitatively assessed using the phylogenetic rank boundary optimisation (PRBO) and modified general mixed Yule coalescent (GMYC) tests. In addition, a comprehensive phylogenetic analysis on an expanded LSU rRNA (D1/D2 domains) gene sequence dataset covering as many as available teleomorphic and filamentous taxa within Tremellomycetes was performed to investigate the relationships between yeasts and filamentous taxa and to examine the stability of undersampled clades. Based on the results inferred from molecular data and morphological and physiochemical features, we propose an updated classification for the Tremellomycetes. We accept five orders, 17 families and 54 genera, including seven new families and 18 new genera. In addition, seven families and 17 genera are emended and one new species name and 185 new combinations are proposed. We propose to use the term pro tempore or pro tem. in abbreviation to indicate the species names that are temporarily maintained.

7.
Poult Sci ; 103(2): 103279, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38100945

RESUMO

Salmonella enterica Agona (S. Agona) and Salmonella enterica Saintpaul (S. Saintpaul) are among the emerging drug-resistant Salmonella in turkey production and processing. Rapid solutions to control emerging and uncommon serotypes such as S. Agona and S. Saintpaul are needed. This study tested pimenta essential oil (PEO) as a processing antibacterial against S. Agona and S. Saintpaul in experiments representative of different stages of turkey processing. The compound effectively reduced S. Agona and S. Saintpaul in nutrient broth studies and with mature biofilm assays. PEO was tested against a combination of S. Agona and S. Saintpaul in ground turkey meat and nonprocessed breast meat. In the first experiment with ground turkey, samples were inoculated with a mixture of S. Agona and S. Saintpaul (∼3 log10 CFU/g) and treated with PEO at different concentrations (0% PEO, 0.25% PEO, 0.5% PEO, 1% PEO, 2% PEO, and 2.5% PEO). In the second experiment with turkey breast, samples inoculated with ∼3 log10 CFU/g (SA+SP) were dipped in different concentrations of PEO with chitosan (CN) for 2 min. In both these experiments, samples were stored at 4°C, and Salmonella recovery was carried out at 0, 1, 3, 5, and 7 d. All experiments followed a completely randomized design and were repeated 6 times (n = 6). Statistical analysis was done using the PROC-ANOVA procedure of SAS. In the ground turkey meat, PEO at or above 2% reduced 2 log10 CFU/g of Salmonella by day 1. PEO at 2.5% in ground turkey meat resulted in enrichment-negative samples by 1 min, indicative of the rapid killing effect of the compound at a high concentration of PEO (P ≤ 0.05). A maximum reduction of 1.7 log10 CFU Salmonella/g of turkey breast meat was obtained after 2 min of dip treatment containing CN and 2.5% PEO. Results indicate that PEO could be used as a plant-based processing antibacterial against S. Agona and S. Saintpaul in turkey processing. Upscaling to plant-level studies is necessary before recommending its usage.


Assuntos
Óleos Voláteis , Pimenta , Animais , Contaminação de Alimentos/análise , Galinhas , Salmonella , Carne/análise , Antibacterianos/farmacologia , Antibacterianos/análise , Óleos Voláteis/farmacologia , Perus/microbiologia , Contagem de Colônia Microbiana/veterinária , Microbiologia de Alimentos
8.
Front Pharmacol ; 15: 1392203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633616

RESUMO

Cancer is the main cause of death in the world. There are several therapies that are in practice for cancer cure including radiotherapy, chemotherapy, and surgery. Among the chemotherapies, natural products are considered comparable safe, easily available and cost effective. Approximately 60% of cancer approved FDA drugs are natural products including vinblastine, doxorubicin, and paclitaxel. These natural products have complex structures due to which they work against cancer through different molecular pathways, STAT3, NF-kB, PI3K/AKT/mTOR, cell cycle arrest, mitochondrial dependent pathway, extrinsic apoptosis pathway, autophagy, mitophagy and ferroptosis. AA is a natural abietane diterpenoid compound from Pinus palustris and Pimenta racemose var. grissea with different pharmacological activities including anti-inflammatory, anti-convulsant, anti-obesity and anti-allergic. Recently it has been reported with its anticancer activities through different molecular mechanisms including NF-kB, PI3K/AKT, call cycle arrest at G0/G1 phase, mitochondrial dependent pathway, extrinsic apoptosis pathway, AMPK pathway and ferroptosis pathways. The literature survey reveals that there is no review on AA anticancer molecular mechanisms, therefore in current review, we summarize the anticancer molecular mechanisms of AA.

9.
Nat Prod Res ; : 1-8, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135438

RESUMO

The study examined the effects of herb drying, salt concentration, pH, and sampling approach on essential oil yield and composition in Pimenta dioica (L.) Merr. Fresh samples yielded higher essential oil (EO) (1.25%) than shade-dried ones. Increasing NaCl concentration correlated with higher EO yields, while a basic pH favoured superior yields. Gas Chromatography identified Eugenol and ß-myrcene as primary constituents. Eugenol content peaked at 10% NaCl (56.429%) and was lowest at pH 4 (42.850%). ß-myrcene content was highest at pH 4 (31.476%). Hydro distillation with systematic sampling evaluated the effects of 14 fractions in different time frames. Phenylpropanoids (mainly eugenol) and acyclic monoterpene (mainly ß-myrcene) dominated all fractions, with cyclic monoterpene (mainly limonene) enriched in the first four fractions. Fractions 10 to 14 showed significant increases in eugenol compared to the control. These findings provide insights for meeting market demands, enhancing the commercial potential of P. dioica EO.

10.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38256897

RESUMO

Pimenta dioica L. is one the most recognized species with diverse biological activities. In this study, in vitro activity and in vivo efficacy of essential oil from P. dioica (EO-Pd) was evaluated. The main compound was also included in the animal studies and its in silico prediction related to biological activities, molecular ligands, drug likeness, and ADME (absorption, distribution, metabolism, and excretion) properties are listed. The chemical composition analyzed by GC-MS retrieved 45 components, which the most abundant compound was the eugenol (80.1%). The EO-Pd was able to inhibit the growth of L. amazonensis (IC50 = 9.7 ± 0.7 and 11.3 ± 2.1 µg/mL, promastigotes and amastigotes, respectively). The cytotoxicity assay showed a CC50 of 104.5 ± 0.9 µg/mL and a selectivity index of 9. In the model of cutaneous leishmaniasis in BALB/c mice, the effect of EO-Pd and eugenol was observed after treatment at 30 mg/kg by intralesional route with 5 administrations every 4 days. In the in silico predictions, some targets that justified the antileishmanial activity of eugenol and good drug like properties for this compound, were obtained. This study showed for first time the potential of EO-Pd to inhibit L. amazonensis, which could be linked to the activity of major compound eugenol.

11.
Food Chem ; 372: 131221, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34649029

RESUMO

The direct incorporation of essential oils (EOs) into real food system faces numerous challenges due to high volatility, intense aroma, and instability. This research aimed to enhance the stability and bio-efficacy of Pimenta dioica essential oil (PDEO) through encapsulation in chitosan (CN) nanoemulsion. The nanoemulsion (CN-PDEO) was fabricated through ionic-gelation technique. CN-PDEO exhibited high nanoencapsulation efficiency (85.84%) and loading capacity (8.26%) with the particle size ranging between 18.53 and 70.56 nm. Bio-efficacy assessment results showed that CN-PDEO presented more effective antifungal and antiaflatoxigenic activity against Aspergillus flavus (AF-LHP-VS8) at lower doses (1.6 and 1.0 µL/mL) than the pure PDEO (2.5 and 1.5 µL/mL, respectively, p < 0.05). Additionally, CN-PDEO preserved model food (maize) from aflatoxin B1and lipid peroxidation without altering their sensory properties during storage with high safety profile (p < 0.05). Overall results concluded that CN-PDEO can be recommended for shelf-life extension of stored maize and other food commodities.


Assuntos
Quitosana , Óleos Voláteis , Pimenta , Aflatoxina B1 , Antifúngicos , Aspergillus flavus , Zea mays
12.
Plants (Basel) ; 11(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35214872

RESUMO

The Pimenta dioica essential oil and its main compound (eugenol) were tested for their antibacterial potency against eight Gram-negative and Gram-positive bacteria implicated in food intoxication. This essential oil and its main component were evaluated for their ability in inhibiting Quorum sensing (QS)-dependent mechanisms such as motility in Pseudomonas aeruginosa PAO1, production of violacein by Chromobacterium violaceum and biofilm formation on stainless steel and glass surfaces. Our results demonstrated that P. dioica essential oil and eugenol were active against all tested strains with a maximum of inhibition against Listeria monocytogenes CECT 933 (26.66 ± 0.57 mm). The minimal inhibitory concentration (MIC) value of the tested essential oil and eugenol was about 0.048 mg/mL for all strains. The obtained results demonstrated that 4CMI eugenol inhibited foodborne strains biofilm formation on the glass strips by 73.79% and by 75.90% on polystyrene. Moreover, 0.048 mg/mL (MIC) of P. dioica essential oil inhibited the violacein production by 69.30%. At 100 µg/mL, P. dioica oil and eugenol affected the motility of PAO1 by 42.00% and 29.17%, respectively. Low concentrations of P. dioica essential oil are active against the quorum sensing phenomena and biofilm potency. Thus, this essential oil could be further investigated for new molecules useful for the treatment of toxi-alimentary infections.

13.
Saudi J Biol Sci ; 29(5): 3830-3837, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35844370

RESUMO

An inflammation response occurs when the body reacts to exogenous and endo enous noxious stimuli, and it helps the body respond to infection and repair tissues, adapt to stress, and remove dead or damaged cells. Anti-inflammatory drugs such as non-steroidal anti-inflammatory drugs are traditionally used to treat inflammation; however, these drugs often cause negative side effects. For this reason, developing and establishing effective alternative medicines for treating many chronic diseases with underlying inflammation is critically dependent on the identification of new organic molecules and bioactive substances. Aromatic and volatile compounds found in essential oils isolated from Pimenta dioica (allspice), Cuminum cyminum (cumin), and Citrus sinensis (sweet orange) are a source of bioactive compounds. Allspice essential oil reduces ear inflammation more than 65% and the anti-inflammatory activity of allspice essential oil is enhanced when combined with sweet orange peel and cumin essential oils, resulting in the reduction of edema inflammation by more than 85%, similar to indomethacin. As an alternative to anti-inflammatory treatment, essential oil mix is pharmacologically safe as it is neither toxic nor mutagenic.

14.
Nat Prod Res ; 34(5): 745-749, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30421964

RESUMO

The chemical characterisation of Pimenta dioica essential oil (PDEO) revealed the presence of 50 components, amongst which α-Terpineol (30.31%) was the major component followed by ß-Linalool (6.75%) and γ-Terpinene (4.64%). The oil completely inhibited the growth of aflatoxin B1 secreting strain Aspergillus flavus LHP-VS-8 and aflatoxin B1 production at 2.5 µL/mL and 1.5 µL/mL, respectively. The oil caused dose dependent reduction of methylglyoxal (an AFB1 inducer), enhanced leakage of Ca2+, Mg2+ and K+ ions and significantly reduced ergosterol content of fungal plasma membrane. During in situ experiments, PDEO exhibited complete protection of fumigated maize cob slices from fungal infestation without affecting seed germination. The chemically characterised PDEO is recommended as a plant based preservative and shelf life enhancer of food commodities by preventing fungal growth, AFB1 production and lipid peroxidation. This is the first report on PDEO as inhibitor of AFB1 secretion and methylglyoxal biosynthesis.


Assuntos
Aflatoxina B1/antagonistas & inibidores , Anti-Infecciosos/isolamento & purificação , Contaminação de Alimentos/prevenção & controle , Óleos Voláteis/farmacologia , Pimenta/química , Zea mays/efeitos dos fármacos , Monoterpenos Acíclicos , Anti-Infecciosos/farmacologia , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Monoterpenos Cicloexânicos , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação
15.
Antibiotics (Basel) ; 9(10)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036456

RESUMO

Bacterial biofilm contributes to antibiotic resistance. Developing antibiofilm agents, more favored from natural origin, is a potential method for treatment of highly virulent multidrug resistant (MDR) bacterial strains; The potential of Pimenta dioica and Pimenta racemosa essential oils (E.Os) antibacterial and antibiofilm activities in relation to their chemical composition, in addition to their ability to treat Acinetobacter baumannii wound infection in mice model were investigated; P. dioica leaf E.O at 0.05 µg·mL-1 efficiently inhibited and eradicated biofilm formed by A. baumannii by 85% and 34%, respectively. Both P. diocia and P. racemosa leaf E.Os showed a bactericidal action against A. baumanii within 6h at 2.08 µg·mL-1. In addition, a significant reduction of A. baumannii microbial load in mice wound infection model was found. Furthermore, gas chromatography mass spectrometry analysis revealed qualitative and quantitative differences among P. racemosa and P. dioica leaf and berry E.Os. Monoterpene hydrocarbons, oxygenated monoterpenes, and phenolics were the major detected classes. ß-Myrcene, limonene, 1,8-cineole, and eugenol were the most abundant volatiles. While, sesquiterpenes were found as minor components in Pimenta berries E.O; Our finding suggests the potential antimicrobial activity of Pimenta leaf E.O against MDR A. baumannii wound infections and their underlying mechanism and to be further tested clinically as treatment for MDR A. baumannii infections.

16.
Int J Food Microbiol ; 292: 150-158, 2019 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-30599455

RESUMO

Strawberry has a limiting postharvest shelf life, especially because of soft rot. The antifungal activity of the essential oils (EOs) of Eucalyptus staigeriana, Lippia sidoides and Pimenta pseudocaryophyllus was tested in vitro against plant pathogen Rhizopus stolonifer. The chemical composition of the EO with the highest activity and its effects on pathogen morphology were verified. The in vivo antifungal activity of this EO associated with carboxymethylcellulose (CMC) coating, in preventive and curative applications, was also evaluated. L. sidoides EO presented the highest in vitro antifungal activity. The analysis of the chemical composition of this EO showed a prevalence of the compound thymol and the scanning and transmission electron microscopy showed that L. sidoides EO was able to cause damage to the cell wall and the intracellular components of the pathogen. Strawberries treated with L. sidoides EO associated with CMC presented a reduction in disease severity, especially when treated in a curative way.


Assuntos
Carboximetilcelulose Sódica/farmacologia , Fragaria/microbiologia , Fungicidas Industriais/farmacologia , Óleos Voláteis/farmacologia , Rhizopus/efeitos dos fármacos , Eucalyptus/química , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Lippia/química , Pimenta/química , Timol/farmacologia , Compostos Orgânicos Voláteis/farmacologia
17.
Food Res Int ; 119: 499-509, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30884682

RESUMO

The current study aimed obtaining antimicrobial sachets that could be used as preservatives for foods. Basil (BEO) and Pimenta dioica (PDEO) essential oils (EOs) were analyzed by GC-FID and GC-MS and tested against the foodborne bacteria S. aureus, E. coli, L. monocytogenes, P. aeruginosa, S. Enteritidis, and the food-spoilage mold B. nivea. Then, inclusion complexes (ICs) with EOs and ß-cyclodextrin (ß-CD) were prepared as a strategy to reduce volatility and increase the release time of EOs. Eight ICs were prepared by kneading and freeze-drying methods, in two molar ratios, and have been characterized by complementary methods: FT-IR, thermal analysis (DSC and TG/DTG), powder XRD, and solid state 13C NMR. In vitro antimicrobial activities of ICs, both dispersed in agar and loaded in sachets, have also been investigated. Complexation was confirmed for all samples. PDEO-based ICs prepared by kneading method, at both molar ratios, displayed better in vitro antimicrobial activity. The obtained results strongly suggest a potential application of these ICs as natural antimicrobials.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Conservantes de Alimentos/química , Conservantes de Alimentos/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia , Brasil , Escherichia coli/efeitos dos fármacos , Conservação de Alimentos/métodos , Liofilização , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Ocimum basilicum/química , Pimenta/química , Staphylococcus aureus/efeitos dos fármacos , Difração de Raios X
18.
Int J Food Microbiol ; 295: 19-24, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30784855

RESUMO

Seeds are usual source of contamination and their sprouts are commonly associated foodborne illness. Therefore, the aim of this study was to evaluate the antibacterial vapor phase efficiency of allspice, thyme and rosemary essential oils on two foodborne pathogens in in vitro and on alfalfa seeds, including the chemical profile of the tested EOs and their effect on the sensory characteristics of the sprouts. Antibacterial activity was determined through the minimal inhibitory concentration (MIC) of EOs in vapor phase to inhibit the growth of Listeria monocytogenes and Salmonella Typhimurium in culture media and on alfalfa seeds. Also, the germination and the effect on sensory characteristics of the sprouts were determined. Thyme EO was the most effective of the tested EOs on culture media and on alfalfa seeds, against both bacteria. When rosemary EO was tested against L. monocytogenes in alfalfa seeds, the MIC (4.0 mL/Lair) was higher, compared to the one obtained in culture media (2.7 mL/Lair). But when this EO was tested against S. Typhimurium, the MIC in alfalfa seeds was lower than in culture media (11.7 vs 13.3 mL/Lair). Allspice EO resulted more effective against both bacteria in alfalfa seeds (6.0 mL/Lair for L. monocytogenes and 6.7 mL/Lair for S. Typhimurium), compared to culture media (12.0 mL/Lair for L. monocytogenes and 13.3 mL/Lair for S. Typhimurium). Vapor phase EOs MICs resulted in significant (p ≤ 0.05) decreases of L. monocytogenes and S. Typhimurium counts compared to the control. There also was a significant (p ≤ 0.05) difference between systems (in vitro or on alfalfa seeds) despite the microorganism or the evaluated EO. Treatment alfalfa seed with vapor phase EOs, did not affect the seed germination. Sensory acceptability of the sprouts, obtained of treated seeds, did not were significant (p ≥ 0.05) different of the sprouts obtained from the non-treated seeds.


Assuntos
Microbiologia de Alimentos/métodos , Medicago sativa/microbiologia , Óleos Voláteis/farmacologia , Antibacterianos/farmacologia , Listeria monocytogenes , Medicago sativa/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pimenta/química , Rosmarinus/química , Plântula/efeitos dos fármacos , Sementes/efeitos dos fármacos , Thymus (Planta)/química
19.
Braz. J. Pharm. Sci. (Online) ; 59: e21371, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1439539

RESUMO

Abstract Ischemia/reperfusion injury (I/R) is commonly related to acute kidney injury (AKI) and oxidative stress. Antioxidant agents are used to treat this condition. Lippia sidoides is a brazillian shrub with anti-inflammatory and anti-oxidative properties. Thus, the aim of this study is to evaluate the effect of Lippia sidoides ethanolic extract (LSEE) on in vivo and in vitro models of AKI induced by I/R. Male Wistar rats were submitted to unilateral nephrectomy and ischemia on contralateral kidney for 60 min via clamping followed by reperfusion for 48 h. They were divided into four groups: Sham, LSEE (sham-operated rats pre-treated with LSEE), I/R (rats submitted to ischemia) and I/R-LSEE (rats treated with LSEE before ischemia). Kidney tissues homogenates were used to determine stress parameters and nephrin expression. Plasma and urine samples were collected for biochemical analysis. I/R in vitro assays were evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) and flow cytometry assays in Rhesus Monkey Kidney Epithelial Cells (LLC-MK2). The LSEE treatment prevented biochemical and nephrin expression alterations, as well as oxidative stress parameters. In the in vitro assay, LSEE protected against cell death, reduced the reactive oxygen species and increased mitochondrial transmembrane potential. LSEE showed biotechnological potential for a new phytomedicine as a nephroprotective agent.


Assuntos
Animais , Masculino , Ratos , Hypericum/efeitos adversos , Injúria Renal Aguda/induzido quimicamente , Isquemia/classificação , Medicina Herbária/instrumentação , Injúria Renal Aguda/complicações , Citometria de Fluxo/métodos , Macaca mulatta , Antioxidantes/administração & dosagem
20.
Int J Food Microbiol ; 286: 128-138, 2018 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-30099281

RESUMO

Effective and environmentally-friendly alternatives to traditional disinfectants are necessary to reduce the pollution and the emergence of antimicrobial-resistant bacterial strains in food-related environments. In the present study, treatments based in single and combined applications of plant essential oils (EOs) were evaluated for control Staphylococcus aureus biofilms. EOs of Lippia sidoides, Thymus vulgaris and Pimenta pseudochariophyllus showed a higher efficacy than peracetic acid and sodium hypochlorite against S. aureus planktonic cells and 24-h-old biofilms formed on polystyrene and stainless steel under food-related conditions. High concentrations of thymol and chavibetol were detected in these EOs, as well as the presence of other antimicrobial compounds such as carvacrol, eugenol, p-cymene, limonene, α-pinene, α-terpineol, terpinen-4-oil and linalool. L. sidoides oil were particularly effective against S. aureus, but doses higher than 2.75% (v/v) were required to completely eradicate 24-h-old biofilms. Binary combinations of L. sidoides, T. vulgaris and P. pseudochariophyllus allowed decrease significantly doses required to reduce 99.99% the number of biofilm cells. Furthermore, peracetic acid increased its efficacy against S. aureus biofilms by the combined application with these EOs. The most effective treatments against S. aureus biofilms were those combining L. sidoides with T. vulgaris or peracetic acid. Therefore, these EO-based treatments can be considered as an effective and environmentally-friendly alternative to control S. aureus biofilms in food-contact surfaces.


Assuntos
Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Desinfetantes/farmacologia , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Monoterpenos Acíclicos , Monoterpenos Bicíclicos , Biofilmes/efeitos dos fármacos , Monoterpenos Cicloexânicos , Cicloexenos/farmacologia , Cimenos , Limoneno/farmacologia , Testes de Sensibilidade Microbiana , Monoterpenos/farmacologia , Ácido Peracético/farmacologia , Hipoclorito de Sódio/farmacologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Timol/farmacologia , Thymus (Planta)/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa