Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Environ Res ; 241: 117581, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967705

RESUMO

Plastic consumption and its end-of-life management pose a significant environmental footprint and are energy intensive. Waste-to-resources and prevention strategies have been promoted widely in Europe as countermeasures; however, their effectiveness remains uncertain. This study aims to uncover the environmental footprint patterns of the plastics value chain in the European Union Member States (EU-27) through exploratory data analysis with dimension reduction and grouping. Nine variables are assessed, ranging from socioeconomic and demographic to environmental impacts. Three clusters are formed according to the similarity of a range of characteristics (nine), with environmental impacts being identified as the primary influencing variable in determining the clusters. Most countries belong to Cluster 0, consisting of 17 countries in 2014 and 18 countries in 2019. They represent clusters with a relatively low global warming potential (GWP), with an average value of 2.64 t CO2eq/cap in 2014 and 4.01 t CO2eq/cap in 2019. Among all the assessed countries, Denmark showed a significant change when assessed within the traits of EU-27, categorised from Cluster 1 (high GWP) in 2014 to Cluster 0 (low GWP) in 2019. The analysis of plastic packaging waste statistics in 2019 (data released in 2022) shows that, despite an increase in the recovery rate within the EU-27, the GWP has not reduced, suggesting a rebound effect. The GWP tends to increase in correlation with the higher plastic waste amount. In contrast, other environmental impacts, like eutrophication, abiotic and acidification potential, are identified to be mitigated effectively via recovery, suppressing the adverse effects of an increase in plastic waste generation. The five-year interval data analysis identified distinct clusters within a set of patterns, categorising them based on their similarities. The categorisation and managerial insights serve as a foundation for devising a focused mitigation strategy.


Assuntos
Gerenciamento de Resíduos , Gerenciamento de Resíduos/métodos , Europa (Continente) , Embalagem de Produtos , Meio Ambiente , Aquecimento Global , Plásticos , Reciclagem
2.
J Environ Manage ; 351: 119630, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043308

RESUMO

In order to obtain extended storage life of food-grade materials and better barrier properties against environmental factors, a multilayer plastic packaging (MLP) is often used. The multilayer packaging plastics are labelled as "other" (SPI#7) category, and are manufactured with a combination of barrier plastics, rigid plastics and printing surface. Owing to their complex composition and difficulty in separating the layers of MLP, its mechanical recycling is challenging. In this study, MLP wastes (MLPWs) were collected from zero-waste garbage collection center of IIT Madras, India, and thoroughly characterized to determine their composition and plastic types. MLPWs were characterized using various physico-chemical methods such as thermogravimetric/differential scanning calorimetric analysis, Fourier transform infrared spectroscopy, bomb calorimetry, and proximate and ultimate analyses. The MLPWs were mainly made up of polyethylene (PE) and polyethylene terephthalate (PET). Further, the non-catalytic and zeolite-catalyzed fast pyrolysis of these MLPWs were studied using analytical pyrolysis coupled with gas chromatograph/mass spectrometer (Py-GC/MS). The non-catalytic fast pyrolysis of MLPWs primarily produced a mixture of aliphatic and alicyclic hydrocarbons, while zeolite catalyzed fast pyrolysis resulted in the formation of mono-aromatic hydrocarbons (MAHs). The activity of HZSM-5, zeolite Y (HY) and zeolite beta (Hß) catalysts were evaluated, and the salient products were quantified. The yields of MAHs like benzene, toluene, ethylbenzene and xylene using the zeolites followed the trend: HZSM-5 (14.9 wt%) > HY (8.1 wt%) > Hß (7.8 wt%), at 650 °C. The use of HZSM-5 resulted in highest yield of MAHs, viz. 16.1 wt%, at the optimum temperature of 550 °C and MLPW-to-catalyst ratio of 1:15 (w/w). The superior activity of HZSM-5 is due to its nominal acidity and larger pore size of 4.24 nm, as compared to HY and Hß. The MAHs yield from three other types of MLPWs varied in the range of 9-16 wt%. The present study demonstrates a promising pathway for the catalytic upcycling of highly heterogeneous MLPWs in the context of circular economy.


Assuntos
Hidrocarbonetos Aromáticos , Zeolitas , Zeolitas/química , Índia , Hidrocarbonetos/análise , Hidrocarbonetos Aromáticos/análise , Catálise , Tolueno , Temperatura Alta
3.
Molecules ; 28(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838860

RESUMO

A hydrophobic calix[4]arene derivative was investigated for its iodine (I2) capture efficiency from gaseous and liquid phase. The iodine uptake was followed by UV-vis spectroscopy. Additionally, the influence of the calix[4]arene derivative-polyolefin system on the leaching of iodine through packaging from a povidone-iodine-based (PVP-I) formulation was evaluated. In fact, iodine is a low-cost, multi-target, and broad-spectrum antiseptic. However, it is volatile, and the extended storage of I2-based formulations is challenging in plastic packaging. Here, we investigated the possibility of reducing the loss of I2 from an iodophor formulation by incorporating 4-tert-butylcalix [4]arene-tetraacetic acid tetraethyl ester (CX) and its iodine complex in high-density polyethylene (HDPE) or polypropylene (PP) via a swelling procedure. Surface and bulk changes were monitored by contact angle, thermogravimetric analysis (TGA), and UV-vis diffuse reflectance spectra. The barrier effect of the different polymeric systems (embedded with CX, iodine-CX complex, or I2) was evaluated by monitoring the I2 retention in a buffered PVP-I solution by UV-vis spectroscopy. Overall, experimental data showed the capability of the calix[4]arene derivative to complex iodine in solution and the solid state and a significant reduction in the iodine leaching by the PP-CX systems.


Assuntos
Calixarenos , Iodo , Povidona-Iodo , Análise Espectral , Calixarenos/química
4.
Waste Manag Res ; 41(6): 1134-1143, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36642979

RESUMO

A reliable comparison of European Union (EU) Member States' reporting of statistics on plastic packaging waste generation, recycling and recovery is necessary if there is to be a fair transition to a circular economy across the EU. It is a priority for there to be an improvement in the quality and validity of these statistics to assess each Member State's performance in relation to EU targets. This article explores the quality of national reporting based on the two main approaches which are used to calculate packaging waste generation, namely 'placed on the market' and 'waste analysis'. The findings outline how Member States apply a variety of approaches leading to different packaging waste statistics which makes reported data difficult to compare. Often, it is not clear what approach is applied in different counties. Factors such as freeriding, non-compliance and de minimis have represented the primary weaknesses in evaluating and reporting packaging waste statistics as producers have financial incentives for under-reporting. This article highlights the need to inform circular economy strategies by addressing the challenge of comparing data on packaging and plastic packaging waste generation across the EU.


Assuntos
Plásticos , Gerenciamento de Resíduos , Europa (Continente) , Embalagem de Produtos , União Europeia , Reciclagem
5.
J Mater Cycles Waste Manag ; : 1-17, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37360950

RESUMO

The circularity of plastic packaging waste (PPW) material via recycling is critical to its circular economy towards sustainability and carbon neutrality of society. The multi-stakeholders and complex waste recycling loop of Rayong Province, Thailand, is herein analysed using an actor-network theory to identify key actors, roles, and responsibilities in the recycling scheme. The results depict the relative function of three-actor networks, namely policy, economy, and societal networks, which play different roles in PPW handling from its generation through various separations from municipal solid wastes to recycling. The policy network comprises mainly national authorities and committees responsible for targeting and policymaking for local implementation, while economic networks are formal and informal actors acting for PPW collection with a recycling contribution of 11.3-64.1%. A societal network supports this collaboration for knowledge, technology, or funds. Two waste recycling models are classified as community-based and municipality-based management, which functions differently by coverage areas, capabilities, and process efficiency. The economic reliability of each informal sorting activity is a crucial factor for sustainability, while empowering people in environmental awareness and sorting ability at the household level is also essential, as well as law enforcement that is effective in the long-term circularity of the PPW economy.

6.
Crit Rev Food Sci Nutr ; 62(4): 957-979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33081493

RESUMO

Plastic packaging materials (PPMs) protect food from contamination, maintain quality, and ease transportation and distribution. Additives included during the manufacturing and processing of PPMs improve flexibility, durability, barrier properties, and sometimes aid the processing itself. During processing, these additives, even the monomers used to produce the plastics, can produce side products or breakdown products as a result of degradation and various chemical reactions. These starting substances and reaction products include 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), phthalates/phthalic acid esters, alkylphenols, and bis(2-ethylhexyl) adipate, which are considered endocrine-disrupting chemicals (EDCs) that may interfere with the human endocrine system and produce adverse reproductive, neurological, developmental, and immune effects. When in contact with food, EDCs can migrate into food if conditions are appropriate, thereby possibly jeopardizing food safety. Chemical risk assessment and regulatory control were developed to reduce human exposure to harmful migrated EDCs. This article gives an overview of the migration of EDCs from PPMs and control measures to reduce the risk of adverse impacts on human health.


Assuntos
Disruptores Endócrinos , Disruptores Endócrinos/toxicidade , Alimentos , Embalagem de Alimentos , Humanos , Plásticos/toxicidade , Medição de Risco
7.
Environ Sci Technol ; 56(12): 8416-8427, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35584204

RESUMO

Plastic packaging material is widely used to package high-temperature soup food in China, but this combination might lead to increased exposure to phthalates. The health effects and potential biological mechanisms have not been well studied. This study aimed to examine urinary phthalate metabolites and the expression of inflammatory cytokines in the blood before, during, and after a "plastic-packaged high-temperature soup food" dietary intervention in healthy adults. The results showed that compared with those in the preintervention period, urinary creatinine-adjusted levels of monomethyl phthalate (MMP), mono-n-butyl phthalate (MBP), mono-isobutyl phthalate (MIBP), and total phthalate metabolites in the intervention period were significantly higher, with increases of 71.6, 41.8, 38.8, and 29.8% for MMP, MBP, MIBP, and the total phthalate metabolites, respectively. After intervention, the mean levels of IL-1ß, IL-4, and TNF-α mRNA increased by 19.0, 21.5, and 25.0%, respectively, while IL-6 and IFN-γ mRNA decreased by 24.2 and 32.9%, respectively, when compared with the preintervention period. We also observed that several phthalates were associated with the mRNA or protein expression of IL-8, TNF-α, and IL-10. Therefore, consumption of plastic-packaged high-temperature soup food was linked to increased phthalate exposure and might result in significant changes in mRNA expression of several inflammatory cytokines.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Adulto , Carga Corporal (Radioterapia) , Exposição Ambiental/análise , Poluentes Ambientais/metabolismo , Humanos , Plásticos , RNA Mensageiro , Temperatura , Fator de Necrose Tumoral alfa
8.
Food Control ; 136: 108845, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35075333

RESUMO

Countries continue to debate the need for decontamination of cold-chain food packaging to reduce possible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) fomite transmission among frontline workers. While laboratory-based studies demonstrate persistence of SARS-CoV-2 on surfaces, the likelihood of fomite-mediated transmission under real-life conditions is uncertain. Using a quantitative microbial risk assessment model of a frozen food packaging facility, we simulated 1) SARS-CoV-2 fomite-mediated infection risks following worker exposure to contaminated plastic packaging; and 2) reductions in these risks from masking, handwashing, and vaccination. In a frozen food facility without interventions, SARS-CoV-2 infection risk to a susceptible worker from contact with contaminated packaging was 1.5 × 10-3 per 1h-period (5th - 95th percentile: 9.2 × 10-6, 1.2 × 10-2). Standard food industry infection control interventions, handwashing and masking, reduced risk (99.4%) to 8.5 × 10-6 risk per 1h-period (5th - 95th percentile: 2.8 × 10-8, 6.6 × 10-5). Vaccination of the susceptible worker (two doses Pfizer/Moderna, vaccine effectiveness: 86-99%) with handwashing and masking reduced risk to 5.2 × 10-7 risk per 1h-period (5th - 95th percentile: 1.8 × 10-9, 5.4 × 10-6). Simulating increased transmissibility of current and future variants (Delta, Omicron), (2-, 10-fold viral shedding) among a fully vaccinated workforce, handwashing and masking continued to mitigate risk (1.4 × 10-6 - 8.8 × 10-6 risk per 1h-period). Additional decontamination of frozen food plastic packaging reduced infection risks to 1.2 × 10-8 risk per 1h-period (5th - 95th percentile: 1.9 × 10-11, 9.5 × 10-8). Given that standard infection control interventions reduced risks well below 1 × 10-4 (World Health Organization water quality risk thresholds), additional packaging decontamination suggest no marginal benefit in risk reduction. Consequences of this decontamination may include increased chemical exposures to workers, food quality and hazard risks to consumers, and unnecessary added costs to governments and the global food industry.

9.
Bull Environ Contam Toxicol ; 106(2): 237-240, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33515068

RESUMO

Plastic pollution control has been on top of the political agenda in China. In January 2020, China announced a phased ban on the production and usage of various types of single-use plastics as a solution to environmental pollution problems. However, the outbreak of COVID-19 seems to be a new obstacle to the ban on single-use plastic products. To basically satisfied the daily necessities and contain the spread of SARS-CoV-2 under the background of the regular epidemic prevention and control in China, online ordering, contactless delivery and wearing mask have become an important and feasible way of daily life. However, the unrestrained use of disposable plastic bags, lunch boxes and masks within the nationwide quarantine leads to hundreds of millions of plastics wastes every day. The potential environmental pollution caused by the use of disposable plastic products during the pandemic should arouse social concern. The Chinese government should manage environmental protection in parallel with anti-pandemic endeavors as the situation of the pandemic evolves.


Assuntos
COVID-19 , Pandemias , China/epidemiologia , Humanos , Plásticos , SARS-CoV-2
10.
Molecules ; 25(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32366050

RESUMO

Most container-content interaction studies are carried out through migration tests on end products or simulants involving generally toxic solvents. This study was conducted with the aim of identifying potential leachables from materials used in cosmetic plastic packaging by using two approaches based on solvent-free extraction, i.e., solid-phase microextraction sampling and pyrolyzer/thermal desorption coupled with gas chromatography mass spectrometry. Volatile and semi-volatile intentionally and non-intentionally added substances were detected in seven packaging samples made of polypropylene, polyethylene, and styrene-acrylonitrile copolymer. Thirty-five compounds related to the polymers industry or packaging industry were identified, among them phthalates, alkanes, styrene, and cyanide derivates including degradation products, impurities, additives, plasticizers, and monomers. All except eight belong to the Cramer class I. These thermodesorption techniques are complementary to those used for migration tests.


Assuntos
Cosméticos/análise , Cromatografia Gasosa-Espectrometria de Massas , Plásticos/química , Pirólise , Cosméticos/química , Química Verde , Estrutura Molecular , Microextração em Fase Sólida
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa