Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(3): 64, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340214

RESUMO

KEY MESSAGE: This study demonstrates the crucial role of OsPIP2;6 for translocation of arsenic from roots to shoots, which can decrease arsenic accumulation in rice for improved food safety. Arsenic (As) contamination in food and water, primarily through rice consumption, poses a significant health risk due to its natural tendency to accumulate inorganic arsenic (iAs). Understanding As transport mechanisms is vital for producing As-free rice. This study investigates the role of rice plasma membrane intrinsic protein, OsPIP2;6, for AsIII tolerance and accumulation. RNAi-mediated suppression of OsPIP2;6 expression resulted in a substantial (35-65%) reduction in As accumulation in rice shoots, while root arsenic levels remained largely unaffected. Conversely, OsPIP2;6 overexpression led to 15-76% higher arsenic accumulation in shoots, with no significant change in root As content. In mature plants, RNAi suppression caused (19-26%) decrease in shoot As, with flag leaves and grains showing a 16% reduction. OsPIP2;6 expression was detected in both roots and shoots, with higher transcript levels in shoots. Localization studies revealed its presence in vascular tissues of both roots and shoots. Overall, our findings highlight OsPIP2;6's role in root-to-shoot As translocation, attributed to its specific localization in the vascular tissue of roots and leaves. This knowledge can facilitate the development of breeding programs to mitigate As accumulation in rice and other food crops for improved food safety and increasing productivity on As-contaminated soils.


Assuntos
Arsênio , Oryza , Radioisótopos , Oryza/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Melhoramento Vegetal , Proteínas de Membrana/metabolismo , Membrana Celular/metabolismo
2.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429984

RESUMO

Aquaporins are channel proteins that facilitate the transmembrane transport of water and other small neutral molecules, thereby playing vital roles in maintaining water and nutrition homeostasis in the life activities of all organisms. Canavalia rosea, a seashore and mangrove-accompanied halophyte with strong adaptability to adversity in tropical and subtropical regions, is a good model for studying the molecular mechanisms underlying extreme saline-alkaline and drought stress tolerance in leguminous plants. In this study, a PIP2 gene (CrPIP2;3) was cloned from C. rosea, and its expression patterns and physiological roles in yeast and Arabidopsis thaliana heterologous expression systems under high salt-alkali and high osmotic stress conditions were examined. The expression of CrPIP2;3 at the transcriptional level in C. rosea was affected by high salinity and alkali, high osmotic stress, and abscisic acid treatment. In yeast, the expression of CrPIP2;3 enhanced salt/osmotic and oxidative sensitivity under high salt/osmotic and H2O2 stress. The overexpression of CrPIP2;3 in A. thaliana could enhance the survival and recovery of transgenic plants under drought stress, and the seed germination and seedling growth of the CrPIP2;3 OX (over-expression) lines showed slightly stronger tolerance to high salt/alkali than the wild-type. The transgenic plants also showed a higher response level to high-salinity and dehydration than the wild-type, mostly based on the up-regulated expression of salt/dehydration marker genes in A. thaliana plants. The reactive oxygen species (ROS) staining results indicated that the transgenic lines did not possess stronger ROS scavenging ability and stress tolerance than the wild-type under multiple stresses. The results confirmed that CrPIP2;3 is involved in the response of C. rosea to salt and drought, and primarily acts by mediating water homeostasis rather than by acting as an ROS transporter, thereby influencing physiological processes under various abiotic stresses in plants.


Assuntos
Arabidopsis/genética , Canavalia/genética , Plantas Tolerantes a Sal/genética , Estresse Fisiológico/genética , Álcalis/toxicidade , Arabidopsis/crescimento & desenvolvimento , Canavalia/crescimento & desenvolvimento , Secas , Regulação da Expressão Gênica de Plantas , Germinação/efeitos dos fármacos , Peróxido de Hidrogênio/química , Pressão Osmótica/efeitos dos fármacos , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Salinidade , Tolerância ao Sal/genética , Plântula/efeitos dos fármacos , Cloreto de Sódio/toxicidade
3.
Int J Mol Sci ; 21(19)2020 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992595

RESUMO

Some plasma membrane intrinsic protein (PIP) aquaporins can facilitate ion transport. Here we report that one of the 12 barley PIPs (PIP1 and PIP2) tested, HvPIP2;8, facilitated cation transport when expressed in Xenopus laevis oocytes. HvPIP2;8-associated ion currents were detected with Na+ and K+, but not Cs+, Rb+, or Li+, and was inhibited by Ba2+, Ca2+, and Cd2+ and to a lesser extent Mg2+, which also interacted with Ca2+. Currents were reduced in the presence of K+, Cs+, Rb+, or Li+ relative to Na+ alone. Five HvPIP1 isoforms co-expressed with HvPIP2;8 inhibited the ion conductance relative to HvPIP2;8 alone but HvPIP1;3 and HvPIP1;4 with HvPIP2;8 maintained the ion conductance at a lower level. HvPIP2;8 water permeability was similar to that of a C-terminal phosphorylation mimic mutant HvPIP2;8 S285D, but HvPIP2;8 S285D showed a negative linear correlation between water permeability and ion conductance that was modified by a kinase inhibitor treatment. HvPIP2;8 transcript abundance increased in barley shoot tissues following salt treatments in a salt-tolerant cultivar Haruna-Nijo, but not in salt-sensitive I743. There is potential for HvPIP2;8 to be involved in barley salt-stress responses, and HvPIP2;8 could facilitate both water and Na+/K+ transport activity, depending on the phosphorylation status.


Assuntos
Aquaporinas/metabolismo , Cálcio/metabolismo , Hordeum/metabolismo , Transporte de Íons , Oócitos/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Animais , Aquaporinas/genética , Cátions/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Feminino , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Técnicas de Patch-Clamp , Fosforilação , Proteínas de Plantas/genética , Brotos de Planta/genética , RNA Complementar/administração & dosagem , Água/metabolismo , Xenopus laevis
4.
Funct Integr Genomics ; 19(4): 587-596, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30759293

RESUMO

Aquaporins are versatile proteins involved in several biological as well as molecular functions, and they have been extensively studied in various plant systems. Increasing evidences indicate their role in biotic and abiotic stresses, and therefore, studying these proteins in a naturally stress-tolerant crop would provide further insights into the roles of this important protein family. Given this, the present study was performed in foxtail millet (Setaria italica), a model plant for studying biofuel, stress tolerance, and C4 photosynthetic traits. The study identified 12 plasma membrane intrinsic proteins (PIPs), 11 tonoplast intrinsic proteins (TIPs), 13 NOD26-like intrinsic proteins (NIPs), and 3 small basic intrinsic proteins (SIPs) in foxtail millet. The identified proteins and their corresponding genes were characterized using in silico approaches such as chromosomal localization, analysis of gene and protein properties, phylogenetic analysis, promoter analysis, and RNA-seq-derived expression profiling. The candidate genes identified through these analyses were studied for their expression in response to abiotic stresses (dehydration, salinity, and heat) as well as hormone treatments (abscisic acid, methyl jasmonate, and salicylic acid) in two contrasting cultivars of foxtail millet. The study showed that SiPIP3;1 and SiSIP1;1 were differentially expressed in both the cultivars in response to stress and hormone treatments. Overexpression of these genes in a heterologous yeast system also demonstrated that the transgenic cells were able to tolerate dehydration as well as salt stress which suggests the involvement of these proteins in the tolerance mechanism. Overall, the present study provides insights into structure and organization of the aquaporin gene family in foxtail millet and highlights the potential candidate genes for further functional characterizations.


Assuntos
Aquaporinas/genética , Pressão Osmótica , Proteínas de Plantas/genética , Tolerância ao Sal , Setaria (Planta)/genética , Aquaporinas/metabolismo , Proteínas de Plantas/metabolismo , Setaria (Planta)/metabolismo
5.
Plant J ; 91(2): 325-339, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28390076

RESUMO

Sugars affect central aspects of plant physiology, including photosynthesis, stomatal behavior and the loss of water through the stomata. Yet, the potential effects of sugars on plant aquaporins (AQPs) and water conductance have not been examined. We used database and transcriptional analyses, as well as cellular and whole-plant functional techniques to examine the link between sugar-related genes and AQPs. Database analyses revealed a high level of correlation between the expression of AQPs and that of sugar-related genes, including the Arabidopsis hexokinases 1 (AtHXK1). Increased expression of AtHXK1, as well as the addition of its primary substrate, glucose (Glc), repressed the expression of 10 AQPs from the plasma membrane-intrinsic proteins (PIP) subfamily (PIP-AQPs) and induced the expression of two stress-related PIP-AQPs. The osmotic water permeability of mesophyll protoplasts of AtHXK1-expressing plants and the leaf hydraulic conductance of those plants were significantly reduced, in line with the decreased expression of PIP-AQPs. Conversely, hxk1 mutants demonstrated a higher level of hydraulic conductance, with increased water potential in their leaves. In addition, the presence of Glc reduced leaf water potential, as compared with an osmotic control, indicating that Glc reduces the movement of water from the xylem into the mesophyll. The production of sugars entails a significant loss of water and these results suggest that sugars and AtHXK1 affect the expression of AQP genes and reduce leaf water conductance, to coordinate sugar levels with the loss of water through transpiration.


Assuntos
Aquaporinas/genética , Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Hexoquinase/genética , Folhas de Planta/fisiologia , Açúcares/metabolismo , Aquaporinas/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Glucose/farmacologia , Hexoquinase/metabolismo , Células do Mesofilo/metabolismo , Transpiração Vegetal , Plantas Geneticamente Modificadas
6.
Plant Cell Environ ; 39(2): 347-65, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26226878

RESUMO

Aquaporin activity and root anatomy may affect root hydraulic properties under drought stress. To better understand the function of aquaporins in rice root water fluxes under drought, we studied the root hydraulic conductivity (Lpr) and root sap exudation rate (Sr) in the presence or absence of an aquaporin inhibitor (azide) under well-watered conditions and following drought stress in six diverse rice varieties. Varieties varied in Lpr and Sr under both conditions. The contribution of aquaporins to Lpr was generally high (up to 79% under well-watered conditions and 85% under drought stress) and differentially regulated under drought. Aquaporin contribution to Sr increased in most varieties after drought, suggesting a crucial role for aquaporins in osmotic water fluxes during drought and recovery. Furthermore, root plasma membrane aquaporin (PIP) expression and root anatomical properties were correlated with hydraulic traits. Three chromosome regions highly correlated with hydraulic traits of the OryzaSNP panel were identified, but did not co-locate with known aquaporins. These results therefore highlight the importance of aquaporins in the rice root radial water pathway, but emphasize the complex range of additional mechanisms related to root water fluxes and drought response.


Assuntos
Aquaporinas/metabolismo , Secas , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Estresse Fisiológico , Água/metabolismo , Aquaporinas/genética , Azidas/toxicidade , Cromossomos de Plantas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/anatomia & histologia , Oryza/efeitos dos fármacos , Oryza/genética , Exsudatos de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Transpiração Vegetal/efeitos dos fármacos , Característica Quantitativa Herdável , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
7.
Mycorrhiza ; 26(5): 441-51, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26861480

RESUMO

Ectomycorrhizal fungi have been reported to increase root hydraulic conductivity (L pr) by altering apoplastic and plasma membrane intrinsic protein (PIP)-mediated cell-to-cell water transport pathways in associated roots, or to have little effect on root water transport, depending on the interacting species and imposed stresses. In this study, we investigated the water transport properties and PIP transcription in roots of aspen (Populus tremuloides) seedlings colonized by the wild-type strain of Laccaria bicolor and by strains overexpressing a major fungal water-transporting aquaporin JQ585595. Inoculation of aspen seedlings with L. bicolor resulted in about 30 % colonization rate of root tips, which developed dense mantle and the Hartig net that was restricted in the modified root epidermis. Transcript abundance of the aspen aquaporins PIP1;2, PIP2;1, and PIP2;2 decreased in colonized root tips. Root colonization by JQ585595-overexpressing strains had no significant impact on seedling shoot water potentials, gas exchange, or dry mass; however, it led to further decrease in transcript abundance of PIP1;2 and PIP2;3 and the significantly lower L pr than in non-inoculated roots. These results, taken together with our previous study that showed enhanced root water hydraulics of L. bicolor-colonized white spruce (Picea glauca), suggest that the impact of L. bicolor on root hydraulics varies by the ectomycorrhiza-associated tree species.


Assuntos
Aquaporinas/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Laccaria/fisiologia , Raízes de Plantas/microbiologia , Populus/fisiologia , Plântula/microbiologia , Aquaporinas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/fisiologia , Populus/microbiologia , Plântula/fisiologia , Transcrição Gênica/fisiologia , Água/metabolismo
8.
New Phytol ; 203(2): 388-400, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24702644

RESUMO

Conifer needles have been reported to absorb water under certain conditions. Radial water movement across needle tissues is likely influenced by aquaporin (AQP) water channels. Foliar water uptake and AQP localization in Picea glauca needles were studied using physiological and microscopic methods. AQP expression was measured using quantitative real-time PCR. Members of the AQP gene family in spruce were identified using homology search tools. Needles of drought-stressed plants absorbed water when exposed to high relative humidity (RH). AQPs were present in the endodermis-like bundle sheath, in phloem cells and in the transfusion parenchyma of needles. Up-regulation of AQPs in high RH coincided with embolism repair in stem xylem. The present study also provides the most comprehensive functional and phylogenetic analysis of spruce AQPs to date. Thirty putative complete AQP sequences were found. Our findings are consistent with the hypothesis that AQPs facilitate radial water movement from the needle epidermis towards the vascular tissue. Foliar water uptake may occur in late winter when needles are covered by melting snow and may provide a water source for embolism repair before the beginning of the growing season.


Assuntos
Aquaporinas/genética , Aquaporinas/metabolismo , Picea/metabolismo , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Xilema/fisiologia , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Picea/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Estômatos de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
9.
Plant Physiol Biochem ; 174: 73-86, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35151109

RESUMO

Progressing climate change necessitates the search for solutions of plant protection against the effects of water deficit. One of these solutions could be silicon supplementation. The aim of the study was to verify the hypothesis that silicon changes aquaporin expression and antioxidant system activity in a direction which may alleviate the effects of drought stress in oilseed rape. The accumulation of BnPIP1, BnPIP2-1-7 and BnTIP1;1 aquaporins and the expression of their genes, the level of catalase, superoxide dismutase activities and hydrogen peroxide content as well as total non-enzymatic antioxidant activity were analyzed in leaf tissue from control and silicon-treated oilseed rape plants growing under well-watered and drought conditions. Silicon was applied in two forms - pure silicon and a silicon complex. It was shown that under drought conditions, both pure silicon and the silicon complex (with Fe) significantly increased the accumulation of aquaporins and improved the activity of enzymatic and non-enzymatic components of the antioxidant system, while under well-watered conditions, these effects were observed only in the case of the silicon complex. The presented study proves that silicon supplementation in oilseed rape improves the regulation of water management and contributes to the protection against oxidative stress caused by drought.


Assuntos
Aquaporinas , Secas , Antioxidantes/metabolismo , Aquaporinas/metabolismo , Silício/metabolismo , Silício/farmacologia , Estresse Fisiológico , Água/metabolismo
10.
Front Plant Sci ; 11: 1310, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983200

RESUMO

Although mulberry cultivars Wubu, Yu711, and 7307 display distinct anatomical, morphological, and agronomic characteristics under natural conditions, it remains unclear if they differ in drought tolerance. To address this question and elucidate the underlying regulatory mechanisms at the whole-plant level, 2-month old saplings of the three mulberry cultivars were exposed to progressive soil water deficit for 5 days. The physiological responses and transcriptional changes of PIPs in different plant tissues were analyzed. Drought stress led to reduced leaf relative water content (RWC) and tissue water contents, differentially expressed PIPs, decreased chlorophyll and starch, increased soluble sugars and free proline, and enhanced activities of antioxidant enzymes in all plant parts of the three cultivars. Concentrations of hydrogen peroxide (H2O2), superoxide anion (O2 •-), and malonaldehyde (MDA) were significantly declined in roots, stimulated in leaves but unaltered in wood and bark. In contrast, except the roots of 7307, soluble proteins were repressed in roots and leaves but induced in wood and bark of the three cultivars in response to progressive water deficit. These results revealed tissue-specific drought stress responses in mulberry. Comparing to cultivar Yu711 and 7307, Wubu showed generally slighter changes in leaf RWC and tissue water contents at day 2, corresponding well to the steady PIP transcript levels, foliar concentrations of chlorophyll, O2 •-, MDA, and free proline. At day 5, Wubu sustained higher tissue water contents in green tissues, displayed stronger responsiveness of PIP transcription, lower concentrations of soluble sugars and starch, lower foliar MDA, higher proline and soluble proteins, higher ROS accumulation and enhanced activities of several antioxidant enzymes. Our results indicate that whole-plant level responses of PIP transcription, osmoregulation through proline and soluble proteins and antioxidative protection are important mechanisms for mulberry to cope with drought stress. These traits play significant roles in conferring the relatively higher drought tolerance of cultivar Wubu and could be potentially useful for future mulberry improvement programmes.

11.
Protoplasma ; 253(6): 1593-1597, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26631017

RESUMO

Climate change drastically affects the cultivation of rice, and its production is affected significantly by water stress. Adaptation of a plant to water deficit conditions is orchestrated by efficient water uptake and a stringently regulated water loss. Transpiration remains the major means of water loss from plants and is mediated by microscopic pores called stomata. Stomatal aperture gating is facilitated by ion channels and aquaporins (AQPs) which regulate the turgidity of the guard cells. In a similar manner, efficient water uptake by the roots is regulated by the presence of AQPs in the plasma membrane of root cells. In this study, we compare the efficiency of transmembrane water permeability in guard cells and root protoplasts from drought-tolerant and sensitive varieties of Oryza sativa L. In this report, we studied the transmembrane osmotic water permeability (Pos) of guard cell and root protoplasts of drought-sensitive and tolerant cultivars. The guard cells isolated from the drought-sensitive lowland rice variety ADT-39 show significant low osmotic permeability than the drought-tolerant rice varieties of Anna (lowland) and Dodda Byra Nellu (DBN) (upland local land rice). There is no significant difference in relative gene expression patterns of PIPs (Plasma membrane Intrinsic Proteins "PIP1" and "PIP2" subfamilies) in guard cells isolated from ADT-39 and Anna. While the expression levels of AQP genes remain the same between ADT-39 and Anna, there is a drastic difference in their osmotic permeability in the guard cells in spite of a higher number of stomata in Anna and DBN, hinting at a more efficient gating mechanism of AQP in the stomata of the drought-tolerant varieties studied.


Assuntos
Adaptação Fisiológica , Aquaporinas/metabolismo , Secas , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Adaptação Fisiológica/genética , Aquaporinas/genética , Permeabilidade da Membrana Celular , Regulação da Expressão Gênica de Plantas , Genótipo , Oryza/genética , Osmose , Proteínas de Plantas/genética , Estômatos de Plantas/citologia , Protoplastos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Água/metabolismo
12.
Plant Signal Behav ; 10(5): e1017177, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26039476

RESUMO

The role of molecular mechanisms in the regulation of leaf hydraulics (K(leaf)) is still not well understood. We hypothesized that aquaporins (AQPs) in the bundle sheath may regulate K(leaf). To examine this hypothesis, AQP genes were constitutively silenced using artificial microRNAs and recovery was achieved by targeting the expression of the tobacco AQP (NtAQP1) to bundle-sheath cells in the silenced plants. Constitutively silenced PIP1 plants exhibited decreased PIP1 transcript levels and decreased K(leaf). However, once the plants were recovered with NtAQP1, their K(leaf) values were almost the same as those of WT plants. We also demonstrate the important role of ABA, acting via AQP, in that recovery and K(leaf) regulation. These results support our previously raised hypothesis concerning the role of bundle-sheath AQPs in the regulation of leaf hydraulics.


Assuntos
Aquaporinas/metabolismo , Arabidopsis/fisiologia , Folhas de Planta/fisiologia , Água/fisiologia , Ácido Abscísico/fisiologia
13.
Plant Physiol Biochem ; 73: 392-404, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24215931

RESUMO

Aquaporins belongs to the major intrinsic proteins involved in the transcellular membrane transport of water and other small solutes. A comprehensive genome-wide search for the homologues of Solanum tuberosum major intrinsic protein (MIP) revealed 41 full-length potato aquaporin genes. All potato aquaporins are grouped into five subfamilies; plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), NOD26-like intrinsic proteins (NIPs), small basic intrinsic proteins (SIPs) and x-intrinsic proteins (XIPs). Functional predictions based on the aromatic/arginine (ar/R) selectivity filters and Froger's positions showed a remarkable difference in substrate transport specificity among subfamilies. The expression pattern of potato aquaporins, examined by qPCR analysis, showed distinct expression profiles in various organs and tuber developmental stages. Furthermore, qPCR analysis of potato plantlets, subjected to various abiotic stresses revealed the marked effect of stresses on expression levels of aquaporins. Taken together, the expression profiles of aquaporins imply that aquaporins play important roles in plant growth and development, in addition to maintaining water homeostasis in response to environmental stresses.


Assuntos
Sequência de Aminoácidos , Aquaporinas/metabolismo , Genes de Plantas , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Estruturas Vegetais/metabolismo , Solanum tuberosum/metabolismo , Estresse Fisiológico , Aquaporinas/química , Aquaporinas/genética , Perfilação da Expressão Gênica , Genoma de Planta , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Tubérculos , Solanum tuberosum/química , Solanum tuberosum/genética , Solanum tuberosum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa