Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Sci Food Agric ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210561

RESUMO

BACKGROUND: The co-application of biochar and wood vinegar has demonstrated the potential to enhance premium crop production. The present study reveals the effects of co-applying rice husk biochar and wood vinegar (both foliar and soil application) on soil properties and the growth of Chinese cabbage (Brassica chinensis L.) in a two-season pot experiment. RESULTS: The soil pH, electrical conductivity and dissolved organic carbon contents in combination treatments of wood vinegar and biochar were increased more when wood vinegar was applied to soils rather than to leaves, and the parameters were observed to surpass those for chemical fertilizer treatments. The biomass of Chinese cabbage shoots was significantly increased by 60.8- and 27.3-fold in the combined treatments compared to the control when 1% wood vinegar was sprayed to the leaves (WF1) in 2022 and 2023, respectively. Higher contents of vitamin C, soluble protein and soluble sugar were also observed in the combined wood vinegar and biochar treatments compared to chemical fertilizer treatments and the control; for example, the vitamin C content of plant shoot in WF1 was 21.3 times that of the control. The yield and quality of plants were decreased across all treatments in 2023 compared to 2022 but the combination treatments still displayed superiority. CONCLUSION: The co-application of wood vinegar and biochar enhances the growth and improve the quality of Chinese cabbage through improving the soil properties and plant photosynthesis. Moreover, the foliage application of wood vinegar is more preferable compared to soil application. © 2024 Society of Chemical Industry.

2.
J Evol Biol ; 36(5): 743-752, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951311

RESUMO

We used European geometrid moths (>630 species) as a model group to investigate how life history traits linked to larval host plant use (i.e., diet breadth and host-plant growth form) and seasonal life cycle (i.e., voltinism, overwintering stage and caterpillar phenology) are related to adult body size in holometabolous insect herbivores. To do so, we applied phylogenetic comparative methods to account for shared evolutionary history among herbivore species. We further categorized larval diet breadth based on the phylogenetic structure of utilized host plant genera. Our results indicate that species associated with woody plants are, on average, larger than herb feeders and increase in size with increasing diet breadth. Obligatorily univoltine species are larger than multivoltine species, and attain larger sizes when their larvae occur exclusively in the early season. Furthermore, the adult body size is significantly smaller in species that overwinter in the pupal stage compared to those that overwinter as eggs or caterpillars. In summary, our results indicate that the ecological niche of holometabolous insect herbivores is strongly interrelated with body size at maturity.


Assuntos
Mariposas , Animais , Mariposas/genética , Estações do Ano , Filogenia , Larva , Plantas , Tamanho Corporal , Herbivoria
3.
Oecologia ; 198(3): 579-591, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34743229

RESUMO

Intraspecific feeding choices comprise a large portion of herbivore foraging decisions. Plant resource quality is heterogeneously distributed, affected by nutrient availability and growing conditions. Herbivores navigate landscapes, foraging not only according to food qualities, but also energetic and nutritional demands. We test three non-exclusive foraging hypotheses using the snowshoe hare (Lepus americanus): (1) herbivore feeding choices and body conditions respond to intraspecific plant quality variation; (2) high energetic demands mitigate feeding responses; and (3) feeding responses are inflated when nutritional demands are high. We measured black spruce (Picea mariana) nitrogen, phosphorus and terpene compositions, as indicators of quality, within a snowshoe hare trapping grid and found plant growing conditions to explain spruce quality variation (R2 < 0.36). We then offered two qualities of spruce (H1) from the trapping grid to hares in cafeteria-style experiments and measured their feeding and body condition responses (n = 75). We proxied energetic demands (H2) with ambient temperature and coat insulation (% white coat) and nutritional demands (H3) with the spruce quality (nitrogen and phosphorus content) in home ranges. Hares with the strongest preference for high-quality spruce lost on average 2.2% less weight than hares who ate the least high-quality spruce relative to low-quality spruce. The results supported our energetic predictions as follows: hares in colder temperatures and with less-insulative coats (lower % white) consumed more spruce and were less selective towards high-quality spruce. Collectively, we found variation in plant growing conditions within herbivore home ranges substantial enough to affect herbivore body conditions, but energetic stats mediate plant-herbivore interactions.


Assuntos
Lebres , Picea , Animais , Lebres/fisiologia , Herbivoria , Comportamento de Retorno ao Território Vital , Plantas
4.
Oecologia ; 193(2): 389-401, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32548711

RESUMO

Predators impact prey populations through both consumptive and non-consumptive effects, such as behavioral and physiological changes by prey in response to a predation threat. Additionally, various top-down (e.g. predator characteristics) and bottom-up factors (e.g. plant nutrients) may impact non-consumptive effects, yet little is understood about how these interact. We studied how host-plant choice, leaf consumption, and growth of an herbivore, Pieris rapae, were impacted by different levels of plant nitrogen (N) and two predator species representing varying degrees of threat, Hippodamia convergens (predator of early-instars) and Podisus maculiventris (predator of all-instars). We found that P. rapae adults and larvae made similar choices about bottom-up and top-down factors when threatened by two different predator species. Adults and larvae preferred high N plants when threatened by H. convergens, but plant N did not influence their host plant choice when threatened by P. maculiventris. Additionally, larvae consumed more leaf tissue and grew larger when threatened by H. convergens, but leaf tissue consumption and larval growth did not change under threat by P. maculiventris, suggesting that larvae may change their behavior if they are able to quickly outgrow life stages vulnerable to predation. These results indicate that top-down factors such as predator identity may determine how P. rapae modulate their responses to bottom-up factors such as host plant quality when utilizing anti-predator behaviors.


Assuntos
Borboletas , Besouros , Heterópteros , Animais , Herbivoria , Comportamento Predatório
5.
Oecologia ; 191(1): 113-125, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31342255

RESUMO

Effects of plants on herbivores can cascade up the food web and modulate the abundance of higher trophic levels. In agro-ecosystems, plant viruses can affect the interactions between crops, crop pests, and natural enemies. Little is known, however, about the effects of viruses on higher trophic levels, including parasitoids and their ability for pest regulation. We tested the hypothesis that a plant virus affects parasitoid foraging behaviour through cascading effects on higher trophic levels. We predicted that the semi-persistent Beet yellows virus (BYV) would influence plant (Beta vulgaris) quality, as well as aphid host (Aphis fabae) quality for a parasitoid Lysiphlebus fabarum. We determined amino acid and sugar content in healthy and infected plants (first trophic level), lipid content and body size of aphids (second trophic level) fed on both plants, as well as foraging behaviour and body size of parasitoids (third trophic level) that developed on aphids fed on both plants. Our results showed that virus infection increased sugars and decreased total amino acid content in B. vulgaris. We further observed an increase in aphid size without modification in host aphid quality (i.e., lipid content), and a slight effect on parasitoid behaviour through an increased number of antennal contacts with host aphids. Although the BYV virus clearly affected the first two trophic levels, it did not affect development or emergence of parasitoids. As the parasitoid L. fabarum does not seem to be affected by the virus, we discuss the possibility of using it for the development of targeted biological control against aphids.


Assuntos
Afídeos , Beta vulgaris , Closterovirus , Vespas , Animais , Ecossistema , Interações Hospedeiro-Parasita , Regulação para Cima
6.
Ecol Lett ; 21(1): 138-150, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29098754

RESUMO

Primary consumers are under strong selection from resource ('bottom-up') and consumer ('top-down') controls, but the relative importance of these selective forces is unknown. We performed a meta-analysis to compare the strength of top-down and bottom-up forces on consumer fitness, considering multiple predictors that can modulate these effects: diet breadth, feeding guild, habitat/environment, type of bottom-up effects, type of top-down effects and how consumer fitness effects are measured. We focused our analyses on the most diverse group of primary consumers, herbivorous insects, and found that in general top-down forces were stronger than bottom-up forces. Notably, chewing, sucking and gall-making herbivores were more affected by top-down than bottom-up forces, top-down forces were stronger than bottom-up in both natural and controlled (cultivated) environments, and parasitoids and predators had equally strong top-down effects on insect herbivores. Future studies should broaden the scope of focal consumers, particularly in understudied terrestrial systems, guilds, taxonomic groups and top-down controls (e.g. pathogens), and test for more complex indirect community interactions. Our results demonstrate the surprising strength of forces exerted by natural enemies on herbivorous insects, and thus the necessity of using a tri-trophic approach when studying insect-plant interactions.


Assuntos
Herbivoria , Insetos , Animais , Ecossistema , Cadeia Alimentar
7.
Oecologia ; 188(4): 1227-1237, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30288608

RESUMO

The recent decline of Lepidoptera species strongly correlates with the increasing intensification of agriculture in Western and Central Europe. However, the effects of changed host-plant quality through agricultural fertilization on this insect group remain largely unexplored. For this reason, we tested the response of six common butterfly and moth species to host-plant fertilization using fertilizer quantities usually applied in agriculture. The larvae of the study species Coenonympha pamphilus, Lycaena phlaeas, Lycaena tityrus, Pararge aegeria, Rivula sericealis and Timandra comae were distributed according to a split-brood design to three host-plant treatments comprising one control treatment without fertilization and two fertilization treatments with an input of 150 and 300 kg N ha-1 year-1, respectively. In L. tityrus, we used two additional fertilization treatments with an input of 30 and 90 kg N ha-1 year-1, respectively. Fertilization increased the nitrogen concentration of both host-plant species, Rumex acetosella and Poa pratensis, and decreased the survival of larvae in all six Lepidoptera species by at least one-third, without clear differences between sorrel- and grass-feeding species. The declining survival rate in all species contradicts the well-accepted nitrogen-limitation hypothesis, which predicts a positive response in species performance to dietary nitrogen content. In contrast, this study presents the first evidence that current fertilization quantities in agriculture exceed the physiological tolerance of common Lepidoptera species. Our results suggest that (1) the negative effect of plant fertilization on Lepidoptera has previously been underestimated and (2) that it contributes to the range-wide decline of Lepidoptera.


Assuntos
Lepidópteros , Mariposas , Animais , Europa (Continente) , Fertilizantes , Nitrogênio , Plantas
8.
Bull Entomol Res ; 108(4): 479-486, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29061199

RESUMO

We tested the sulfur-modulated plant resistance hypothesis using potted cabbage (Brassica oleracea var. capitata) plants that were grown without and with increasing levels of sulfur fertilization. Changes in plant chemical traits were assessed and developmental performance of Plutella xylostella, a highly host-specific leaf-chewing insect, was followed. Leaf sulfur concentration gradually increased with growing addition of sulfur in soil; however, there was a generalized saturation response curve, with a plateau phase, for improvements in total leaf nitrogen, defense glucosinolates and insect performance. Plutella xylostella performed better in sulfur-fertilized cabbage probably because of the higher level of nitrogen, despite of the higher content of glucosinolates, which are toxic for many non-specialized insects. Despite the importance of sulfur in plant nutrition and production, especially for Brassica crops, our results showed that sulfur fertilization could decrease plant resistance against insects with high feeding specialization.


Assuntos
Brassica/parasitologia , Fertilizantes , Mariposas , Nitrogênio/metabolismo , Enxofre/farmacologia , Animais , Brassica/química , Brassica/efeitos dos fármacos , Brassica/metabolismo , Herbivoria/efeitos dos fármacos , Mariposas/fisiologia , Nitrogênio/análise
9.
Glob Chang Biol ; 23(10): 4354-4364, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28317226

RESUMO

Despite the increasing rate of urbanization, the consequences of this process on biotic interactions remain insufficiently studied. Our aims were to identify the general pattern of urbanization impact on background insect herbivory, to explore variations in this impact related to characteristics of both urban areas and insect-plant systems, and to uncover the factors governing urbanization impacts on insect herbivory. We compared the foliar damage inflicted on the most common trees by defoliating, leafmining and gall-forming insects in rural and urban habitats associated with 16 European cities. In two of these cities, we explored quality of birch foliage for herbivorous insects, mortality of leafmining insects due to predators and parasitoids and bird predation on artificial plasticine larvae. On average, the foliage losses to insects were 16.5% lower in urban than in rural habitats. The magnitude of the overall adverse effect of urbanization on herbivory was independent of the latitude of the locality and was similar in all 11 studied tree species, but increased with an increase in the size of the urban area: it was significant in large cities (city population 1-5 million) but not significant in medium-sized and small towns. Quality of birch foliage for herbivorous insects was slightly higher in urban habitats than in rural habitats. At the same time, leafminer mortality due to ants and birds and the bird attack intensity on dummy larvae were higher in large cities than in rural habitats, which at least partially explained the decline in insect herbivory observed in response to urbanization. Our findings underscore the importance of top-down forces in mediating impacts of urbanization on plant-feeding insects: factors favouring predators may override the positive effects of temperature elevation on insects and thus reduce plant damage.


Assuntos
Aves , Herbivoria , Insetos , Comportamento Predatório , Animais , Cidades , Larva , Folhas de Planta , Árvores
10.
Oecologia ; 183(4): 1121-1134, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28144733

RESUMO

Baculoviruses are food-borne microbial pathogens that are ingested by insects on contaminated foliage. Oxidation of plant-derived phenolics, activated by insect feeding, can directly interfere with infections in the gut. Since phenolic oxidation is an important component of plant resistance against insects, baculoviruses are suggested to be incompatible with plant defences. However, plants among and within species invest differently in a myriad of chemical and physical defences. Therefore, we hypothesized that among eight soybean genotypes, some genotypes would be able to maintain both high resistance against an insect pest and high efficacy of a baculovirus. Soybean constitutive (non-induced) and jasmonic acid (JA)-induced (anti-herbivore response) resistance was measured against the fall armyworm Spodoptera frugiperda (weight gain, leaf consumption and utilization). Indicators of phenolic oxidation were measured as foliar phenolic content and peroxidase activity. Levels of armyworm mortality inflicted by baculovirus (SfMNPV) did not vary among soybean genotypes when the virus was ingested with non-induced foliage. Ingestion of the virus on JA-induced foliage reduced armyworm mortality, relative to non-induced foliage, on some soybean genotypes. Baculovirus efficacy was lower when ingested with foliage that contained higher phenolic content and defensive properties that reduced armyworm weight gain and leaf utilization. However, soybean genotypes that defended the plant by reducing consumption rate and strongly deterred feeding upon JA-induction did not reduce baculovirus efficacy, indicating that these defences may be more compatible with baculoviruses to maximize plant protection. Differential compatibility of defence traits with the third trophic level highlights an important cost/trade-off associated with plant defence strategies.


Assuntos
Herbivoria , Spodoptera , Animais , Variação Genética , Folhas de Planta
11.
J Invertebr Pathol ; 150: 106-113, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28988030

RESUMO

This study investigated the interactive effects of growth on drought stressed host plants and pathogen challenge with the baculovirus Autographa californica nucleopolyhedrovirus (AcMNPV) on survival and fitness-related traits using the Speckled Wood butterfly, Pararge aegeria (L.). Exposure to AcMNPV significantly reduced survival to pupation. For surviving larvae, sub-lethal infection significantly decreased daily mass acquisition rates and pupal mass. Growth on drought stressed plants increased daily mass acquisition rates resulting in heavier pupae, and increased resource allocation to adult reproduction. The interaction between host plant drought and viral exposure resulted in different resource allocation strategies, and thus different growth trajectories, between larvae. This in turn resulted in significantly different allometric relationships between larval mass (at inoculation) and both development time and investment in flight muscles. For larvae with relatively lighter masses there was a cost of resisting infection when growth occurred on drought stressed host plants, both within the larval stage (i.e. longer larval development times) and in the adult stage (i.e. lower investment in flight muscle mass). This multi-factor study highlights several potential mechanisms by which the complex interplay between low host plant nutritional quality due to drought, and pathogen exposure, may differentially influence the performance of P. aegeria individuals across multiple life stages.


Assuntos
Baculoviridae , Borboletas/virologia , Secas , Plantas , Estresse Fisiológico/fisiologia , Animais , Borboletas/crescimento & desenvolvimento , Alocação de Recursos
12.
J Environ Manage ; 168: 165-74, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26708647

RESUMO

Browsing damage by native ungulates is often to be considered one of the reasons of regeneration failure in Nothofagus pumilio silvicultural systems. Fencing and hunting in forests at regeneration phase have been proposed to mitigate browsing effects. This study aims to determine effectiveness of these control methods in harvested forests, evaluating browsing damage over regeneration, as well as climate-related constraints (freezing or desiccation). Forest structure and regeneration plots were established in two exclosures against native ungulates (Lama guanicoe) by wire fences in the Chilean portion of Tierra del Fuego island, where tree regeneration density, growth, abiotic damage and quality (multi-stems and base/stem deformation) were assessed. Exclosures did not influence regeneration density (at the initial stage with < 1.3 m high, and at the advanced stage with >1.3 m high). However, sapling height at 10-years old was significantly lower outside (40-50 cm high) than inside exclosures (80-100 cm), and also increased their annual height growth, probably as a hunting effect. Likewise, quality was better inside exclosures. Alongside browsing, abiotic conditions negatively influenced sapling quality in the regeneration phase (20%-28% of all seedlings), but greatly to taller plants (as those from inside exclosure). This highlights the importance of considering climatic factors when analysing browsing effects. For best results, control of guanaco in recently harvested areas by fencing should be applied in combination with a reduction of guanaco density through continuous hunting. The benefits of mitigation actions (fencing and hunting) on regeneration growth may shorten the regeneration phase period in shelterwood cutting forests (30-50% less time), but incremental costs must be analysed in the framework of management planning by means of long-term studies.


Assuntos
Abate de Animais/métodos , Camelídeos Americanos , Conservação dos Recursos Naturais/métodos , Agricultura Florestal/métodos , Florestas , Magnoliopsida/crescimento & desenvolvimento , Análise de Variância , Animais , Chile , Plântula/crescimento & desenvolvimento
13.
J Anim Ecol ; 84(5): 1222-32, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25788108

RESUMO

1. The impact of predators on prey has traditionally been attributed to the act of consumption. Prey responses to the presence of the predator (non-consumptive effects), however, can be as important as predation itself. While plant defences are known to influence predator-prey interactions, their relative effects on consumptive vs. non-consumptive effects are not well understood. 2. We evaluated the consequences of plant resistance and predators (Hippodamia convergens) on the mass, number of nymphs, population growth, density and dispersal of aphids (Macrosiphum euphorbiae). We tested for the effects of plant resistance on non-consumptive and consumptive effects of predators on aphid performance and dispersal using a combination of path analysis and experimental manipulation of predation risk. 3. We manipulated plant resistance using genetically modified lines of tomato (Solanum lycopersicum) that vary incrementally in the expression of the jasmonate pathway, which mediates induced resistance to insects and manipulated aphid exposure to lethal and risk predators. Predation risk predators had mandibles impaired to prevent killing. 4. Plant resistance reduced predation rate (consumptive effect) on high resistance plants. As a consequence, predators had no impact on the number of nymphs, aphid density or population growth on high resistance plants, whereas on low resistance plants, predators reduced aphid density by 35% and population growth by 86%. Path analysis and direct manipulation of predation risk showed that predation risk rather than predation rate promoted aphid dispersal and varied with host plant resistance. Aphid dispersal in response to predation risk was greater on low compared to high resistance plants. The predation risk experiment also showed that the number of aphid nymphs increased in the presence of risk predators but did not translate into increased population growth. 5. In conclusion, the consumptive and non-consumptive components of predators affect different aspects of prey demography, acting together to shape prey population dynamics. While predation risk accounts for most of the total effect of the predator on aphid dispersal and number of nymphs, the suppressive effect of predators on aphid population occurred largely through consumption. These effects are strongly influenced by plant resistance levels, suggesting that they are context dependent.


Assuntos
Antibiose , Afídeos/fisiologia , Besouros/fisiologia , Cadeia Alimentar , Comportamento Predatório , Solanum lycopersicum/fisiologia , Distribuição Animal , Animais , Afídeos/crescimento & desenvolvimento , Ciclopentanos/metabolismo , Herbivoria , Solanum lycopersicum/genética , Ninfa/fisiologia , Oxilipinas/metabolismo
14.
J Anim Ecol ; 83(1): 234-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24028469

RESUMO

Spatial-temporal realism is often missing in many studies of multitrophic interactions, which are conducted at a single time frame and/or involving interactions between insects with a single species of plant. In this scenario, an underlying assumption is that the host-plant species is ubiquitous throughout the season and that the insects always interact with it. We studied interactions involving three naturally occurring wild species of cruciferous plants, Brassica rapa, Sinapis arvensis and Brassica nigra, that exhibit different seasonal phenologies, and a multivoltine herbivore, the large cabbage white butterfly, Pieris brassicae, and its gregarious endoparasitoid wasp, Cotesia glomerata. The three plants have very short life cycles. In central Europe, B. rapa grows in early spring, S. arvensis in late spring and early summer, and B. nigra in mid to late summer. P. brassicae generally has three generations per year, and C. glomerata at least two. This means that different generations of the insects must find and exploit different plant species that may differ in quality and which may be found some distance from one another. Insects were either reared on each of the three plant species for three successive generations or shifted between generations from B. rapa to S. arvensis to B. nigra. Development time from neonate to pupation and pupal fresh mass were determined in P. brassicae and egg-to-adult development time and body mass in C. glomerata. Overall, herbivores performed marginally better on S. arvensis and B. nigra plants than on B. rapa plants. Parasitoids performance was closely tailored with that of the host. Irrespective as to whether the insects were shifted to a new plant in successive generations or not, development time of P. brassicae and C. glomerata decreased dramatically over time. Our results show that there were some differences in insect development on different plant species and when transferred from one species to another. However, all three plants were of generally high quality in terms of insect performance. We discuss ecological and evolutionary constraints on insects that must search in new habitats for different plant species over successive generations.


Assuntos
Brassica , Borboletas/parasitologia , Sinapis , Vespas/fisiologia , Animais , Feminino , Herbivoria , Masculino , Dinâmica Populacional , Estações do Ano
15.
Metabolites ; 14(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38786749

RESUMO

Transcriptomics and metabolomics offer distinct advantages in investigating the differentially expressed genes and cellular entities that have the greatest influence on end-phenotype, making them crucial techniques for studying plant quality and environmental responses. While numerous relevant articles have been published, a comprehensive summary is currently lacking. This review aimed to understand the global and longitudinal research trends of transcriptomics and metabolomics in plant quality and environmental response (TMPQE). Utilizing bibliometric methods, we presented a comprehensive science mapping of the social structure, conceptual framework, and intellectual foundation of TMPQE. We uncovered that TMPQE research has been categorized into three distinct stages since 2020. A citation analysis of the 29 most cited articles, coupled with a content analysis of recent works (2020-2023), highlight five potential research streams in plant quality and environmental responses: (1) biosynthetic pathways, (2) abiotic stress, (3) biotic stress, (4) development and ripening, and (5) methodologies and tools. Current trends and future directions are shaped by technological advancements, species diversity, evolving research themes, and an environmental ecology focus. Overall, this review provides a novel and comprehensive perspective to understand the longitudinal trend on TMPQE.

16.
Plant Physiol Biochem ; 215: 109084, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39217823

RESUMO

Amino acids serve as the primary means of transport and organic nitrogen carrier in plants, playing an essential role in plant growth and development. Amino acid transporters (AATs) facilitate the movement of amino acids within plants and have been identified and characterised in a number of species. It has been demonstrated that these amino acid transporters exert an influence on the quality attributes of plants, in addition to their primary function of transporting amino acid transport. This paper presents a summary of the role of AATs in plant quality improvement. This encompasses the enhancement of nitrogen utilization efficiency, root development, tiller number and fruit yield. Concurrently, AATs can bolster the resilience of plants to pests, diseases and abiotic stresses, thereby further enhancing the yield and quality of fruit. AATs exhibit a wide range of substrate specificity, which greatly optimizes the use of pesticides and significantly reduces pesticide residues, and reduces the risk of environmental pollution while increasing the safety of fruit. The discovery of AATs function provides new ideas and ways to cultivate high-quality crop and promote changes in agricultural development, and has great potential in the application of plant quality improvement.


Assuntos
Sistemas de Transporte de Aminoácidos , Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas de Plantas/metabolismo , Produtos Agrícolas/metabolismo , Aminoácidos/metabolismo , Plantas/metabolismo
17.
Sci Total Environ ; 903: 166567, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633375

RESUMO

The bioavailability of essential and non-essential elements in vegetation is expected to influence the performance of free-ranging terrestrial herbivores. However, attempts to relate the use of geochemical landscapes by animal populations directly to reproductive output are currently lacking. Here we measured concentrations of 14 essential and non-essential elements in soil and vegetation samples collected in the Zackenberg valley, northeast Greenland, and linked these to environmental conditions to spatially predict and map geochemical landscapes. We then used long-term (1996-2021) survey data of muskoxen (Ovibos moschatus) to quantify annual variation in the relative use of essential and non-essential elements in vegetated sites and their relationship to calf recruitment the following year. Results showed that the relative use of the geochemical landscape by muskoxen varied substantially between years and differed among elements. Selection for vegetated sites with higher levels of the essential elements N, Cu, Se, and Mo was positively linked to annual calf recruitment. In contrast, selection for vegetated sites with higher concentrations of the non-essential elements As and Pb was negatively correlated to annual calf recruitment. Based on the concentrations measured in our study, we found no apparent associations between annual calf recruitment and levels of C, Mn, Co, Zn, Cd, Ba, Hg, and C:N ratio in the vegetation. We conclude that the spatial distribution and access to essential and non-essential elements are important drivers of reproductive output in muskoxen, which may also apply to other wildlife populations. The value of geochemical landscapes to assess habitat-performance relationships is likely to increase under future environmental change.

18.
Saudi J Biol Sci ; 29(4): 2926-2932, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531171

RESUMO

The biotic and abiotic factors including the agricultural implementation can modify soil acidification. We hypothesized that soil pH should as repercussion, alter the plant physiological and physical properties and eventually affect insect herbivores including agricultural pests. This study aimed to evaluate the impact of seven levels of soil pH on the performance of cowpea aphid Aphis craccivora on Vicia faba. Significant relationships between soil pH and growth of host bean seedlings or development and reproduction of the aphid were detected. Data demonstrated significant differences in the total longevity, the pre-reproductive, reproductive, post-reproductive and pre-viviparity periods. Within a suitable range of pH for bean growth between pH 5.3 and pH 7.2, the aphid performance was worse on seedlings growing better, however, under unfavorable extreme pH conditions, plant quality measured as height did not affect the aphids anymore and their performance was uniformly low except the case in pH 8.1 condition in which the best aphid reproduction was observed. The results confirm that soil pH affect the performance of cowpea aphid A. craccivora and also exhibited strong influence on the growth of broad bean plants.

19.
PeerJ ; 10: e12721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35111393

RESUMO

Fire and herbivores are two important drivers of changes in vegetation composition, quality and dynamics and both are highly related to each other. Herbivores are known to respond to fire both in terms of foraging decisions and distribution. However, little is known about the actual changes in plant chemistry following a fire event and how long these changes will last. We investigated the effect of fire on two different plant functional groups (grasses and woody species) in a woodland savanna of southern Africa. We studied chemical compounds known to be important for palatability of five perennial grass and seven woody species (trees and shrubs) common in the woodland savanna and known to be utilized by herbivores. We wanted to know if plant chemistry differs between a recently burned site (burned 2 years ago) and a control site, burned 16 years ago, and if grasses and woody species show similar relative differences between sites (i.e., the plants' response to fire). We found a clear difference in chemical composition patterns between the plant functional groups, with an almost homogenous response to fire among woody species, but higher variability in response among grass species. Furthermore, we found that woody species maintained a higher nutritional value even 2 years after burning, whereas grasses did not show clear differences among the two investigated sites. Hence, few years after burning, woody plants might still serve as an attraction for herbivores, especially browsers, in contrast to grasses. The knowledge about these differences between the two functional groups in response to fire is beneficial for the development of management strategies for large herbivores whether domestic or wild.


Assuntos
Ecossistema , Pradaria , Florestas , Plantas , Árvores , Poaceae
20.
Front Plant Sci ; 11: 58, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117394

RESUMO

The abundance and stoichiometry of aquatic plants are crucial for nutrient cycling and energy transfer in aquatic ecosystems. However, the interactive effects of multiple global environmental changes, including temperature rise and eutrophication, on aquatic plant stoichiometry and palatability remain largely unknown. Here, we hypothesized that (1) plant growth rates increase faster with rising temperature in nutrient-rich than nutrient-poor sediments; (2) plant carbon (C): nutrient ratios [nitrogen (N) and phosphorus (P)] respond differently to rising temperatures at contrasting nutrient conditions of the sediment; (3) external nutrient loading to the water column limits the growth of plants and decreases plant C:nutrient ratios; and that (4) changes in plant stoichiometry affect plant palatability. We used the common rooted submerged plant Vallisneria spiralis as a model species to test the effects of temperature and nutrient availability in both the sediment and the water column on plant growth and stoichiometry in a full-factorial experiment. The results confirmed that plants grew faster in nutrient-rich than nutrient-poor sediments with rising temperature, whereas external nutrient loading decreased the growth of plants due to competition by algae. The plant C: N and C: P ratios responded differently at different nutrient conditions to rising temperature. Rising temperature increased the metabolic rates of organisms, increased the nutrient availability in the sediment and enhanced plant growth. Plant growth was limited by a shortage of N in the nutrient-poor sediment and in the treatment with external nutrient loading to the water column, as a consequence, the limited plant growth caused an accumulation of P in the plants. Therefore, the effects of temperature on aquatic plant C:nutrient ratios did not only depend on the availability of the specific nutrients in the environment, but also on plant growth, which could result in either increased, unaltered or decreased plant C:nutrient ratios in response to temperature rise. Plant feeding trial assays with the generalist consumer Lymnaea stagnalis (Gastropoda) did not show effects of temperature or nutrient treatments on plant consumption rates. Overall, our results implicate that warming and eutrophication might interactively affect plant abundance and plant stoichiometry, and therefore influence nutrient cycling in aquatic ecosystems.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa