Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Plants (Basel) ; 13(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674532

RESUMO

Obesity has emerged as a significant health concern, as it is a disease linked to metabolic disorders in the body and is characterized by the excessive accumulation of lipids. As a plant-derived food, Platycodon grandiflorum (PG) was reported by many studies, indicating that the saponins from PG can improve obesity effectively. However, the anti-obesity saponins from PG and its anti-obesity mechanisms have not been fully identified. This study identified the active saponins and their molecular targets for treating obesity. The TCMSP database was used to obtain information on 18 saponins in PG. The anti-obesity target of the PG saponins was 115 targets and 44 core targets. GO and KEGG analyses using 44 core anti-obesity genes and targets of PG-active saponins screened from GeneCards, OMIM, Drugbank, and DisGeNet showed that the PI3K-Akt pathway, the JAK-STAT pathway, and the MAPK pathway were the major pathways involved in the anti-obesity effects of PG saponins. BIOVIA Discovery Studio Visualizer and AutoDock Vina were used to perform molecular docking and process the molecular docking results. The molecular docking results showed that the active saponins of PG could bind to the major therapeutic obesity targets to play an obesity-inhibitory role. The results of this study laid the foundation for further research on the anti-obesity saponins in PG and their anti-obesity mechanism and provided a new direction for the development of functional plant-derived food. This research studied the molecular mechanism of PG saponins combating obesity through various signaling pathways, and prosapogenin D can be used to develop as a new potential anti-obesity drug.

2.
Heliyon ; 10(2): e24842, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312605

RESUMO

Osteoporosis is caused by increased bone resorption due to the excessive activity of osteoclasts. Pueraria lobata has demonstrated the ability to improve bone density in ovariectomized mice, and Platycodon grandiflorum can suppress osteolysis biomarkers such as collagen content in cartilage and alkaline phosphatase activity. In this study, we examined whether HX112, a mixture of Pueraria lobata and Platycodon grandiflorum extracts, could inhibit the receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation to alleviate osteoporosis. To induce the differentiation of osteoclasts, RAW 264.7 cell were cultured with RANKL and HX112. Osteoclasts differentiation was evaluated by TRAP activity and TRAP staining. Bone resorption as osteoclasts major function was assessed by pit formation assay. As a result, HX112 suppressed osteoclast differentiation and bone resorptive function. Additionally, HX112 reduced the expression of osteoclastogenic genes including NFATc1 and c-Fos, and these effects of HX112 were mediated by inhibiting Src-phosphoinositide 3-kinase (PI3K)- Protein kinase B (Akt) and c-Jun N-terminal kinase (JNK)/p38 signaling pathways. Furthermore, ICR mice were ovariectomized to induce osteoporosis and bone mineral density of femur was measured using micro-CT. Consequently, oral administration of HX112 to ovariectomized mice significantly improved bone microstructure and bone mineral density. Collectively, these findings indicate that the mixed extract of Pueraria lobata and Platycodon grandiflorum may be useful as therapeutics for osteoporosis.

3.
Int Immunopharmacol ; 139: 112782, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39074416

RESUMO

Platycodin D (PLD), a major bioactive component of triterpene saponins found in Platycodon grandiflora, is renowned for its anti-inflammatory and antioxidant properties. This study aims to explore the protective effects and regulatory mechanisms of PLD in an LPS-induced inflammation injury model of BEAS-2B cells. Initially, PLD was identified from Platycodon grandiflora extracts utilizing UPLC-Q-TOF-MS/MS technology. The effects of PLD on the viability, morphology, ROS levels, and inflammatory factors of LPS-induced BEAS-2B cells were then investigated. The results showed that PLD significantly alleviated LPS-induced oxidative stress and inflammatory injury. Further analysis revealed that PLD positively influenced apoptosis levels, mitochondrial morphology, and related gene expression, indicating its potential to mitigate LPS-induced apoptosis and alleviate mitochondrial dysfunction. Using molecular docking technology, we predicted the binding sites of PLD with mitochondrial autophagy protein. Gene expression levels of autophagy-related proteins were measured to determine the impact of PLD on mitochondrial autophagy. Additionally, the study examined whether the mitochondrial autophagy agonists rapamycin (RAPA) could modulate the upregulation of inflammasome-related factors NLRP3 and Caspase-1 in LPS-induced BEAS-2B cells. This was done to evaluate the regulator mechanisms of PLD in pulmonary inflammatory injury. Our findings suggest that PLD's mechanism of action involves the regulation of mitochondrial autophagy, which in turn modulates inflammatory responses.


Assuntos
Anti-Inflamatórios , Apoptose , Autofagia , Lipopolissacarídeos , Platycodon , Saponinas , Triterpenos , Humanos , Saponinas/farmacologia , Saponinas/uso terapêutico , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Platycodon/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Linhagem Celular , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Simulação de Acoplamento Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Espécies Reativas de Oxigênio/metabolismo
4.
Int J Biol Macromol ; 259(Pt 1): 129047, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171434

RESUMO

Platycodon grandiflorum, a globally recognized medicinal and edible plant, possesses significant nutritional value and pharmacological value. In traditional Chinese medicine, it has the effects of tonifying the spleen and replenishing the Qi, moistening the lung and relieving the cough, clearing the heat and detoxifying, and relieving the pain. Accumulating evidence has revealed that the polysaccharides from P. grandiflorum (PGPs) are one of the major and representative biologically active macromolecules and have diverse biological activities, such as immunomodulatory activity, anti-inflammatory activity, anti-tumor activity, regulation of the gut microbiota, anti-oxidant activity, anti-apoptosis activity, anti-angiogenesis activity, hypoglycemic activity, anti-microbial activity, and so on. Although the polysaccharides extracted from P. grandiflorum have been extensively studied for the extraction and purification methods, structural characteristics, and pharmacological activities, the knowledge of their structures and bioactivity relationship, toxicologic effects, and pharmacokinetic profile is limited. The main purpose of the present review is to provide comprehensively and systematically reorganized information on extraction and purification, structure characterizations, and biological functions as well as toxicities of PGPs to support their therapeutic potentials and sanitarian functions. New valuable insights for future research regarding PGPs were also proposed in the fields of therapeutic agents and functional foods.


Assuntos
Platycodon , Humanos , Platycodon/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Medicina Tradicional Chinesa , Baço , Tosse
5.
Int J Biol Macromol ; 271(Pt 1): 132617, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795891

RESUMO

Platycodon grandiflorum (P. grandiflorum) has long been used as a food and traditional herbal medicine. As a food, P. grandiflorum is often transformed into pickles for consumption, and as a traditional Chinese medicine, P. grandiflorum clears the lung, nourishes the pharynx, dispels phlegm, and discharges pus. Polysaccharides are among the main active components of P. grandiflorum. Recent literature has described the preparation, identification, and pharmacological activity of these polysaccharides. Studies have shown that these polysaccharides exhibit a variety of significant biological effects in vitro and in vivo, such as immune stimulation and antioxidant, anti-liver injury, anti-apoptosis and antitumour effects. However, there is no systematic summary of the related research articles on P. grandiflorum polysaccharide, which undoubtedly brings some difficulties to the future research. The purpose of this review is to comprehensively describe research progress on the extraction, purification, structural characterization, modification, and biological activity of P. grandiflorum polysaccharides. The shortcomings of recent research are summarized, further research on their biological activity is proposed to provide new reference value for the application of P. grandiflorum polysaccharides in drugs and health products in the future.


Assuntos
Platycodon , Polissacarídeos , Platycodon/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Humanos , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia
6.
Front Nutr ; 11: 1427121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39171113

RESUMO

Background/objectives: Platycodon grandiflorum (PG) is used in traditional oriental medicine to treat several ailments. Methods: The study investigated the anti-inflammatory and neuroprotective effects of PGW (P. grandiflorum) extract in Aß25-35-induced inflammation in BV2 microglia cells. Result: PGW demonstrated significant inhibition of nitric oxide (NO) production, with reductions of 30.4, 36.7, and 61.2% at concentrations of 50, 100, and 200 µg/mL, respectively. Moreover, PGW effectively suppressed the production of pro-inflammatory cytokines IL-1ß and IL-6 and exhibited significant inhibitory activity against TNF-α at 200 µg/mL. Furthermore, PGW treatment mitigated apoptosis in Aß-induced BV2 cells by modulating the mitochondrial apoptosis pathway, regulating Bcl-2 family protein synthesis, and inhibiting caspase activation. Mechanistically, PGW attenuated the activation of the MAPK (JNK, ERK, p38) pathway induced by Aß, showing a concentration-dependent decrease in phosphorylation levels of these proteins. Additionally, PGW inhibited the NF-κB pathway activation by reducing the phosphorylation levels of p65 and IκBα in a concentration-dependent manner. Conclusion: PGW demonstrated anti-inflammatory and neuroprotective effects in Aß-induced neuronal cells, suggesting its potential as a therapeutic agent for neuroinflammatory associated with neurodegenerative diseases.

7.
Biomed Pharmacother ; 177: 117090, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38968796

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease accompanied by irreversible cognitive impairment. A deleterious feedback loop between oxidative stress and neuroinflammation in early AD exacerbates AD-related pathology. Platycodon grandiflorum root extract (PGE) has antioxidant and anti-inflammatory effects in several organs. However, the mechanisms underlying the effects of PGE in the brain remain unclear, particularly regarding its impact on oxidative/inflammatory damage and Aß deposition. Thus, we aim to identify the mechanism through which PGE inhibits Aß deposition and oxidative stress in the brain by conducting biochemical and histological analyses. First, to explore the antioxidant mechanism of PGE in the brain, we induced oxidative stress in mice injected with scopolamine and investigated the effect of PGE on cognitive decline and oxidative damage. We also assessed the effect of PGE on reactive oxygen species (ROS) generation and the expressions of antioxidant enzymes and neurotrophic factor in H2O2- and Aß-treated HT22 hippocampal cells. Next, we investigated whether PGE, which showed antioxidant effects, could reduce Aß deposition by mitigating neuroinflammation, especially microglial phagocytosis. We directly verified the effect of PGE on microglial phagocytosis, microglial activation markers, and pro-inflammatory cytokines in Aß-treated BV2 microglial cells. Moreover, we examined the effect of PGE on neuroinflammation, inducing microglial responses in Aß-overexpressing 5XFAD transgenic mice. PGE exerts antioxidant effects in the brain, enhances microglial phagocytosis of Aß, and inhibits neuroinflammation and Aß deposition, ultimately preventing neuronal cell death in AD. Taken together, our findings indicate that the therapeutic potential of PGE in AD is mediated by its targeting of multiple pathological processes.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Antioxidantes , Microglia , Doenças Neuroinflamatórias , Estresse Oxidativo , Extratos Vegetais , Raízes de Plantas , Platycodon , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Camundongos , Platycodon/química , Peptídeos beta-Amiloides/metabolismo , Masculino , Raízes de Plantas/química , Microglia/efeitos dos fármacos , Microglia/metabolismo , Antioxidantes/farmacologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Linhagem Celular , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Modelos Animais de Doenças , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Fagocitose/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Camundongos Transgênicos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia
8.
Chin Herb Med ; 16(3): 392-400, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39072194

RESUMO

In Northeast China, Goubao pickle is a popular food fermented from the roots of Platycodon grandiflorum as the main material, offering a unique flavor and rich nutritional value. Platycosides in roots of P. grandiflorum may play a crucial role in determining the quality of Goubao pickle through microorganism fermentation. However, biotransfermation of platycosides has not been reviewed during fermentation. In this study, we reviewed platycosides in chemical diversity, metabolic processes in vivo, biotransformation of platycosides in vitro, and pharmacological effects. Finally, we also discussed how to improve the bioactive secondary platycosides we desire by regulating enzymes from microorganisms in the future.

9.
Nutrients ; 16(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542804

RESUMO

We aimed to identify the mechanism underlying the preventive effects of non-alcoholic fatty liver disease (NAFLD) through Platycodi Radix consumption using liver proteomic and bioinformatic analysis. C57BL/6J mice were categorized into three groups: those receiving a standard chow diet (NCD), those on a high-fat diet (HFD), and those on an HFD supplemented with 5% Platycodi Radix extract (PRE). After a 12-week period, PRE-fed mice exhibited a noteworthy prevention of hepatic steatosis. Protein identification and quantification in liver samples were conducted using LC-MS/MS. The identified proteins were analyzed through Ingenuity Pathway Analysis software, revealing a decrease in proteins associated with FXR/RXR activation and a concurrent increase in cholesterol biosynthesis proteins in the PRE-treated mouse liver. Subsequent network analysis predicted enhanced bile acid synthesis from these proteins. Indeed, the quantity of bile acids, which was reduced in HFD conditions, increased in the PRE group, accompanied by an elevation in the expression of synthesis-related proteins. Our findings suggest that the beneficial effects of PRE in preventing hepatic steatosis may be mediated, at least in part, through the modulation of FXR/RXR activation, cholesterol biosynthesis, and bile acid synthesis pathways.


Assuntos
Dieta Hiperlipídica , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Cromatografia Líquida , Proteômica , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Colesterol/metabolismo , Ácidos e Sais Biliares/metabolismo
10.
Chin Herb Med ; 16(3): 327-343, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39072195

RESUMO

Platycodonis Radix (Jiegeng in Chinese) is a well-known traditional Chinese medicine used for both medicinal and culinary purposes. Its historical use as an antitussive and expectorant has been extensively documented. Researchers, to date, have identified 219 chemical constituents in Platycodon grandiflorum (Jacq.) A. DC, encompassing 89 saponins, 11 flavonoids, 21 polysaccharides, 14 phenolic acids, six polyacetylenes, five sterols, 34 fatty acids, 17 amino acids, and 22 trace elements. Jiegeng exhibits diverse pharmacological effects, including antitussive and anti-phlegm properties, anti-cancer activity, anti-inflammatory effects, immune regulation, antioxidant properties, anti-obesity, and antidiabetic effects. Additionally, Jiegeng shows potential in protecting the heart and liver. Beyond its medicinal benefits, Jiegeng is highly esteemed in culinary applications, and its global demand is on the rise. Its utilization has expanded beyond medicine and food to encompass daily necessities, cosmetics, agricultural supplies, and other fields. Currently, there are 18 272 patents related to P. grandiflorum. This comprehensive review summarizes the latest research published over the past 20 years, providing a robust foundation for further exploration of the medicinal and health benefits of P. grandiflorum.

11.
Food Chem ; 451: 139521, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703735

RESUMO

This study explored the use of ionic liquid-ultrasound (ILU)-assisted extraction to enhance the extraction rate of Platycodon grandiflorum saponins (PGSs), and the content, extraction mechanism, antioxidant activity, whitening, and antiaging activity of PGSs prepared using ILU, ultrasound-water, thermal reflux-ethanol, and cellulase hydrolysis were compared. The ILU method particularly disrupted the cell wall, improved PGS extraction efficiency, and yielded a high total saponin content of 1.45 ± 0.02 mg/g. Five monomeric saponins were identified, with platycodin D being the most abundant at 1.357 mg/g. PGSs displayed excellent in vitro antioxidant activity and exhibited inhibitory effects on tyrosinase, elastase, and hyaluronidase. The results suggest that PGSs may have broad antioxidant, skin-whitening, and antiaging potential to a large extent. Overall, this study provided valuable insights into the extraction, identification, and bioactivities of PGSs, which could serve as a reference for future development and application of these compounds in the functional foods industry.


Assuntos
Antioxidantes , Líquidos Iônicos , Extratos Vegetais , Platycodon , Saponinas , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Saponinas/farmacologia , Saponinas/química , Saponinas/isolamento & purificação , Platycodon/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Líquidos Iônicos/química , Envelhecimento da Pele/efeitos dos fármacos , Humanos , Ondas Ultrassônicas
12.
Acta Pharmaceutica Sinica ; (12): 243-252, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1005444

RESUMO

Platycodonis Radix is the dry root of Platycodon grandiflorum of Campanulaceae, which has a variety of pharmacological effects and is a commonly used bulk Chinese medicine. In this study, the chloroplast genome sequences of six P. grandiflorum from different producing areas has been sequenced with Illumina HiSeq X Ten platform. The specific DNA barcodes were screened, and the germplasm resources and genetic diversity were analyzed according to the specific barcodes. The total length of the chloroplast genome of 6 P. grandiflorum samples was 172 260-172 275 bp, and all chloroplast genomes showed a typical circular tetrad structure and encoded 141 genes. The comparative genomics analysis and results of amplification efficiency demonstrated that trnG-UCC and ndhG_ndhF were the potential specific DNA barcodes for identification the germplasm resources of P. grandiflorum. A total of 305 P. grandiflorum samples were collected from 15 production areas in 9 provinces, for which the fragments of trnG-UCC and ndhG_ndhF were amplificated and the sequences were analyzed. The results showed that trnG-UCC and ndhG_ndhF have 5 and 11 mutation sites, respectively, and 5 and 7 haplotypes were identified, respectively. The combined analysis of the two sequences formed 13 haplotypes (named Hap1-Hap13), and Hap4 is the main genotype, followed by Hap1. The unique haplotypes possessed by the three producing areas can be used as DNA molecular tags in this area to distinguish from the germplasm resources of P. grandiflorum from other areas. The haplotype diversity, nucleotide diversity and genetic distance were 0.94, 4.79×10-3 and 0.000 0-0.020 3, respectively, suggesting that the genetic diversity was abundant and intraspecific kinship was relatively close. This study laid a foundation for the identification of P. grandiflorum, the protection and utilization of germplasm resources, and molecular breeding.

13.
Artigo em Inglês | WPRIM | ID: wpr-982706

RESUMO

Platycodon grandiflorum (Jacq.) A. DC. is a famous medicinal plant commonly used in East Asia. Triterpene saponins isolated from P. grandiflorum are the main biologically active compounds, among which polygalacin D (PGD) has been reported to be an anti-tumor agent. However, its anti-tumor mechanism against hepatocellular carcinoma is unknown. This study aimed to explore the inhibitory effect of PGD in hepatocellular carcinoma cells and related mechanisms of action. We found that PGD exerted significant inhibitory effect on hepatocellular carcinoma cells through apoptosis and autophagy. Analysis of the expression of apoptosis-related proteins and autophagy-related proteins revealed that this phenomenon was attributed to the mitochondrial apoptosis and mitophagy pathways. Subsequently, using specific inhibitors, we found that apoptosis and autophagy had mutually reinforcing effects. In addition, further analysis of autophagy showed that PGD induced mitophagy by increasing BCL2 interacting protein 3 like (BNIP3L) levels.In vivo experiments demonstrated that PGD significantly inhibited tumor growth and increased the levels of apoptosis and autophagy in tumors. Overall, our findings showed that PGD induced cell death of hepatocellular carcinoma cells primarily through mitochondrial apoptosis and mitophagy pathways. Therefore, PGD can be used as an apoptosis and autophagy agonist in the research and development of antitumor agents.


Assuntos
Humanos , Mitofagia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Linhagem Celular , Autofagia , Apoptose , Proteínas de Membrana , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/farmacologia
14.
Acta Pharmaceutica Sinica ; (12): 1059-1068, 2023.
Artigo em Chinês | WPRIM | ID: wpr-978746

RESUMO

1-Deoxy-D-xylulose-5-phosphate synthase (DXS), the first key enzyme in 2-methyl-D-erythritol-4-phosphate (MEP) pathway, catalyzes the condensation of glyceraldehyde-3-phosphate with pyruvate to 1-deoxy-xylose-5-phosphate (DXP). In this study, PgDXS1, PgDXS2, and PgDXS3 genes were cloned from the root of Platycodon grandiflorum (P. grandiflorum). The open reading frame (ORF) of PgDXS1, PgDXS2, and PgDXS3 were 2 160, 2 208, and 2 151 bp in full length, encoding 719, 735, and 716 amino acids, respectively. Homologous alignment results showed a high identity of PgDXSs with DXS in Hevea brasiliensis, Datura stramonium and Stevia rebaudiana. The recombinant expression plasmids of pET-28a-PgDXSs were constructed and transformed into Escherichia coli (E. coli) BL21 (DE3) cells, and the induced proteins were successfully expressed. Subcellular localization results showed that PgDXS1 and PgDXS2 were mainly located in chloroplasts, and PgDXS3 was located in chloroplasts, nucleus and cytoplasm. The expression of three DXS genes in different tissues of two producing areas of P. grandiflorum were assayed via real-time fluorescence quantitative PCR, and the results showed that all of them were highly expressed in leaves of P. grandiflorum from Taihe. Under methyl jasmonate (MeJA) treatment, the expression levels of three PgDXS genes showed a trend of first decreasing and then increasing at different time points (3 - 48 h), and the activity of DXS showed a trend of first increasing and then decreasing in three tissues of P. grandiflorum. This study provides a reference for further elucidating the biological function of PgDXS in terpenoid synthesis pathway in P. grandiflorum.

15.
Artigo em Chinês | WPRIM | ID: wpr-879043

RESUMO

Platycodon grandiflorum is a medicinal and edible medicinal material. Our study is aimed to explore the differences in the gene expression of P. grandiflorum in different growth years, and the expression rules of key genes in the biosynthesis of the main active substances of P. grandiflorum. Illumina Hiseq 4000 sequencing platform was used to sequence the transcriptome of P. grandiflorum in different years. Then, 59 654 unigenes were obtained through filtering, assembly, splicing and bioinformatics analysis of the sequencing data, of which 1 671 unigenes were differentially expressed between at least two samples. The results of cluster analysis showed that there was a great difference in the gene expression of P. grandiflorum from one-year-old to two/three-year-old. There were 1 128 different genes between one-and three-year old P. grandiflorum, and only 57 different genes between two-and three-year-old P. grandiflorum. KEGG enrichment results showed that the differential genes of P. grandiflorum in different years were mainly concentra-ted in the biosynthesis of sesquiterpenes and triterpenes, and the biosynthesis of terpenoid skeletons. In the triterpenoid biosynthesis-related pathways, a total of 15 unigenes were identified, involving 5 enzymes. The expression levels of ACAT, HMGR, FDFT1, SQLE decreased with the increase of the growth year of P. grandiflorum. The expression of HMGS was the highest in the one-year-old P. grandiflorum, followed by the three-year-old sample. This study provides useful data for the development of P. grandiflorum, and also provides a basis for the study of related genes in the biosynthetic pathway of platycodin.


Assuntos
Perfilação da Expressão Gênica , Raízes de Plantas , Platycodon/genética , Saponinas , Transcriptoma , Triterpenos
16.
Artigo em Coreano | WPRIM | ID: wpr-765986

RESUMO

PURPOSE: Platycodon grandiflorum (PG) is known to have effective antimicrobial and anticancer activity. The main bioactive components of PG are saponins, and these could contribute to anti-inflammatory activity. However, little is known about the anti-inflammatory effect of PG. In this study, we aim to assess the anti-inflammatory response to Red PG Extract (RPGE) in splenocytes under ex vivo conditions. METHODS: The cell viability of isolated splenocytes taken from mice was analyzed by performing a Cell Counting Kit-8 assay. The productions of nitric oxide (NO) and cytokines (specifically interleukin-6 (IL-6) and interleukin-10 (IL-10)) were measured utilizing Griess reagent and ELISA, respectively. RESULTS: We found that co-treatment with RPGE and Lipopolysaccharide (LPS) decreased isolated splenocyte proliferation as compared with that of the LPS-stimulated control. We also observed that RPGE markedly suppressed NO synthesis and IL-6 production that was induced by LPS. There were no significant differences of IL-10 production between co-treatment with RPGE plus LPS and treatment with LPS alone. CONCLUSION: When taken together, our data has shown that RPGE mitigates LPS-induced inflammation in splenocytes isolated from mice. Further research is surely needed to confirm the anti-inflammation effects of RPGE in an in vivo model.


Assuntos
Animais , Camundongos , Contagem de Células , Sobrevivência Celular , Citocinas , Ensaio de Imunoadsorção Enzimática , Inflamação , Interleucina-10 , Interleucina-6 , Óxido Nítrico , Platycodon , Saponinas
17.
China Pharmacy ; (12): 3074-3078, 2019.
Artigo em Chinês | WPRIM | ID: wpr-817444

RESUMO

OBJECTIVE: To establish the quality standard of Compound Platycodon grandiflorum antitussive tablets. METHODS: TLC was used to identify the P. grandiflorum, Polygala tenuifolia and Glycyrrhiza uralensis qualitatively in Compound P. grandiflorum antitussive tablets. HPLC-ELSD method was used to measure the content of platycodin D in Compound P. grandiflorum antitussive tablets. The determination was performed on Agilent C18 column with mobile phase consisted of acetonitrile-water (26 ∶ 74, V/V) at the flow rate of 1.0 mL/min. ELSD was used with drift tube temperature of 105 ℃, gas flow rate of 3.0 L/min and column temperature at 35 ℃. RESULTS: TLC chromatograms of P. grandiflorum, P. tenuifolia and G. uralensis had clear spots with good separation and no same spot from negative samples. The linear range of platycodin D was 0.421 9- 5.062 8 μg (r=0.999 9). The quantitative limit and detection limit were 0.364, 0.109 μg, respectively. RSDs of precision, stability, reproducibility and durability tests were all lower than 3.0%. The recovery rates were 87.32%-91.96% (RSD=1.73%,n=6). The platycodin D contents of 178 samples ranged from 0.004 to 0.73 mg/tablet. The content of platycodin D in 55 batches (30.9%) of samples was lower than the content limit (0.10 mg/tablet) proposed in this study. CONCLUSIONS: Established method is accurate and reliable, and can be used for the quality control of Compound P. grandiflorum antitussive tablets.

18.
Artigo em Chinês | WPRIM | ID: wpr-687325

RESUMO

In order to investigate effects of Platycodon grandiflorum and pepper intercropping on root growth, yield and quality of P. grandiflorum, field experiments were conducted in the soils of continuously cultivated P. grandiflorum for three years. The cultivation model was designed as monoculture and intercropping. The monoculture of P. grandiflorum was denoted as CK and the intercrop association of P. grandiflorum/pepper was arranged as follow: in intercrops every two rows of pepper was planted between every three, four and five rows of P. grandiflorum, respectively, and denoted as JC₃₂, JC₄₂ and JC₅₂. Results showed that taproot length and diameter of P. grandiflorum in intercropping association of JC₃₂ was higher than those of P. grandiflorum in monoculture association. This fact suggested that P. grandiflorum intercropped with pepper facilitated its root growth. Compared with monoculture association, the number of lateral root in intercropping association was significantly decreased and the location of lateral root at taproot also altered. This fact suggested that P. grandiflorum intercropped with pepper enhanced appearance quality of P. grandiflorum root. Total root yield and taproot yield of P. grandiflorum in JC₄₂ and JC₅₂ intercropping associations were increased by 4.88%, 8.91% and 14.23%, 12.92%, respectively, compared with monoculture, while root rot incidence decreased significantly. Compared with JC₅₂ intercropping association, JC₄₂ intercropping association significantly increased total saponin and protein contents of P. grandiflorum, decreased root rot incidence, but did not affect taproot yield significantly. Considering root yield and quality, when P. grandiflorum planted in the soil having continuously cultivated P. grandiflorum for three years, the optimal cultivation model was every two rows of pepper was planted between four rows P. grandiflorum.

19.
Artigo em Coreano | WPRIM | ID: wpr-714897

RESUMO

PURPOSE: Platycodon grandiflorum (a domestic diploid variety, DV-PG) has been used as a food and component of various traditional oriental medicines. Although DV-PG is known to have an anti-allergic effect, little is known about the beneficial health effects of the tetraploid ‘Etteum’ variety in the Platycodon grandiflorum (TV-PG), which is a recently developed variety. In this study, we investigated the effect of TV-PG on the rat basophilic leukemia mast cell (RBL-2H3)-mediated allergic response. METHODS: To examine the effects of TV-PG on the allergic response, RBL-2H3 cells were sensitized with dinitropheny (DNP)-immunoglobin E, treated with various concentrations of TV-PG, and challenged with DNP-human serum albumin. We estimated cell granulation by measuring the release of β-hexosaminidase and production of inflammatory mediators by ELISA. RESULTS: TV-PG had no effect on the proliferation or cytotoxicity of RBL-2H3 cells within the concentration range of 0 to 200 µg/mL. TV-PG inhibited degranulation of RBL-2H3 cells by antigen stimulation in a dose-dependent manner. TV-PG also suppressed the production of inflammatory cytokines and mediators such as interleukin-4, tumor necrosis factor-α, prostagladin E2, and leukotriene B4 in RBL-2H3 cells by antigen stimulation. CONCLUSION: These results indicate that TV-PG exhibits anti-allergic activity via inhibition of degranulation as well as suppression of inflammatory mediators and cytokine release. These findings suggest that TV-PG may have potential as a preventive and therapeutic agent for the treatment of various allergic diseases.


Assuntos
Animais , Ratos , Basófilos , Citocinas , Diploide , Ensaio de Imunoadsorção Enzimática , Alimento Funcional , Hipersensibilidade , Mediadores da Inflamação , Interleucina-4 , Leucemia , Leucotrieno B4 , Mastócitos , Medicina Tradicional do Leste Asiático , Necrose , Platycodon , Albumina Sérica , Tetraploidia
20.
China Pharmacy ; (12): 1249-1252, 2018.
Artigo em Chinês | WPRIM | ID: wpr-704775

RESUMO

OBJECTIVE:To establish a method for content determination of total saponins and platycodin D in Platycodon grandiflorum from Sichuan and investigate the difference of 2 indexes in P. grandiflorum from Sichuan of different cultivated years. METHODS:The content of total saponins in P. grandiflorum from Sichuan was determined by UV spectrophotometry. The content of platycodin D was determined by HPLC. The contents of total saponins and platycodin D were compared among each 10 samples of annual,biennial and triennial P. grandiflorum from Sichuan. RESULTS:Average contents of total saponins in annual,biennial and triennial P. grandiflorum from Sichuan were 2.47% ,3.01% ,2.47% ,respectively;average contents of platycodin D were 0.23%,0.27%,0.33%,respectively. The contents of 2 indexes in annual P. grandiflorum from Sichuan were in relative low level, while the content total saponins in biennial P. grandiflorum from Sichuan was the highest;the content of platycodin D in triennial P. grandiflorum was the highest. CONCLUSIONS:The contents of indexes are different among P. grandiflorum from Sichuan of different cultivated years. But there is no correlation between them. It is suggested to select biennial and triennial P. grandiflorum from Sichuan.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa