Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Glob Chang Biol ; 30(2): e17190, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403855

RESUMO

Enhancement of net primary production (NPP) in forests as atmospheric [CO2 ] increases is likely limited by the availability of other growth resources. The Duke Free Air CO2 Enrichment (FACE) experiment was located on a moderate-fertility site in the southeastern US, in a loblolly pine (Pinus taeda L.) plantation with broadleaved species growing mostly in mid-canopy and understory. Duke FACE ran from 1994 to 2010 and combined elevated [CO2 ] (eCO2 ) with nitrogen (N) additions. We assessed the spatial and temporal variation of NPP response using a dataset that includes previously unpublished data from 6 years of the replicated CO2 × N experiment and extends to 2 years beyond the termination of enrichment. Averaged over time (1997-2010), NPP of pine and broadleaved species were 38% and 52% higher under eCO2 compared to ambient conditions. Furthermore, there was no evidence of a decline in enhancement over time in any plot regardless of its native site quality. The relation between spatial variation in the response and native site quality was suggested but inconclusive. Nitrogen amendments under eCO2 , in turn, resulted in an additional 11% increase in pine NPP. For pine, the eCO2 -induced increase in NPP was similar above- and belowground and was driven by both increased leaf area index (L) and production efficiency (PE = NPP/L). For broadleaved species, coarse-root biomass production was more than 200% higher under eCO2 and accounted for the entire production response, driven by increased PE. Notably, the fraction of annual NPP retained in total living biomass was higher under eCO2 , reflecting a slight shift in allocation fraction to woody mass and a lower mortality rate. Our findings also imply that tree growth may not have been only N-limited, but perhaps constrained by the availability of other nutrients. The observed sustained NPP enhancement, even without N-additions, demonstrates no progressive N limitation.


Assuntos
Dióxido de Carbono , Pinus , Nitrogênio , Pinus/fisiologia , Florestas , Árvores , Pinus taeda , Folhas de Planta/fisiologia
2.
New Phytol ; 237(3): 987-998, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36346200

RESUMO

To distinguish among hypotheses on the importance of resource-exchange ratios in outcomes of mutualisms, we measured resource (carbon (C), nitrogen (N), and phosphorus (P)) transfers and their ratios, between Pinus taeda seedlings and two ectomycorrhizal (EM) fungal species, Rhizopogon roseolus and Pisolithus arhizus in a laboratory experiment. We evaluated how ambient light affected those resource fluxes and ratios over three time periods (10, 20, and 30 wk) and the consequences for plant and fungal biomass accrual, in environmental chambers. Our results suggest that light availability is an important factor driving absolute fluxes of N, P, and C, but not exchange ratios, although its effects vary among EM fungal species. Declines in N : C and P : C exchange ratios over time, as soil nutrient availability likely declined, were consistent with predictions of biological market models. Absolute transfer of P was an important predictor of both plant and fungal biomass, consistent with the excess resource-exchange hypothesis, and N transfer to plants was positively associated with fungal biomass. Altogether, light effects on resource fluxes indicated mixed support for various theoretical frameworks, while results on biomass accrual better supported the excess resource-exchange hypothesis, although among-species variability is in need of further characterization.


Assuntos
Micorrizas , Pinus , Simbiose , Raízes de Plantas/microbiologia , Carbono , Pinus taeda , Plantas , Pinus/microbiologia , Solo
3.
Plant J ; 106(5): 1356-1365, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33735469

RESUMO

Sexual reproduction in angiosperms is siphonogamous, and the interaction between pollen tube and pistil is critical for successful fertilization. Our previous study demonstrated that mutation of the Arabidopsis turgor regulation defect 1 (TOD1) gene leads to reduced male fertility, a result of retarded pollen tube growth in the pistil. TOD1 encodes a Golgi-localized alkaline ceramidase, a key enzyme for the production of sphingosine-1-phosphate (S1P), which is involved in the regulation of turgor pressure in plant cells. However, whether TOD1s play a conserved role in the innovation of siphonogamy is largely unknown. In this study, we provide evidence that OsTOD1, which is similar to AtTOD1, is also preferentially expressed in rice pollen grains and pollen tubes. OsTOD1 knockout results in reduced pollen tube growth potential in rice pistil. Both the OsTOD1 genomic sequence with its own promoter and the coding sequence under the AtTOD1 promoter can partially rescue the attod1 mutant phenotype. Furthermore, TOD1s from other angiosperm species can partially rescue the attod1 mutant phenotype, while TOD1s from gymnosperm species are not able to complement the attod1 mutant phenotype. Our data suggest that TOD1 acts conservatively in angiosperms, and this opens up an opportunity to dissect the role of sphingolipids in pollen tube growth in angiosperms.


Assuntos
Magnoliopsida/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Flores/genética , Flores/fisiologia , Ginkgo biloba/genética , Ginkgo biloba/fisiologia , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Magnoliopsida/fisiologia , Nelumbo/genética , Nelumbo/fisiologia , Nymphaea/genética , Nymphaea/fisiologia , Oryza/genética , Oryza/fisiologia , Pinus taeda/genética , Pinus taeda/fisiologia , Proteínas de Plantas/genética , Pólen/genética , Pólen/fisiologia , Tubo Polínico/genética , Tubo Polínico/fisiologia , Reprodução
4.
Glob Chang Biol ; 28(4): 1458-1476, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34783402

RESUMO

Elevated atmospheric CO2 (eCO2 ) typically increases aboveground growth in both growth chamber and free-air carbon enrichment (FACE) studies. Here we report on the impacts of eCO2 and nitrogen amendment on coarse root biomass and net primary productivity (NPP) at the Duke FACE study, where half of the eight plots in a 30-year-old loblolly pine (Pinus taeda, L.) plantation, including competing naturally regenerated broadleaved species, were subjected to eCO2 (ambient, aCO2 plus 200 ppm) for 15-17 years, combined with annual nitrogen amendments (11.2 g N m-2 ) for 6 years. Allometric equations were developed following harvest to estimate coarse root (>2 mm diameter) biomass. Pine root biomass under eCO2 increased 32%, 1.80 kg m-2 above the 5.66 kg m-2 observed in aCO2 , largely accumulating in the top 30 cm of soil. In contrast, eCO2 increased broadleaved root biomass more than twofold (aCO2 : 0.81, eCO2 : 2.07 kg m-2 ), primarily accumulating in the 30-60 cm soil depth. Combined, pine and broadleaved root biomass increased 3.08 kg m-2 over aCO2 of 6.46 kg m-2 , a 48% increase. Elevated CO2 did not increase pine root:shoot ratio (average 0.24) but increased the ratio from 0.57 to 1.12 in broadleaved species. Averaged over the study (1997-2010), eCO2 increased pine, broadleaved and total coarse root NPP by 49%, 373% and 86% respectively. Nitrogen amendment had smaller effects on any component, singly or interacting with eCO2 . A sustained increase in root NPP under eCO2 over the study period indicates that soil nutrients were sufficient to maintain root growth response to eCO2 . These responses must be considered in computing coarse root carbon sequestration of the extensive southern pine and similar forests, and in modelling the responses of coarse root biomass of pine-broadleaved forests to CO2 concentration over a range of soil N availability.


Assuntos
Nitrogênio , Pinus taeda , Biomassa , Dióxido de Carbono , Solo
5.
Oecologia ; 198(1): 219-227, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35079868

RESUMO

Successful colonization and growth of trees within herbaceous communities may result from different interactions with the herbaceous community. First, colonizing trees compete against larger, established herbs, while subsequent growth occurs among similarly sized or smaller herbs. This shift from colonization to growth may lead three drivers of community dynamics-nutrients, consumers, and herbaceous diversity-to differentially affect tree colonization and, later, tree performance. Initially, these drivers should favor larger, established herbs, reducing tree colonization. Later, when established trees can better compete with herbs, these drivers should benefit trees and increase their performance. In a 4-year study in a southeastern US old field, we added nutrients to, excluded aboveground consumers from, and manipulated initial richness of, the herbaceous community, and then allowed trees to naturally colonize these communities (from intact seedbanks or as seed rain) and grow. Nutrients and consumers had opposing effects on tree colonization and performance: adding nutrients and excluding consumers reduced tree colonization rate, but later increased the size of established trees (height, basal diameter). Adding nutrients and excluding consumers also restricted tree colonization to earlier years of study, which partially explained the effect of nutrient addition on plant size. Together, this shows differing impacts of nutrients and consumers: factors that initially limited tree colonization also resulted in larger established trees. This suggests that succession of grasslands that are either eutrophied or have diminished consumer pressure may experience lags and pulses in woody encroachment, leading to an extended period of herbaceous dominance followed by accelerated woody growth.


Assuntos
Plantas , Árvores , Ecossistema , Nutrientes
6.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36012434

RESUMO

Exogenously applied double-stranded RNA (dsRNA) can induce potent host specific gene knockdown and mortality in insects. The deployment of RNA-interference (RNAi) technologies for pest suppression is gaining traction in both agriculture and horticulture, but its implementation in forest systems is lagging. While numerous forest pests have demonstrated susceptibility to RNAi mediated gene silencing, including the southern pine beetle (SPB), Dendroctonus frontalis, multiple barriers stand between laboratory screening and real-world deployment. One such barrier is dsRNA delivery. One possible delivery method is through host plants, but an understanding of exogenous dsRNA movement through plant tissues is essential. Therefore, we sought to understand the translocation and persistence of dsRNAs designed for SPB throughout woody plant tissues after hydroponic exposure. Loblolly pine, Pinus taeda, seedlings were exposed to dsRNAs as a root soak, followed by destructive sampling. Total RNA was extracted from different tissue types including root, stem, crown, needle, and meristem, after which gel electrophoresis confirmed the recovery of the exogenous dsRNAs, which were further verified using Sanger sequencing. Both techniques confirmed the presence of the exogenously applied target dsRNAs in each tissue type after 1, 3, 5, and 7 d of dsRNA exposure. These findings suggest that root drench applications of exogenous dsRNAs could provide a viable delivery route for RNAi technology designed to combat tree feeding pests.


Assuntos
Besouros , Pinus , Animais , Besouros/genética , Insetos/genética , Pinus/genética , Pinus taeda/genética , Interferência de RNA , RNA de Cadeia Dupla/genética , Plântula/genética
7.
J Exp Bot ; 72(12): 4489-4501, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33677600

RESUMO

The influence of aquaporin (AQP) activity on plant water movement remains unclear, especially in plants subject to unfavorable conditions. We applied a multitiered approach at a range of plant scales to (i) characterize the resistances controlling water transport under drought, flooding, and flooding plus salinity conditions; (ii) quantify the respective effects of AQP activity and xylem structure on root (Kroot), stem (Kstem), and leaf (Kleaf) conductances; and (iii) evaluate the impact of AQP-regulated transport capacity on gas exchange. We found that drought, flooding, and flooding plus salinity reduced Kroot and root AQP activity in Pinus taeda, whereas Kroot of the flood-tolerant Taxodium distichum did not decline under flooding. The extent of the AQP control of transport efficiency varied among organs and species, ranging from 35-55% in Kroot to 10-30% in Kstem and Kleaf. In response to treatments, AQP-mediated inhibition of Kroot rather than changes in xylem acclimation controlled the fluctuations in Kroot. The reduction in stomatal conductance and its sensitivity to vapor pressure deficit were direct responses to decreased whole-plant conductance triggered by lower Kroot and larger resistance belowground. Our results provide new mechanistic and functional insights on plant hydraulics that are essential to quantifying the influences of future stress on ecosystem function.


Assuntos
Aquaporinas , Secas , Ecossistema , Inundações , Folhas de Planta/metabolismo , Transpiração Vegetal , Salinidade , Água/metabolismo
8.
Mycorrhiza ; 31(6): 755-766, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34432129

RESUMO

Ectomycorrhizal fungi contribute to the nutrition of many woody plants, including those in the Pinaceae family. Loblolly pine (Pinus taeda L.), a native species of the Southeastern USA, can be colonized by multiple species of ectomycorrhizal fungi. The role of these symbionts in P. taeda potassium (K+) nutrition has not been previously investigated. Here, we assessed the contribution of four ectomycorrhizal fungi, Hebeloma cylindrosporum, Paxillus ammoniavirescens, Laccaria bicolor, and Suillus cothurnatus, in P. taeda K+ acquisition under different external K+ availabilities. Using a custom-made two-compartment system, P. taeda seedlings were inoculated with one of the four fungi, or kept non-colonized, and grown under K+-limited or -sufficient conditions for 8 weeks. Only the fungi had access to separate compartments in which rubidium, an analog tracer for K+, was supplied before harvest. Resulting effects of the fungi were recorded, including root colonization, biomass, and nutrient concentrations. We also analyzed the fungal performance in axenic conditions under varying supply of K+ and sodium. Our study revealed that these four ectomycorrhizal fungi are differentially affected by external K+ and sodium variations, that they are not able to provide similar benefits to the host P. taeda in our growing conditions, and that rubidium may be used with some limitations to estimate K+ transport from ectomycorrhizal fungi to colonized plants.


Assuntos
Micorrizas , Pinus , Basidiomycota , Hebeloma , Laccaria , Pinus taeda , Potássio , Plântula
9.
Plant J ; 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29894016

RESUMO

The shikimate pathway synthesizes aromatic amino acids essential for protein biosynthesis. Shikimate dehydrogenase (SDH) is a central enzyme of this primary metabolic pathway, producing shikimate. The structurally similar quinate is a secondary metabolite synthesized by quinate dehydrogenase (QDH). SDH and QDH belong to the same gene family, which diverged into two phylogenetic clades after a defining gene duplication just prior to the angiosperm/gymnosperm split. Non-seed plants that diverged before this duplication harbour only a single gene of this family. Extant representatives from the chlorophytes (Chlamydomonas reinhardtii), bryophytes (Physcomitrella patens) and lycophytes (Selaginella moellendorfii) encoded almost exclusively SDH activity in vitro. A reconstructed ancestral sequence representing the node just prior to the gene duplication also encoded SDH activity. Quinate dehydrogenase activity was gained only in seed plants following gene duplication. Quinate dehydrogenases of gymnosperms, represented here by Pinus taeda, may be reminiscent of an evolutionary intermediate since they encode equal SDH and QDH activities. The second copy in P. taeda maintained specificity for shikimate similar to the activity found in the angiosperm SDH sister clade. The codon for a tyrosine residue within the active site displayed a signature of positive selection at the node defining the QDH clade, where it changed to a glycine. Replacing the tyrosine with a glycine in a highly shikimate-specific angiosperm SDH was sufficient to gain some QDH function. Thus, very few mutations were necessary to facilitate the evolution of QDH genes.

10.
Mol Ecol ; 28(8): 2088-2099, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30632641

RESUMO

To understand how diverse mutualisms coevolve and how species adapt to complex environments, a description of the underlying genetic basis of the traits involved must be provided. For example, in diverse coevolving mutualisms, such as the interaction of host plants with a suite of symbiotic mycorrhizal fungi, a key question is whether host plants can coevolve independently with multiple species of symbionts, which depends on whether those interactions are governed independently by separate genes or pleiotropically by shared genes. To provide insight into this question, we employed an association mapping approach in a clonally replicated field experiment of loblolly pine (Pinus taeda L.) to identify genetic components of host traits governing ectomycorrhizal (EM) symbioses (mycorrhizal traits). The relative abundances of different EM fungi as well as the total number of root tips per cm root colonized by EM fungi were analyzed as separate mycorrhizal traits of loblolly pine. Single-nucleotide polymorphisms (SNPs) within candidate genes of loblolly pine were associated with loblolly pine mycorrhizal traits, mapped to the loblolly pine genome, and their putative protein function obtained when available. The results support the hypothesis that ectomycorrhiza formation is governed by host genes of large effect that apparently have independent influences on host interactions with different symbiont species.


Assuntos
Genoma de Planta/genética , Micorrizas/genética , Pinus taeda/genética , Simbiose/genética , Genótipo , Micorrizas/crescimento & desenvolvimento , Fenótipo , Pinus taeda/microbiologia , Polimorfismo de Nucleotídeo Único/genética
11.
J Basic Microbiol ; 59(8): 784-791, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31259434

RESUMO

Laccases are multicopper oxidases with high potential for industrial applications. Several basidiomycete fungi are natural producers of this enzyme; however, the optimization of production and selection of inducers for increased productivity coupled with low costs is necessary. Lignocellulosic residues are important lignin sources and potential inducers for laccase production. Pinus taeda, a dominant source of wood-based products, has not been investigated for this purpose yet. The aim of this study was to evaluate the production of laccase by the basidiomycete fungus Ganoderma lucidum in the presence of different inducers in submerged and solid-state fermentation. The results of submerged fermentation in presence of 5 µM CuSO 4 , 2 mM ferulic acid, 0.1 g/L P. taeda sawdust, or 0.05 g/L Kraft lignin indicated that although all the tested inducers promoted increase in laccase activity in specific periods of time, the presence of 2 mM ferulic acid resulted in the highest value of laccase activity (49 U/L). Considering the submerged fermentation, experimental design following the Plackett-Burman method showed that the concentrations of ferulic acid and P. taeda sawdust had a significant influence on the laccase activity. The highest value of 785 U/L of laccase activity on submerged fermentation was obtained on the seventh day of cultivation. Finally, solid-state fermentation cultures in P. taeda using ferulic acid or CuSO 4 as inducers resulted in enzymatic activities of 144.62 and 149.89 U/g, respectively, confirming the potential of this approach for laccase production by G. lucidum.


Assuntos
Fermentação , Lacase/biossíntese , Reishi/metabolismo , Sulfato de Cobre/metabolismo , Ácidos Cumáricos/metabolismo , Meios de Cultura/metabolismo , Lacase/metabolismo , Lignina/metabolismo , Pinus/metabolismo , Reishi/enzimologia , Fatores de Tempo
12.
Ecol Appl ; 28(6): 1503-1519, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29999562

RESUMO

Ecological forecasting of forest productivity involves integrating observations into a process-based model and propagating the dominant components of uncertainty to generate probability distributions for future states and fluxes. Here, we develop a forecast for the biomass change in loblolly pine (Pinus taeda) forests of the southeastern United States and evaluate the relative contribution of different forms of uncertainty to the total forecast uncertainty. Specifically, we assimilated observations of carbon and flux stocks and fluxes from sites across the region, including global change experiments, into a forest ecosystem model to calibrate the parameter distributions and estimate the process uncertainty (i.e., model structure uncertainty revealed in the residuals of the calibration). Using this calibration, we forecasted the change in biomass within each 12-digit Hydrologic (H12) unit across the native range of loblolly pine between 2010 and 2055 under the Representative Concentration Pathway 8.5 scenario. Averaged across the region, productivity is predicted to increase by a mean of 31% between 2010 and 2055 with an average forecast 95% quantile interval of ±15 percentage units. The largest increases were predicted in cooler locations, corresponding to the largest projected changes in temperature. The forecasted mean change varied considerably among the H12 units (3-80% productivity increase), but only units in the warmest and driest extents of the loblolly pine range had forecast distributions with probabilities of a decline in productivity that exceeded 5%. By isolating the individual components of the forecast uncertainty, we found that ecosystem model process uncertainty made the largest individual contribution. Ecosystem model parameter and climate model uncertainty had similar contributions to the overall forecast uncertainty, but with differing spatial patterns across the study region. The probabilistic framework developed here could be modified to include additional sources of uncertainty, including changes due to fire, insects, and pests: processes that would result in lower productivity changes than forecasted here. Overall, this study presents an ecological forecast at the ecosystem management scale so that land managers can explicitly account for uncertainty in decision analysis. Furthermore, it highlights that future work should focus on quantifying, propagating, and reducing ecosystem model process uncertainty.


Assuntos
Biomassa , Mudança Climática , Florestas , Modelos Teóricos , Pinus taeda/crescimento & desenvolvimento , Previsões , Sudeste dos Estados Unidos , Incerteza
13.
J Plant Res ; 131(6): 897-905, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30374799

RESUMO

The effects of forest thinning and wood quality on wood decomposition in the mineral soil were investigated in a Chinese pine (Pinus tabuliformis Carriére) plantation in northern China by measuring mass loss and changes in wood properties (carbohydrates, lignin and nitrogen (N) concentrations) in wood stakes of two tree species-loblolly pine (Pinus taeda L.) and trembling aspen (Populus tremuloides Michx.). Stakes were inserted to a 20 cm soil depth in stands with three thinning levels (low, moderate, and heavy) and an unharvested control and removed after 1 year. There were significant differences in stake mass loss among the treatments. The species effect on the stake mass loss was marginally significant. Wood N content of both species increased during decomposition in all thinning treatments, and was only correlated with aspen mass loss. Wood properties of stakes placed in each stand before insertion (t = 0) were similar, except for pine lignin concentration and aspen lignin: N ratio, but neither had any effect on thinning treatment results. Lignin concentration increased and carbohydrate concentration decreased in both aspen and pine wood stakes during decomposition across all thinning treatments, which suggests that brown-rot fungi are dominant wood-decomposers on our study site. We conclude that thinning has a significant influence on the wood decomposition in the mineral soil of this Chinese pine plantation.


Assuntos
Agricultura Florestal , Pinus , Madeira , Biomassa , China , Agricultura Florestal/métodos , Florestas , Lignina/metabolismo , Pinus taeda , Populus , Solo , Árvores
14.
Ecol Appl ; 27(1): 118-133, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052502

RESUMO

Canopy transpiration (EC ) is a large fraction of evapotranspiration, integrating physical and biological processes within the energy, water, and carbon cycles of forests. Quantifying EC is of both scientific and practical importance, providing information relevant to questions ranging from energy partitioning to ecosystem services, such as primary productivity and water yield. We estimated EC of four pine stands differing in age and growing on sandy soils. The stands consisted of two wide-ranging conifer species: Pinus taeda and Pinus sylvestris, in temperate and boreal zones, respectively. Combining results from these and published studies on all soil types, we derived an approach to estimate daily EC of pine forests, representing a wide range of conditions from 35° S to 64° N latitude. During the growing season and under moist soils, maximum daily EC (ECm ) at day-length normalized vapor pressure deficit of 1 kPa (ECm-ref ) increased by 0.55 ± 0.02 (mean ± SE) mm/d for each unit increase of leaf area index (L) up to L = ~5, showing no sign of saturation within this range of quickly rising mutual shading. The initial rise of ECm with atmospheric demand was linearly related to ECm-ref . Both relations were unaffected by soil type. Consistent with theoretical prediction, daily EC was sensitive to decreasing soil moisture at an earlier point of relative extractable water in loamy than sandy soils. Our finding facilitates the estimation of daily EC of wide-ranging pine forests using remotely sensed L and meteorological data. We advocate an assembly of worldwide sap flux database for further evaluation of this approach.


Assuntos
Florestas , Pinus sylvestris/fisiologia , Pinus taeda/fisiologia , Transpiração Vegetal , Fatores Etários , North Carolina , Solo , Suécia
15.
J Hered ; 108(2): 207-216, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003371

RESUMO

Population genomic analysis can be an important tool in understanding local adaptation. Identification of potential adaptive loci in such analyses is usually based on the survey of a large genomic dataset in combination with environmental variables. Phenotypic data are less commonly incorporated into such studies, although combining a genome scan analysis with a phenotypic trait analysis can greatly improve the insights obtained from each analysis individually. Here, we aimed to identify loci potentially involved in adaptation to climate in 283 Loblolly pine (Pinus taeda) samples from throughout the species' range in the southeastern United States. We analyzed associations between phenotypic, molecular, and environmental variables from datasets of 3082 single nucleotide polymorphism (SNP) loci and 3 categories of phenotypic traits (gene expression, metabolites, and whole-plant traits). We found only 6 SNP loci that displayed potential signals of local adaptation. Five of the 6 identified SNPs are linked to gene expression traits for lignin development, and 1 is linked with whole-plant traits. We subsequently compared the 6 candidate genes with environmental variables and found a high correlation in only 3 of them (R2 > 0.2). Our study highlights the need for a combination of genotypes, phenotypes, and environmental variables, and for an appropriate sampling scheme and study design, to improve confidence in the identification of potential candidate genes.


Assuntos
Meio Ambiente , Interação Gene-Ambiente , Estudos de Associação Genética , Genética Populacional , Genômica , Genótipo , Fenótipo , Adaptação Biológica , Genes de Plantas , Genômica/métodos , Modelos Genéticos , Pinus taeda/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Característica Quantitativa Herdável , Seleção Genética , Estados Unidos
16.
BMC Genet ; 17(1): 138, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27756221

RESUMO

BACKGROUND: The use of wood as an industrial raw material has led to development of plantation forestry, in which trees are planted, managed, and harvested as crops. The productivity of such plantations often exceeds that of less-intensively-managed forests, and land managers have the option of choosing specific planting stock to produce specific types of wood for industrial use. Stem forking, or division of the stem into two or more stems of roughly equal size, is a character trait important in determining the quality of the stem for production of solid wood products. This trait typically has very low individual-tree heritability, but can be more accurately assessed in clonally-replicated plantings where each genotype is represented by several individual trees. We report results from a quantitative trait mapping experiment in a clonally-replicated full-sibling family of loblolly pine (Pinus taeda L.). RESULTS: Quantitative trait loci influencing forking defects were identified in an outbred full-sibling family of loblolly pine, using single-nucleotide polymorphism markers. Genetic markers in this family segregated either in 1:2:1 (F2 intercross-like segregation) or 1:1 ratio (backcross-like segregation). An integrated linkage map combining markers with different segregation ratios was assembled for this full-sib family, and a total of 409 SNP markers were mapped on 12 linkage groups, covering 1622 cM. Two and three trait loci were identified for forking and ramicorn branch traits, respectively, using the interval mapping method. Three trait loci were detected for both traits using multiple-trait analysis. CONCLUSIONS: The detection of three loci for forking and ramicorn branching in a multiple-trait analysis could mean that there are genes with pleiotropic effects on both traits, or that separate genes affecting different traits are clustered together. The detection of genetic loci associated with variation in stem quality traits in this study supports the hypothesis that marker-assisted selection can be used to decrease the rate of stem defects in breeding populations of loblolly pine.


Assuntos
Linhagem , Pinus taeda/genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Algoritmos , Cruzamento , Mapeamento Cromossômico , Estudos de Associação Genética , Ligação Genética , Marcadores Genéticos , Genótipo , Modelos Estatísticos , Fenótipo , Polimorfismo de Nucleotídeo Único
17.
Mycorrhiza ; 26(5): 377-88, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26763005

RESUMO

The genus Rhizopogon includes species with hypogeous or subepigeus habit, forming ectomycorrhizae with naturally occurring or planted pines (Pinaceae). Species of the genus Rhizopogon can be distinguished easily from the other hypogeous basidiomycetes by their lacunose gleba without columella and their smooth elliptical spores; however, the limit between species is not always easy to establish. Rhizopogon luteolus, the type species of the genus, has been considered one of the species that are more abundant in Europe, as well as it has been cited in pine plantation of North and South America, different parts of Africa, Australia, and New Zealand. However, in this study, based on molecular analyses of the ITS nuclear ribosomal DNA (nrDNA) sequences (19 new sequences; 37 sequences from GenBank/UNITE, including those from type specimens), we prove that many GenBank sequences under R. luteolus were misidentified and correspond to Rhizopogon verii, a species described from Tunisia. Also, we confirm that basidiomes and ectomycorrhizae recently collected in Germany under Pinus sylvestris, as well as specimens from South of Brazil under Pinus taeda belong to R. verii. Thanks to the numerous ectomycorrhizal tips collected in Germany, a complete description of R. verii/P. sylvestris ectomycorrhiza is provided. Moreover, since in this paper the presence of R. verii in South America is here reported for the first time, a short description of basidiomes collected in Brazil, compared with collections located in different European herbaria, is included.


Assuntos
Basidiomycota/classificação , Basidiomycota/genética , Micorrizas/classificação , Micorrizas/genética , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Europa (Continente) , Filogenia , Pinus/microbiologia , América do Sul
18.
Plant J ; 78(2): 305-18, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24517843

RESUMO

Using a functional genomics approach, four candidate genes (PtGT34A, PtGT34B, PtGT34C and PtGT34D) were identified in Pinus taeda. These genes encode CAZy family GT34 glycosyltransferases that are involved in the synthesis of cell-wall xyloglucans and heteromannans. The full-length coding sequences of three orthologs (PrGT34A, B and C) were isolated from a xylem-specific cDNA library from the closely related Pinus radiata. PrGT34B is the ortholog of XXT1 and XXT2, the two main xyloglucan (1→6)-α-xylosyltransferases in Arabidopsis thaliana. PrGT34C is the ortholog of XXT5 in A. thaliana, which is also involved in the xylosylation of xyloglucans. PrGT34A is an ortholog of a galactosyltransferase from fenugreek (Trigonella foenum-graecum) that is involved in galactomannan synthesis. Truncated coding sequences of the genes were cloned into plasmid vectors and expressed in a Sf9 insect cell-culture system. The heterologous proteins were purified, and in vitro assays showed that, when incubated with UDP-xylose and cellotetraose, cellopentaose or cellohexaose, PrGT34B showed xylosyltransferase activity, and, when incubated with UDP-galactose and the same cello-oligosaccharides, PrGT34B showed some galactosyltransferase activity. The ratio of xylosyltransferase to galactosyltransferase activity was 434:1. Hydrolysis of the galactosyltransferase reaction products using galactosidases showed the linkages formed were α-linkages. Analysis of the products of PrGT34B by MALDI-TOF MS showed that up to three xylosyl residues were transferred from UDP-xylose to cellohexaose. The heterologous proteins PrGT34A and PrGT34C showed no detectable enzymatic activity.


Assuntos
Glicosiltransferases/genética , Pinus taeda/genética , Pinus/genética , Proteínas de Plantas/genética , Parede Celular/metabolismo , Genômica , Glucanos/biossíntese , Glicosiltransferases/química , Mananas/biossíntese , Espectrometria de Massas , Dados de Sequência Molecular , Filogenia , Pinus taeda/enzimologia , Proteínas de Plantas/química , Xilanos/biossíntese
19.
New Phytol ; 205(2): 518-25, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25346045

RESUMO

Models of forest energy, water and carbon cycles assume decreased stomatal conductance with elevated atmospheric CO2 concentration ([CO2]) based on leaf-scale measurements, a response not directly translatable to canopies. Where canopy-atmosphere are well-coupled, [CO2 ]-induced structural changes, such as increasing leaf-area index (LD), may cause, or compensate for, reduced mean canopy stomatal conductance (GS), keeping transpiration (EC) and, hence, runoff unaltered. We investigated GS responses to increasing [CO2] of conifer and broadleaved trees in a temperate forest subjected to 17-yr free-air CO2 enrichment (FACE; + 200 µmol mol(-1)). During the final phase of the experiment, we employed step changes of [CO2] in four elevated-[CO2 ] plots, separating direct response to changing [CO2] in the leaf-internal air-space from indirect effects of slow changes via leaf hydraulic adjustments and canopy development. Short-term manipulations caused no direct response up to 1.8 × ambient [CO2], suggesting that the observed long-term 21% reduction of GS was an indirect effect of decreased leaf hydraulic conductance and increased leaf shading. Thus, EC was unaffected by [CO2] because 19% higher canopy LD nullified the effect of leaf hydraulic acclimation on GS . We advocate long-term experiments of duration sufficient for slow responses to manifest, and modifying models predicting forest water, energy and carbon cycles accordingly.


Assuntos
Dióxido de Carbono/metabolismo , Florestas , Transpiração Vegetal , Atmosfera/química , Modelos Biológicos , Estômatos de Plantas/metabolismo
20.
New Phytol ; 205(3): 1153-1163, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25348775

RESUMO

Predicting the response of fine roots to increased atmospheric CO2 concentration has important implications for carbon (C) and nutrient cycling in forest ecosystems. Root architecture is known to play an important role in how trees acquire soil resources in changing environments. However, the effects of elevated CO2 on the fine-root architecture of trees remain unclear. We investigated the architectural response of fine roots exposed to 14 yr of CO2 enrichment and 6 yr of nitrogen (N) fertilization in a Pinus taeda (loblolly pine) forest. Root traits reflecting geometry, topology and uptake function were measured on intact fine-root branches removed from soil monoliths and the litter layer. CO2 enrichment resulted in the development of a fine-root pool that was less dichotomous and more exploratory under N-limited conditions. The per cent mycorrhizal colonization did not differ among treatments, suggesting that root growth and acclimation to elevated CO2 were quantitatively more important than increased mycorrhizal associations. Our findings emphasize the importance of architectural plasticity in response to environmental change and suggest that changes in root architecture may allow trees to effectively exploit larger volumes of soil, thereby pre-empting progressive nutrient limitations.


Assuntos
Dióxido de Carbono/farmacologia , Nitrogênio/farmacologia , Pinus/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Solo/química , Fertilizantes , Micorrizas/efeitos dos fármacos , Micorrizas/fisiologia , Pinus/efeitos dos fármacos , Pinus/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa