Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Exp Dermatol ; 33(9): e15170, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39207113

RESUMO

Prurigo nodularis (PN) is a chronic and debilitating skin disease with severe itching that negatively impacts patients' quality of life and mental state. However, the treatment options for PN remain limited. Global metabolomics analysis can offer effective information on energy metabolism, pathogenesis and potential diagnostic biomarkers. No study on metabolomic analysis of PN has been reported. To further understand the mechanisms of PN and analyse the plasma metabolite profiles in patients with PN. Targeted-metabolome analysis of 306 metabolites in plasma from 18 patients with PN and 19 healthy controls was performed using Liquid Chromatography-tandem Mass Spectrometer analysis. We identified 31 differential metabolites. Most acylcarnitines, long-chain fatty acids, alpha-aminobutyric acid, hydroxybutyric acid and lactic acid among these metabolites were up-regulated in patients with PN; in contrast, glucaric acid, suberic acid, bile acid derivatives and most amino acids were down-regulated. Positive correlations exist between glucaric acid and itching severity and acylcarnitines and insomnia. Suberic acid and the Investigator's Global Assessment (IGA) scores correlate negatively. Metabolite variation reflects the dysregulation of energy metabolism and chronic systematic inflammation in PN. Several metabolites, such as glucaric acid, suberic acid and acylcarnitines, merit further study as potential biomarkers of disease severity in PN.


Assuntos
Biomarcadores , Metaboloma , Prurigo , Humanos , Biomarcadores/sangue , Prurigo/sangue , Prurigo/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Metabolômica/métodos , Estudos de Casos e Controles , Carnitina/análogos & derivados , Carnitina/sangue , Espectrometria de Massas em Tandem , Idoso , Cromatografia Líquida , Metabolismo Energético
2.
J Appl Toxicol ; 44(2): 201-215, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37697829

RESUMO

Huobahua, namely, Tripterygium hypoglaucum (Levl.) Hutch, known as a traditional Chinese herbal medicine, especially its underground parts, has been widely developed into several Tripterygium agents for the treatment of rheumatoid arthritis and other autoimmune diseases. It has sparked wide public concern about its safety, such as multi-organ toxicity. However, the toxic characteristics and damage mechanism of Huobahuagen extract (HBHGE) remain unclear. In the present study, subchronic oral toxicity study of HBHGE (10.0 g crude drug/kg/day for 12 weeks) was performed in male rats. Hematological, serum biochemical, and histopathological parameters, urinalysis, and plasma metabolic profiling were assessed. The single-dose subchronic toxicity results related to HBHGE exhibited obvious toxicity to the testis and epididymis of male rats. Furthermore, plasma metabolomics analysis suggested that a series of metabolic disorders were induced by oral administration of HBHGE, mainly focusing on amino acid (glutamate, phenylalanine, and tryptophan) metabolisms, pyrimidine metabolism, glutathione metabolism, and steroid hormone biosynthesis. Moreover, it appeared that serum testosterone in male rats treated with HBHGE for 12 weeks, decreased significantly, and was susceptible to the toxic effects of HBHGE. Taken together, conventional pathology and plasma metabolomics for preliminarily exploring subchronic toxicity and underlying mechanism can provide useful information about the reduction of toxic risks from HBHGE and new insights into the development of detoxification preparations.


Assuntos
Medicina Tradicional Chinesa , Testículo , Ratos , Masculino , Animais , Metabolômica/métodos , Plasma , Tripterygium/química , Extratos Vegetais/toxicidade , Testes de Toxicidade Subcrônica
3.
Biomed Chromatogr ; 38(9): e5952, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38966927

RESUMO

Methylglyoxal (MG) is responsible for advanced glycation end-product formation, the mechanisms leading to diabetes pathogenesis and complications like acute coronary syndrome (ACS). Sugar metabolites, amino acids and fatty acids are possible substrates for MG. The study aimed to measure plasma MG substrate levels using a validated gas chromatography-mass spectrometry (GC-MS) method and explore their association with ACS risk in type 2 diabetes mellitus (T2DM). The study included 150 T2DM patients with ACS as cases and 150 T2DM without ACS as controls for the analysis of glucose, fructose, ribulose, sorbitol, glycerol, pyruvate, lactate, glycine, serine, threonine, C16:0, C16:1, C18:0, C18:1, C18:2, C18:3, C20:0 and C22:6 by GC-MS. Validated GC-MS methods were accurate, precise and sensitive. Cases significantly differed in plasma MG and metabolite levels except for lactate, C16:0, C18:0, C18:2, and C18:3 levels compared with controls. On multivariable logistic regression, plasma C20:0, C18:1, glycine and glycerol levels had increased odds of ACS risk. On multivariate receiver operating characteristic analysis, a model containing plasma C20:0, C16:1, C18:1, C18:2, serine, glycerol, lactate and threonine levels had the highest area under the curve value (0.932) for ACS diagnosis. In conclusion, plasma C20:0, C16:1, C18:1, glycine, glycerol and sorbitol levels were associated with ACS risk in T2DM.


Assuntos
Síndrome Coronariana Aguda , Diabetes Mellitus Tipo 2 , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Diabetes Mellitus Tipo 2/sangue , Cromatografia Gasosa-Espectrometria de Massas/métodos , Síndrome Coronariana Aguda/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Idoso , Aldeído Pirúvico/sangue , Estudos de Casos e Controles , Modelos Lineares
4.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3493-3504, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39041121

RESUMO

Based on the processing and compatibility, this study explored the effects of components in Corni Fructus(CF) and Astragali Radix(AR) on plasma metabolomics in diabetic nephropathy rats. SD rats were randomly divided into four groups and diabetic nephropathy rat model was induced by high-fat diet combined with 30 mg·kg~(-1) streptozotocin(STZ). Histopathological observations of kidney tissue sections of rats in each group were conducted using HE, PAS, and Masson staining. Ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) metabolomics method was employed to investigate the effects of CF before and after wine-processing combined with AR-related components on plasma metabolites in diabetic nephropathy rats. After drug treatment, kidney tissue damage and interstitial collagen fiber deposition area in diabetic nephropathy rats were improved to varying degrees(P<0.001). The detection results of plasma metabolomics showed that 71 biomarkers related to the pathogenesis of diabetic nephropathy were identified in diseased rats, mainly involving linoleic acid metabolism, caffeine metabolism, glycerophospholipid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, arachidonic acid metabolism, phenylalanine metabolism, retinol metabolism, and ether lipid metabolism. After drug intervention, 26 of them were significantly downregulated, with better efficacy observed in precision processed herb-pair group(P-CG_5). This study elucidated from the perspective of plasma metabolomics that P-CG_5 could improve metabolic disorders in diabetic nephropathy through pathways such as phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and caffeine metabolism, providing theoretical support and experimental basis for the clinical application of CF and AR compatibility in traditional Chinese medicine.


Assuntos
Cornus , Nefropatias Diabéticas , Medicamentos de Ervas Chinesas , Metabolômica , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Ratos , Masculino , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Cornus/química , Astragalus propinquus/química , Vinho/análise , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo
5.
Pediatr Nephrol ; 38(1): 193-202, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35507146

RESUMO

BACKGROUND: We compared plasma metabolites of amino acid oxidation and the tricarboxylic acid (TCA) cycle in youth with and without type 1 diabetes mellitus (T1DM) and related the metabolites to glomerular filtration rate (GFR), renal plasma flow (RPF), and albuminuria. Metabolites associated with impaired kidney function may warrant future study as potential biomarkers or even future interventions to improve kidney bioenergetics. METHODS: Metabolomic profiling of fasting plasma samples using a targeted panel of 644 metabolites and an untargeted panel of 19,777 metabolites was performed in 50 youth with T1DM ≤ 10 years and 20 controls. GFR and RPF were ascertained by iohexol and p-aminohippurate clearance, and albuminuria calculated as urine albumin to creatinine ratio. Sparse partial least squares discriminant analysis and moderated t tests were used to identify metabolites associated with GFR and RPF. RESULTS: Adolescents with and without T1DM were similar in age (16.1 ± 3.0 vs. 16.1 ± 2.9 years) and BMI (23.4 ± 5.1 vs. 22.7 ± 3.7 kg/m2), but those with T1DM had higher GFR (189 ± 40 vs. 136 ± 22 ml/min) and RPF (820 ± 125 vs. 615 ± 65 ml/min). Metabolites of amino acid oxidation and the TCA cycle were significantly lower in adolescents with T1DM vs. controls, and the measured metabolites were able to discriminate diabetes status with an AUC of 0.82 (95% CI: 0.71, 0.93) and error rate of 0.21. Lower glycine (r:-0.33, q = 0.01), histidine (r:-0.45, q < 0.001), methionine (r: -0.29, q = 0.02), phenylalanine (r: -0.29, q = 0.01), serine (r: -0.42, q < 0.001), threonine (r: -0.28, q = 0.02), citrate (r: -0.35, q = 0.003), fumarate (r: -0.24, q = 0.04), and malate (r: -0.29, q = 0.02) correlated with higher GFR. Lower glycine (r: -0.28, q = 0.04), phenylalanine (r:-0.3, q = 0.03), fumarate (r: -0.29, q = 0.04), and malate (r: -0.5, q < 0.001) correlated with higher RPF. Lower histidine (r: -0.28, q = 0.02) was correlated with higher mean ACR. CONCLUSIONS: In conclusion, adolescents with relatively short T1DM duration exhibited lower plasma levels of carboxylic acids that associated with hyperfiltration and hyperperfusion. TRIAL REGISTRATION: ClinicalTrials.gov NCT03618420 and NCT03584217 A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Diabetes Mellitus Tipo 1 , Insuficiência Renal , Adolescente , Humanos , Albuminúria , Ácidos Carboxílicos , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/diagnóstico , Fumaratos , Taxa de Filtração Glomerular , Glicina , Histidina , Rim , Malatos , Fenilalanina , Insuficiência Renal/complicações
6.
J Sep Sci ; 46(20): e2300175, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37568244

RESUMO

Previous clinical studies have found that the efficacy of processed Qixue Shuangbu Prescription has been significantly improved in the treatment of chronic heart failure. However, the absorbed constituents and synergistic mechanisms of processed Qixue Shuangbu Prescription to enhance the therapeutic effect of chronic heart failure remain unclear. In this study, we propose an integrated strategy combining plasma metabolomics, network pharmacology, and molecular docking to study the absorbed constituents and synergistic mechanisms of processed Qixue Shuangbu Prescription. A total of 34 prototype constituents and 24 metabolites were identified in rat plasma after administration of crude and processed Qixue Shuangbu Prescription. As a result, six potential absorbed constituents and six potential targets for the treatment of chronic heart failure were identified. In addition, the result of molecular docking indicated that the key constituents exhibited good affinity to hub targets. This study showed that the multiomics approach could effectively clarify absorbed constituents and synergistic mechanisms of traditional Chinese medicine processing from a new perspective.


Assuntos
Medicamentos de Ervas Chinesas , Insuficiência Cardíaca , Ratos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Simulação de Acoplamento Molecular , Medicina Tradicional Chinesa/métodos , Metabolômica/métodos , Biologia Computacional , Insuficiência Cardíaca/tratamento farmacológico
7.
Psychogeriatrics ; 23(2): 319-336, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683263

RESUMO

BACKGROUND: Depressed patients are often accompanied with constipation symptoms, and vice versa. However, the underlying mechanisms of such a bidirectional correlation have remained elusive. We aim to reveal the possible correlations between depression and constipation from the perspectives of gut microbiome and plasma metabolome. METHODS: We constructed the depressed model and the constipated model of rats, respectively. First, we measured the locomotor activity status and the gastrointestinal functions of rats. And then, nuclear magnetic resonance plasma metabolomics was applied to reveal the shared and the unique metabolites of depression and constipation. In addition, 16 S ribosomal RNA gene sequencing was used to detect the impacts of constipation and depression on gut microbiota of rats. Finally, a multiscale and multifactorial network, that is, the 'phenotypes - differential metabolites - microbial biomarkers' integrated network, was constructed to visualise the mechanisms of connections between depression and constipation. RESULTS: We found that spontaneous locomotor activity and gastrointestinal functions of both depressed rats and constipated rats significantly decreased. Further, eight metabolites and 14 metabolites were associated depression and constipation, respectively. Among them, seven metabolites and four metabolic pathways were shared by constipation and depression, mainly perturbing energy metabolism and amino acid metabolism. Additionally, depression and constipation significantly disordered the functions and the compositions of gut microbiota of rats, and decreased the ratio of Firmicutes to Bacteroidetes. CONCLUSION: The current findings provide multiscale and multifactorial perspectives for understanding the correlations between depression and constipation, and demonstrate new mechanisms of comorbidity of depression and constipation.


Assuntos
Depressão , Microbiota , Ratos , Humanos , Animais , Metaboloma , Metabolômica , Constipação Intestinal
8.
J Proteome Res ; 21(3): 671-682, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35018779

RESUMO

The long-term effect of botulinum neurotoxin A (BoNT-A) on children with cerebral palsy (CP) is unclear, and how the dynamic changes of metabolites impact the duration of effect remains unknown. To tackle this, we collected 120 plasma samples from 91 children with spastic CP for analysis, with 30 samples in each time point: prior to injection and 1, 3, and 6 months after injection. A total of 354 metabolites were identified across all the time points, 39 of which exhibited significant changes (with tentative IDs) (p values <0.05, VIP > 1). Principal component analysis and partial least-squares discriminant analysis disclosed a clear separation between different groups (p values <0.05). Network analysis revealed the coordinated changes of functional metabolites. Pathway analysis highlighted the metabolic pathways associated with energy consumption and glycine, serine, and threonine metabolism and cysteine and methionine metabolism. Collectively, our results identified the significant dynamic changes of plasma metabolite after BoNT-A injections on children with CP. Metabolic pathways associated with energy expenditure might provide a new perspective for the effect of BoNT-A in children with CP. Glycine, serine, and threonine metabolism and cysteine and methionine metabolism might be related to the duration of effect of BoNT-A.


Assuntos
Toxinas Botulínicas Tipo A , Paralisia Cerebral , Fármacos Neuromusculares , Toxinas Botulínicas Tipo A/uso terapêutico , Paralisia Cerebral/complicações , Paralisia Cerebral/tratamento farmacológico , Criança , Cisteína , Glicina , Humanos , Injeções Intramusculares , Metionina , Espasticidade Muscular/complicações , Espasticidade Muscular/tratamento farmacológico , Fármacos Neuromusculares/uso terapêutico , Serina , Treonina , Resultado do Tratamento
9.
Clin Proteomics ; 19(1): 51, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36572849

RESUMO

BACKGROUND: Immunoglobulin A nephropathy (IgAN), a globally common primary chronic glomerulopathy, is one of the leading causes of end-stage renal disease. However, the underlying mechanisms of IgAN have yet to be demonstrated. There were no adequate and reliable plasma biomarkers for clinical diagnosis, especially at the early stage. In the present study, integrative proteomics and metabolomics were aimed at exploring the mechanism of IgAN and identifying potential biomarkers. METHODS: Plasma from IgAN and healthy individuals were collected and analyzed in a randomized controlled manner. Data-independent acquisition quantification proteomics and mass spectrometry based untargeted metabolomics techniques were used to profile the differentially expressed proteins (DEPs) and differentially abundant metabolites (DAMs) between two groups and identify potential biomarkers for IgAN from health at the early stage. Disease-related pathways were screened out by clustering and function enrichment analyses of DEPs and DAMs. And the potential biomarkers for IgAN were identified through the machine learning approach. Additionally, an independent cohort was used to validate the priority candidates by enzyme-linked immunosorbent assay (ELISA). RESULTS: Proteomic and metabolomic analyses of IgAN plasma showed that the complement and the immune system were activated, while the energy and amino acid metabolism were disordered in the IgAN patients. PRKAR2A, IL6ST, SOS1, and palmitoleic acid have been identified as potential biomarkers. Based on the AUC value for the training and test sets, the classification performance was 0.994 and 0.977, respectively. The AUC of the external validation of the four biomarkers was 0.91. CONCLUSION: In this study, we combined proteomics and metabolomics techniques to analyze the plasma of IgAN patients and healthy individuals, constructing a biomarker panel, which could provide new insights and provide potential novel molecular diagnoses for IgAN.

10.
Biomed Chromatogr ; 36(10): e5441, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35789496

RESUMO

Terrestrosin D (TED) is the active ingredient of Tribulus terrestris L., which is used in traditional Chinese medicine (TCM) formulations and has a wide range of pharmacological activities. A previous study showed that TED alleviated bleomycin (BLM)-induced pulmonary fibrosis (PF) in mice. However, the mechanisms underlying the therapeutic effect of TED are still unclear and need further investigation. In this study, we evaluated the effect of TED in a mice of BLM-induced PF in terms of histopathological and biochemical indices. UHPLC-MS-based plasma metabolomics combined with network pharmacology was used to explore the pathological basis of PF and the mechanism of action of TED. Histological and biochemical analyses showed that TED mitigated inflammatory injury in the lungs, especially at the dosage of 20 mg/kg. Furthermore, BLM changed the plasma metabolite profile in the mice, which was reversed by TED via regulation of amino acid and lipid metabolism. Subsequently, a biomarkers-targets-disease network was constructed, and tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-ß1 were identified as the putative therapeutic targets of TED. Both factors were quantitatively analyzed using enzyme-linked immunosorbent assay (ELISA). Taken together, the combination of UHPLC-MS-based metabolomics and network pharmacology can unveil the mechanisms of diseases and drug action.


Assuntos
Fibrose Pulmonar , Saponinas , Animais , Bleomicina , Metabolômica , Camundongos , Farmacologia em Rede , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Saponinas/farmacologia , Fator de Necrose Tumoral alfa
11.
J Proteome Res ; 20(1): 463-473, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33054244

RESUMO

Metabolomics-the endpoint of the omics cascade-is increasingly recognized as a preferred method for understanding the ultimate responses of biological systems to stress. Flow injection electrospray (FIE) mass spectrometry (MS) has advantages for untargeted metabolic fingerprinting due to its simplicity and capability for high-throughput screening but requires a high-resolution mass spectrometer to resolve metabolite features. In this study, we developed and validated a high-throughput and highly reproducible metabolomics platform integrating FIE with ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR) MS for analysis of both polar and nonpolar metabolite features from plasma samples. FIE-FTICR MS enables high-throughput detection of hundreds of metabolite features in a single mass spectrum without a front-end separation step. Using plasma samples from genetically identical obese mice with or without type 2 diabetes (T2D), we validated the intra and intersample reproducibility of our method and its robustness for simultaneously detecting alterations in both polar and nonpolar metabolite features. Only 5 min is needed to acquire an ultra-high resolution mass spectrum in either a positive or negative ionization mode. Approximately 1000 metabolic features were reproducibly detected and annotated in each mouse plasma group. For significantly altered and highly abundant metabolite features, targeted tandem MS (MS/MS) analyses can be applied to confirm their identity. With this integrated platform, we successfully detected over 300 statistically significant metabolic features in T2D mouse plasma as compared to controls and identified new T2D biomarker candidates. This FIE-FTICR MS-based method is of high throughput and highly reproducible with great promise for metabolomics studies toward a better understanding and diagnosis of human diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Espectrometria de Massas em Tandem , Animais , Metabolômica , Camundongos , Plasma , Reprodutibilidade dos Testes
12.
Biomed Chromatogr ; 35(9): e5129, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33780017

RESUMO

Shidan granule (SDG), a traditional Chinese medicine in-hospital preparation, has been demonstrated to exert good effects on chronic atrophic gastritis (CAG) in clinics. However, the underlying mechanism of SDG against CAG is still unclear. This study utilized an untargeted plasma metabolomics approach to explore the potential mechanism of SDG in CAG rats using LC-MS and pattern recognition analysis. The results indicated that SDG could effectively improve the biochemical indexes and pathology features of CAG rats. Nineteen potential biomarkers (variable importance in projection > 1 and P < 0.05) contributing to CAG progress were identified. After SDG intervention, 17 biomarkers were obviously restored to normal levels. Further metabolic pathway analysis showed that aspartate and glutamate metabolism, arachidonic acid metabolism, arginine and proline metabolism, and TCA cycle were the most related pathways for SDG treatment. Based on these findings, the main mechanisms of SDG against CAG might be attributed to the regulatory effects of energy balance, inflammatory suppression, and improvement in disturbed amino acid and lipid metabolism. This study provided information for the mechanism research of SDG against CAG and would promote its clinical application.


Assuntos
Medicamentos de Ervas Chinesas , Gastrite Atrófica , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Cromatografia Líquida/métodos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Gastrite Atrófica/sangue , Gastrite Atrófica/metabolismo , Masculino , Espectrometria de Massas/métodos , Ratos , Ratos Sprague-Dawley
13.
Biomed Chromatogr ; 35(8): e5118, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33749891

RESUMO

Hyperuricemia (HUM) is a major risk factor for the development of gout. The traditional Chinese medicine (TCM) complex prescription Tongfengxiaofang (TFXF) is composed of a variety of TCMs. To study the therapeutic effect of TFXF on HUM mice and the mechanisms by which it exerts a therapeutic effect, the biochemical indices were measured and qPCR technique was used. In addition, plasma metabolomics analysis was carried out based on UPLC-Q-TOF/MS to evaluate the characteristics of the metabolic spectrum changes. TFXF significantly downregulated the contents of uric acid, urea nitrogen and creatinine in serum and the concentration of xanthine oxidase in liver of HUM mice. In addition, TFXF significantly inhibited the overexpression of uric acid transporter 1 and glucose transporter 9 and upregulated the expression of organic anion transporter 1 in the kidney. A total of 152 metabolites were identified and 11 key biomarkers were further selected from these pathways to understand the mechanism of TFXF on the arginine biosynthesis, galactose metabolism, pyrimidine metabolism, glycerophospholipid metabolism, tryptophan metabolism and the citrate cycle (TCA cycle). The results of this confirmed the effect of TFXF on HUM and revealed the metabolic activity mechanism.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/farmacologia , Hiperuricemia/metabolismo , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Animais , Modelos Animais de Doenças , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Camundongos , Espectrometria de Massas por Ionização por Electrospray/métodos , Ácido Úrico/sangue , Ácido Úrico/metabolismo , Xantina Oxidase/análise , Xantina Oxidase/metabolismo
14.
Metabolomics ; 16(10): 103, 2020 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-32951074

RESUMO

INTRODUCTION: Urbanization is associated with major changes in environmental and lifestyle exposures that may influence metabolic signatures. OBJECTIVES: We investigated cross-sectional urban and rural differences in plasma metabolome analyzed by liquid chromatography/mass spectrometry platform in 500 Chinese adults aged 25-68 years from two neighboring southern Chinese provinces. METHODS: We first examined the overall metabolome differences by urban and rural residential location, using Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) and random forest classification. We then tested the association between urbanization status and individual metabolites using a linear regression adjusting for age, sex, and province and conducted pathway analysis (Fisher's exact test) to identify metabolic pathways differed by urbanization status. RESULTS: We observed distinct overall metabolome by urbanization status in OPLS-DA and random forest classification. Using linear regression, out of a total of 1108 unique metabolite features identified in this sample, we found that 266 metabolites were differed by urbanization status (positive false discovery rate-adjusted p-value, q-value < 0.05). For example, the following metabolites were positively associated with urbanization status: caffeine metabolites from xanthine metabolism, hazardous pollutants like 4-hydroxychlorothalonil and perfluorooctanesulfonate, and metabolites implicated in cardiometabolic diseases, such as branched-chain amino acids. In pathway analysis, we found that xanthine metabolism pathways differed by urbanization status (q-value = 1.64E-04). CONCLUSION: We detected profound differences in host metabolites by urbanization status. Urban residents were characterized by metabolites signaling caffeine metabolism and toxic pollutants and metabolites on known pathways to cardiometabolic disease risks, compared to their rural counterparts. Our findings highlight the importance of considering urbanization in metabolomics analysis.


Assuntos
Plasma/metabolismo , Urbanização/tendências , Adulto , Idoso , Biomarcadores/sangue , China , Cromatografia Líquida/métodos , Estudos Transversais , Análise Discriminante , Feminino , Humanos , Masculino , Espectrometria de Massas/métodos , Redes e Vias Metabólicas/fisiologia , Metaboloma/fisiologia , Metabolômica/métodos , Pessoa de Meia-Idade , Plasma/química , População Urbana
15.
Exp Eye Res ; 196: 108070, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32439397

RESUMO

Vogt-Koyanagi-Harada (VKH) disease is a common type of uveitis in China, but the diagnosis criteria of VKH disease is controversial. The aim of this study was to investigate potential diagnostic plasma biomarkers for VKH disease. A case-control study including 55 VKH patients (28 active patients and 27 inactive VKH patients) and 30 healthy controls in a tertiary referral center was performed. The metabolic phenotype of VKH patients showed a significant difference compared to healthy controls. Fifteen differentially expressed metabolites (DEMs) were identified between active VKH patients and healthy controls and nine DEMs were found between inactive VKH patients and healthy controls after controlling variable importance in the projection (VIP) value > 1 and false discovery rate (FDR) < 0.05. D-mannose, stearic acid and L-lysine were shown to be potential diagnostic biomarkers which can discriminate active VKH patients from healthy controls with a diagnostic performance with AUC = 0.965, 0.936 and 0.910 respectively in independent diagnosis and an AUC = 0.999 when combined. Sarcosine was recognized as an independent potential biomarker which could distinguish inactive VKH patients from healthy controls. This study reveals a significant difference of plasma metabolic phenotype and identifies diagnostic biomarkers for VKH disease. Changes in the metabolic profile may provide clues towards the pathophysiology of VKH disease.


Assuntos
Biomarcadores/sangue , Metabolômica , Síndrome Uveomeningoencefálica/diagnóstico , Adulto , Cromatografia Líquida , Feminino , Humanos , Masculino , Metaboloma/fisiologia , Pessoa de Meia-Idade , Plasma , Espectrometria de Massas em Tandem , Síndrome Uveomeningoencefálica/sangue
16.
Crit Care ; 24(1): 461, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32718333

RESUMO

INTRODUCTION: Pneumonia is the most common cause of mortality from infectious diseases, the second leading cause of nosocomial infection, and the leading cause of mortality among hospitalized adults. To improve clinical management, metabolomics has been increasingly applied to find specific metabolic biopatterns (profiling) for the diagnosis and prognosis of various infectious diseases, including pneumonia. METHODS: One hundred fifty bacterial community-acquired pneumonia (CAP) patients whose plasma samples were drawn within the first 24 h of hospital admission were enrolled in this study and separated into two age- and sex-matched cohorts: non-survivors (died ≤ 90 days) and survivors (survived > 90 days). Three analytical tools, 1H-NMR spectroscopy, GC-MS, and targeted DI-MS/MS, were used to prognosticate non-survivors from survivors by means of metabolic profiles. RESULTS: We show that quantitative lipid profiling using DI-MS/MS can predict the 90-day mortality and in-hospital mortality among patients with bacterial CAP compared to 1H-NMR- and GC-MS-based metabolomics. This study showed that the decreased lysophosphatidylcholines and increased acylcarnitines are significantly associated with increased mortality in bacterial CAP. Additionally, we found that decreased lysophosphatidylcholines and phosphatidylcholines (> 36 carbons) and increased acylcarnitines may be used to predict the prognosis of in-hospital mortality for bacterial CAP as well as the need for ICU admission and severity of bacterial CAP. DISCUSSION: This study demonstrates that lipid-based plasma metabolites can be used for the prognosis of 90-day mortality among patients with bacterial CAP. Moreover, lipid profiling can be utilized to identify patients with bacterial CAP who are at the highest risk of dying in hospital and who need ICU admission as well as the severity assessment of CAP.


Assuntos
Mortalidade Hospitalar/tendências , Lipídeos/análise , Pneumonia/sangue , Prognóstico , Idoso , Idoso de 80 Anos ou mais , Alberta , Estudos de Casos e Controles , Infecções Comunitárias Adquiridas/sangue , Infecções Comunitárias Adquiridas/mortalidade , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade , Pennsylvania , Pneumonia/mortalidade , Estudos Retrospectivos
17.
Appl Microbiol Biotechnol ; 104(3): 1227-1242, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31853564

RESUMO

Maternal nutrition during late pregnancy and lactation is highly involved with the offspring's health status. The study was carried out to evaluate the effects of different ratios of methionine and cysteine (Met/Cys: 46% Met, 51% Met, 56% Met, and 62% Met; maintained with 0.78% of total sulfur-containing amino acids; details in "Materials and methods") supplements in the sows' diet from late pregnancy to lactation on offspring's plasma metabolomics and intestinal microbiota. The results revealed that the level of serum albumin, calcium, iron, and magnesium was increased in the 51% Met group compared with the 46% Met, 56% Met, and 62% Met groups. Plasma metabolomics results indicated that the higher ratios of methionine and cysteine (0.51% Met, 0.56% Met, and 0.62% Met)-supplemented groups enriched the level of hippuric acid, retinoic acid, riboflavin, and δ-tocopherol than in the 46% Met group. Furthermore, the 51% Met-supplemented group had a higher relative abundance of Firmicutes compared with the other three groups (P < 0.05), while the 62% Met-supplemented group increased the abundance of Proteobacteria compared with the other three groups (P < 0.05) in piglets' intestine. These results indicated that a diet consisting with 51% Met is the optimum Met/Cys ratio from late pregnancy to lactation can maintain the offspring's health by improving the serum biochemical indicators and altering the plasma metabolomics profile and intestinal gut microbiota composition, but higher proportion of Met/Cys may increase the possible risk to offspring's health.


Assuntos
Aminoácidos/administração & dosagem , Aminoácidos/sangue , Suplementos Nutricionais/análise , Microbioma Gastrointestinal , Lactação , Enxofre/administração & dosagem , Ração Animal/análise , Animais , Animais Recém-Nascidos/fisiologia , Cisteína/administração & dosagem , Cisteína/sangue , Feminino , Metabolômica , Metionina/administração & dosagem , Metionina/sangue , Gravidez , Suínos
18.
Molecules ; 24(1)2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30591632

RESUMO

Rhizome of Curcuma wenyujin, which is called EZhu in China, is a traditional Chinese medicine used to treat blood stasis for many years. However, the underlying mechanism of EZhu is not clear at present. In this study, plasma metabolomics combined with network pharmacology were used to elucidate the therapeutic mechanism of EZhu in blood stasis from a metabolic perspective. The results showed that 26 potential metabolite markers of acute blood stasis were screened, and the levels were all reversed to different degrees by EZhu preadministration. Metabolic pathway analysis showed that the improvement of blood stasis by Curcuma wenyujin rhizome was mainly related to lipid metabolism (linoleic acid metabolism, ether lipid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, and arachidonic acid metabolism) and amino acid metabolisms (tryptophan metabolism, lysine degradation). The component-target-pathway network showed that 68 target proteins were associated with 21 chemical components in EZhu. Five metabolic pathways of the network, including linoleic acid metabolism, sphingolipid metabolism, glycerolipid metabolism, arachidonic acid metabolism, and steroid hormone biosynthesis, were consistent with plasma metabolomics results. In conclusion, plasma metabolomics combined with network pharmacology can be helpful to clarify the mechanism of EZhu in improving blood stasis and to provide a literature basis for further research on the therapeutic mechanism of EZhu in clinical practice.


Assuntos
Curcuma/química , Hemostasia , Espectrometria de Massas , Redes e Vias Metabólicas , Metabolômica , Rizoma/química , Animais , Biomarcadores/sangue , Cromatografia Líquida de Alta Pressão , Análise Discriminante , Hemorreologia/efeitos dos fármacos , Hemostasia/efeitos dos fármacos , Análise dos Mínimos Quadrados , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Análise de Componente Principal , Ratos Sprague-Dawley , Salvia/química
19.
Animals (Basel) ; 14(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39199828

RESUMO

Holstein cattle are the main breed of dairy cattle in China. However, given the high degree of purebred selection of Holstein cattle, Chinese dairy cattle are increasingly being characterized by poor disease resistance, poor quality, and declining fertility. In this study, using Montbéliard × Holstein cattle as females and Montbéliard bulls as males for backcross breeding, we sought to provide a reference for improving the quality and performance of Holstein cattle and enhancing the efficiency of dairy farming. On the basis of similar physiological status and age, we selected 24 Montbéliard and Holstein backcross heifers and 11 Holstein heifers fed the same formula for comparative analyses. Plasma samples collected for plasma biochemical index analyses revealed that the content of ALB and BUN in the Montbéliard and Holstein backcross heifers was 20.83% (31.62 g/L to 26.17 g/L) and 42.36% (6.89 mmol/L to 4.84 mmol/L) higher than in the Holsteins (p < 0.01). The ALB/GLB (0.90 to 0.60, p < 0.05) was significantly higher in Montbéliard and Holstein backcross heifers than in Holstein heifers. Similarly, the activity of CAT in the backcross heifers was 61.28% (4.29 U/mL to 2.66 U/mL) higher than that in the Holstein heifers (p < 0.05). Although the activity of GSH-Px in the backcross heifers also showed an increasing trend, the difference did not reach the level of statistical significance (p = 0.052). Compared with Holstein heifers, the concentrations of IgA, IgG, and IL-4 were elevated by 32.52% (24.90 µg/mL to 18.79 µg/mL, p < 0.01), 13.46% (234.32 µg/mL to 206.53 µg/mL, p < 0.01), and 14.59% (306.27 pg/mL to 267.28 pg/mL, p < 0.05), and the contents of IL-6 and TNF-α were decreased by 15.92% (215.71 pg/mL to 256.55 pg/mL, p < 0.01) and 32.17% (7.17 ng/mL to 10.57 ng/mL, p < 0.01) in the plasma of Montbéliard and Holstein backcross heifers. Among the experimental heifers, five animals from each of the two groups were selected for plasma metabolomic analysis based on untargeted liquid chromatography-mass spectrometry. A comparison of the differential metabolites between the two heifer breeds revealed an up-regulation of d-glucuronic acid, s-glutathionyl-l-cysteine, and oleic acid levels in the backcross cattle compared with those in the Holstein heifers. We speculate that changes in the levels of these metabolites may be associated with an enhancement of the anti-inflammatory, antioxidant, and immune systems in these backcross heifers. Collectively, our findings in this study indicate that compared with 12-month-old purebred Holstein heifers, Montbéliard and Holstein backcross heifers of the same age are characterized by higher antioxidant capacity and immunity.

20.
J Clin Endocrinol Metab ; 109(5): 1250-1262, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38044551

RESUMO

CONTEXT: Atherosclerosis is a dominant cause of cardiovascular disease (CVD), including myocardial infarction and stroke. OBJECTIVE: To investigate metabolic states that are associated with the development of atherosclerosis. METHODS: Cross-sectional cohort study at a university hospital in the Netherlands. A total of 302 adult subjects with a body mass index (BMI) ≥ 27 kg/m2 were included. We integrated plasma metabolomics with clinical metadata to quantify the "atherogenic state" of each individual, providing a continuous spectrum of atherogenic states that ranges between nonatherogenic states to highly atherogenic states. RESULTS: Analysis of groups of individuals with different clinical conditions-such as metabolically healthy individuals with obesity, and individuals with metabolic syndrome-confirmed the generalizability of this spectrum; revealed a wide variation of atherogenic states within each condition; and allowed identification of metabolites that are associated with the atherogenic state regardless of the particular condition, such as gamma-glutamyl-glutamic acid and homovanillic acid sulfate. The analysis further highlighted metabolic pathways such as catabolism of phenylalanine and tyrosine and biosynthesis of estrogens and phenylpropanoids. Using validation cohorts, we confirmed variation in atherogenic states in healthy subjects (before atherosclerosis plaques become visible), and showed that metabolites associated with the atherogenic state were also associated with future CVD. CONCLUSION: Our results provide a global view of atherosclerosis risk states using plasma metabolomics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa