Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cell ; 176(4): 729-742.e18, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661757

RESUMO

Hypothalamic melanocortin neurons play a pivotal role in weight regulation. Here, we examined the contribution of Semaphorin 3 (SEMA3) signaling to the development of these circuits. In genetic studies, we found 40 rare variants in SEMA3A-G and their receptors (PLXNA1-4; NRP1-2) in 573 severely obese individuals; variants disrupted secretion and/or signaling through multiple molecular mechanisms. Rare variants in this set of genes were significantly enriched in 982 severely obese cases compared to 4,449 controls. In a zebrafish mutagenesis screen, deletion of 7 genes in this pathway led to increased somatic growth and/or adiposity demonstrating that disruption of Semaphorin 3 signaling perturbs energy homeostasis. In mice, deletion of the Neuropilin-2 receptor in Pro-opiomelanocortin neurons disrupted their projections from the arcuate to the paraventricular nucleus, reduced energy expenditure, and caused weight gain. Cumulatively, these studies demonstrate that SEMA3-mediated signaling drives the development of hypothalamic melanocortin circuits involved in energy homeostasis.


Assuntos
Metabolismo Energético/genética , Melanocortinas/metabolismo , Semaforinas/genética , Adolescente , Adulto , Animais , Peso Corporal , Linhagem Celular , Criança , Pré-Escolar , Modelos Animais de Doenças , Ingestão de Alimentos , Feminino , Variação Genética/genética , Homeostase , Humanos , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Obesidade/genética , Obesidade/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Adulto Jovem , Peixe-Zebra
2.
Mol Cell Neurosci ; 128: 103920, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331011

RESUMO

Synapse formation in the mammalian brain is a complex and dynamic process requiring coordinated function of dozens of molecular families such as cell adhesion molecules (CAMs) and ligand-receptor pairs (Ephs/Ephrins, Neuroligins/Neurexins, Semaphorins/Plexins). Due to the large number of molecular players and possible functional redundancies within gene families, it is challenging to determine the precise synaptogenic roles of individual molecules, which is key to understanding the consequences of mutations in these genes for brain function. Furthermore, few molecules are known to exclusively regulate either GABAergic or glutamatergic synapses, and cell and molecular mechanisms underlying GABAergic synapse formation in particular are not thoroughly understood. We previously demonstrated that Semaphorin-4D (Sema4D) regulates GABAergic synapse development in the mammalian hippocampus while having no effect on glutamatergic synapse development, and this effect occurs through binding to its high affinity receptor, Plexin-B1. In addition, we demonstrated that RNAi-mediated Plexin-B2 knock-down decreases GABAergic synapse density suggesting that both receptors function in this process. Here, we perform a structure-function study of the Plexin-B1 and Plexin-B2 receptors to identify the protein domains in each receptor which are required for its synaptogenic function. Further, we examine whether Plexin-B2 is required in the presynaptic neuron, the postsynaptic neuron, or both to regulate GABAergic synapse formation. Our data reveal that Plexin-B1 and Plexin-B2 function non-redundantly to regulate GABAergic synapse formation and suggest that the transmembrane domain may underlie functional distinctions. We also provide evidence that Plexin-B2 expression in presynaptic GABAergic interneurons, as well as postsynaptic pyramidal cells, regulates GABAergic synapse formation in hippocampus. These findings lay the groundwork for future investigations into the precise signaling pathways required for synapse formation downstream of Plexin-B receptor signaling.


Assuntos
Moléculas de Adesão Celular , Receptores de Superfície Celular , Semaforinas , Animais , Receptores de Superfície Celular/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Mamíferos
3.
Respir Res ; 22(1): 212, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315444

RESUMO

BACKGROUND: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare lethal congenital lung disorder in neonates characterized by severe progressive respiratory failure and refractory pulmonary hypertension, resulting from underdevelopment of the peripheral pulmonary tree. Causative heterozygous single nucleotide variants (SNVs) or copy-number variant (CNV) deletions involving FOXF1 or its distant lung-specific enhancer on chromosome 16q24.1 have been identified in 80-90% of ACDMPV patients. FOXF1 maps closely to and regulates the oppositely oriented FENDRR, with which it also shares regulatory elements. METHODS: To better understand the transcriptional networks downstream of FOXF1 that are relevant for lung organogenesis, using RNA-seq, we have examined lung transcriptomes in 12 histopathologically verified ACDMPV patients with or without pathogenic variants in the FOXF1 locus and analyzed gene expression profile in FENDRR-depleted fetal lung fibroblasts, IMR-90. RESULTS: RNA-seq analyses in ACDMPV neonates revealed changes in the expression of several genes, including semaphorins (SEMAs), neuropilin 1 (NRP1), and plexins (PLXNs), essential for both epithelial branching and vascular patterning. In addition, we have found deregulation of the vascular endothelial growth factor (VEGF) signaling that also controls pulmonary vasculogenesis and a lung-specific endothelial gene TMEM100 known to be essential in vascular morphogenesis. Interestingly, we have observed a substantial difference in gene expression profiles between the ACDMPV samples with different types of FOXF1 defect. Moreover, partial overlap between transcriptome profiles of ACDMPV lungs with FOXF1 SNVs and FENDRR-depleted IMR-90 cells suggests contribution of FENDRR to ACDMPV etiology. CONCLUSIONS: Our transcriptomic data imply potential crosstalk between several lung developmental pathways, including interactions between FOXF1-SHH and SEMA-NRP or VEGF/VEGFR2 signaling, and provide further insight into complexity of lung organogenesis in humans.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Pulmão/metabolismo , Síndrome da Persistência do Padrão de Circulação Fetal/metabolismo , Semaforinas/metabolismo , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Cultivadas , Feminino , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica/métodos , Técnicas de Silenciamento de Genes/métodos , Humanos , Recém-Nascido , Pulmão/patologia , Masculino , Síndrome da Persistência do Padrão de Circulação Fetal/genética , Síndrome da Persistência do Padrão de Circulação Fetal/patologia , Semaforinas/genética , Fator A de Crescimento do Endotélio Vascular/genética
4.
Int J Mol Sci ; 22(11)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204060

RESUMO

The establishment of neuronal circuits requires neurons to develop and maintain appropriate connections with cellular partners in and out the central nervous system. These phenomena include elaboration of dendritic arborization and formation of synaptic contacts, initially made in excess. Subsequently, refinement occurs, and pruning takes places both at axonal and synaptic level, defining a homeostatic balance maintained throughout the lifespan. All these events require genetic regulations which happens cell-autonomously and are strongly influenced by environmental factors. This review aims to discuss the involvement of guidance cues from the Semaphorin family.


Assuntos
Orientação de Axônios/fisiologia , Sinais (Psicologia) , Modelos Neurológicos , Neurônios/fisiologia , Semaforinas/metabolismo , Animais , Humanos , Plasticidade Neuronal/fisiologia
5.
J Cell Sci ; 131(9)2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29661844

RESUMO

Class-3 semaphorin guidance factors bind to receptor complexes containing neuropilin and plexin receptors. A semaphorin may bind to several receptor complexes containing somewhat different constituents, resulting in diverse effects on cell migration. U87MG glioblastoma cells express both neuropilins and the four class-A plexins. Here, we show that these cells respond to Sema3A or Sema3B by cytoskeletal collapse and cell contraction but fail to contract in response to Sema3C, Sema3D, Sema3G or Sema3E, even when class-A plexins are overexpressed in the cells. In contrast, expression of recombinant plexin-D1 enabled contraction in response to these semaphorins. Surprisingly, unlike Sema3D and Sema3G, Sema3C also induced the contraction and repulsion of plexin-D1-expressing U87MG cells in which both neuropilins were knocked out using CRISPR/Cas9. In the absence of neuropilins, the EC50 of Sema3C was 5.5 times higher, indicating that the neuropilins function as enhancers of plexin-D1-mediated Sema3C signaling but are not absolutely required for Sema3C signal transduction. Interestingly, in the absence of neuropilins, plexin-A4 formed complexes with plexin-D1, and was required in addition to plexin-D1 to enable Sema3C-induced signal transduction.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Citoesqueleto/metabolismo , Neuropilinas/deficiência , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana , Neuropilinas/metabolismo , Transdução de Sinais
6.
Int J Mol Sci ; 21(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580508

RESUMO

Fyn is a non-receptor or cytoplasmatic tyrosine kinase (TK) belonging to the Src family kinases (SFKs) involved in multiple transduction pathways in the central nervous system (CNS) including synaptic transmission, myelination, axon guidance, and oligodendrocyte formation. Almost one hundred years after the original description of Fyn, this protein continues to attract extreme interest because of its multiplicity of actions in the molecular signaling pathways underlying neurodevelopmental as well as neuropathologic events. This review highlights and summarizes the most relevant recent findings pertinent to the role that Fyn exerts in the brain, emphasizing aspects related to neurodevelopment and synaptic plasticity. Fyn is a common factor in healthy and diseased brains that targets different proteins and shapes different transduction signals according to the neurological conditions. We will primarily focus on Fyn-mediated signaling pathways involved in neuronal differentiation and plasticity that have been subjected to considerable attention lately, opening the fascinating scenario to target Fyn TK for the development of potential therapeutic interventions for the treatment of CNS injuries and certain neurodegenerative disorders like Alzheimer's disease.


Assuntos
Doenças do Sistema Nervoso/patologia , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Animais , Humanos , Doenças do Sistema Nervoso/enzimologia , Neurônios/enzimologia
7.
Int J Mol Sci ; 20(3)2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696103

RESUMO

Abstract: Semaphorins are the products of a large gene family containing 28 genes of which 21 are found in vertebrates. Class-3 semaphorins constitute a subfamily of seven vertebrate semaphorins which differ from the other vertebrate semaphorins in that they are the only secreted semaphorins and are distinguished from other semaphorins by the presence of a basic domain at their C termini. Class-3 semaphorins were initially characterized as axon guidance factors, but have subsequently been found to regulate immune responses, angiogenesis, lymphangiogenesis, and a variety of additional physiological and developmental functions. Most class-3 semaphorins transduce their signals by binding to receptors belonging to the neuropilin family which subsequently associate with receptors of the plexin family to form functional class-3 semaphorin receptors. Recent evidence suggests that class-3 semaphorins also fulfill important regulatory roles in multiple forms of cancer. Several class-3 semaphorins function as endogenous inhibitors of tumor angiogenesis. Others were found to inhibit tumor metastasis by inhibition of tumor lymphangiogenesis, by direct effects on the behavior of tumor cells, or by modulation of immune responses. Notably, some semaphorins such as sema3C and sema3E have also been found to potentiate tumor progression using various mechanisms. This review focuses on the roles of the different class-3 semaphorins in tumor progression.


Assuntos
Progressão da Doença , Neoplasias/metabolismo , Neoplasias/patologia , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Animais , Humanos , Neoplasias/genética , Neuropilinas/química , Neuropilinas/metabolismo , Receptores de Superfície Celular/genética
8.
Int J Mol Sci ; 20(3)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759745

RESUMO

The semaphorins represent a large family of signaling molecules with crucial roles in neuronal and cardiac development. While normal semaphorin function pertains largely to development, their involvement in malignancy is becoming increasingly evident. One member, Semaphorin 3C (SEMA3C), has been shown to drive a number of oncogenic programs, correlate inversely with cancer prognosis, and promote the progression of multiple different cancer types. This report surveys the body of knowledge surrounding SEMA3C as a therapeutic target in cancer. In particular, we summarize SEMA3C's role as an autocrine andromedin in prostate cancer growth and survival and provide an overview of other cancer types that SEMA3C has been implicated in including pancreas, brain, breast, and stomach. We also propose molecular strategies that could potentially be deployed against SEMA3C as anticancer agents such as biologics, small molecules, monoclonal antibodies and antisense oligonucleotides. Finally, we discuss important considerations for the inhibition of SEMA3C as a cancer therapeutic agent.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Próstata/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Semaforinas/farmacologia , Semaforinas/uso terapêutico , Animais , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino
9.
Int J Mol Sci ; 20(9)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052281

RESUMO

Glioblastoma (GBM) is the most malignant tumor type affecting the adult central nervous system. Despite advances in therapy, the prognosis for patients with GBM remains poor, with a median survival of about 15 months. To date, few treatment options are available and recent trials based on the molecular targeting of some of the GBM hallmark pathways (e.g., angiogenesis) have not produced any significant improvement in overall survival. The urgent need to develop more efficacious targeted therapies has led to a better molecular characterization of GBM, revealing an emerging role of semaphorins in GBM progression. Semphorins are a wide group of membrane-bound and secreted proteins, originally identified as axon guidance cues, signaling through their receptors, neuropilins, and plexins. A number of semaphorin signals involved in the control of axonal growth and navigation during development have been found to furthermore participate in crosstalk with different dysfunctional GBM pathways, controlling tumor cell proliferation, migration, and invasion, as well as tumor angiogenesis or immune response. In this review, we summarize the regulatory activities mediated by semaphorins and their receptors on the oncogenic pathways implicated in GBM growth and invasive/metastatic progression.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Semaforinas/metabolismo , Animais , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Humanos , Invasividade Neoplásica , Neovascularização Patológica/metabolismo , Semaforinas/genética
10.
Int J Mol Sci ; 20(1)2018 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-30598022

RESUMO

Neuroimmune semaphorin 4A (Sema4A), a member of semaphorin family of transmembrane and secreted proteins, is an important regulator of neuronal and immune functions. In the nervous system, Sema4A primarily regulates the functional activity of neurons serving as an axon guidance molecule. In the immune system, Sema4A regulates immune cell activation and function, instructing a fine tuning of the immune response. Recent studies have shown a dysregulation of Sema4A expression in several types of cancer such as hepatocellular carcinoma, colorectal, and breast cancers. Cancers have been associated with abnormal angiogenesis. The function of Sema4A in angiogenesis and cancer is not defined. Recent studies have demonstrated Sema4A expression and function in endothelial cells. However, the results of these studies are controversial as they report either pro- or anti-angiogenic Sema4A effects depending on the experimental settings. In this mini-review, we discuss these findings as well as our data on Sema4A regulation of inflammation and angiogenesis, which both are important pathologic processes underlining tumorigenesis and tumor metastasis. Understanding the role of Sema4A in those processes may guide the development of improved therapeutic treatments for cancer.


Assuntos
Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Semaforinas/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinogênese/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neovascularização Patológica/tratamento farmacológico , Semaforinas/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Int J Mol Sci ; 18(11)2017 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-29113093

RESUMO

Semaphorin-3E (Sema-3E) is a member of a large family of proteins originally identified as axon guidance cues in neural development. It is expressed in different cell types, such as immune cells, cancer cells, neural cells, and epithelial cells. Subsequently, dys-regulation of Sema-3E expression has been reported in various biological processes that range from cancers to autoimmune and allergic diseases. Recent work in our laboratories revealed a critical immunoregulatory role of Sema-3E in experimental allergic asthma. We further speculate possible immune modulatory function(s) of Sema-3E on natural killer (NK) cells.


Assuntos
Células Matadoras Naturais/metabolismo , Semaforina-3A/metabolismo , Animais , Humanos , Semaforina-3A/química , Semaforina-3A/genética , Transdução de Sinais
12.
Biochim Biophys Acta ; 1846(2): 485-93, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25263940

RESUMO

The ultraprecise wiring of neurons banks on the instructions provided by guidance cue proteins that steer them to their appropriate target tissue during neuronal development. Semaphorins are one such family of proteins. Semaphorins are known to play major physiological roles during the development of various organs including the nervous, cardiovascular, and immune systems. Their role in different pathologies including cancer remains an intense area of investigation. This review focuses on a novel member of this family of proteins, semaphorin 5A, which is much less explored in comparison to its other affiliates. Recent reports suggest that semaphorins play important roles in the pathology of cancer by affecting angiogenesis, tumor growth and metastasis. We will firstly give a general overview of the semaphorin family and its receptors. Next, we discuss their roles in cellular movements and how that makes them a connecting link between the nervous system and cancer. Finally, we focus our discussion on semaphorin 5A to summarize the prevailing knowledge for this molecule in developmental biology and carcinogenesis.


Assuntos
Proteínas de Membrana/fisiologia , Neoplasias/patologia , Proteínas do Tecido Nervoso/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso/fisiologia , Animais , Movimento Celular , Humanos , Semaforinas , Transdução de Sinais/fisiologia
13.
Am J Med Genet A ; 164A(1): 170-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24307393

RESUMO

The identification of causes underlying intellectual disability (ID) is one of the most demanding challenges for clinical Geneticists and Researchers. Despite molecular diagnostics improvements, the vast majority of patients still remain without genetic diagnosis. Here, we report the results obtained using Whole Exome and Target Sequencing on nine patients affected by isolated ID without pathological copy number variations, which were accurately selected from an initial cohort of 236 patients. Three patterns of inheritance were used to search for: (1) de novo, (2) X-linked, and (3) autosomal recessive variants. In three of the nine proband-parent trios analyzed, we identified and validated two de novo and one X-linked potentially causative mutations located in three ID-related genes. We proposed three genes as ID candidate, carrying one de novo and three X-linked mutations. Overall, this systematic proband-parent trio approach using next generation sequencing could explain a consistent percentage of patients with isolated ID, thus increasing our knowledge on the molecular bases of this disease and opening new perspectives for a better diagnosis, counseling, and treatment.


Assuntos
Deficiência Intelectual/genética , Biologia Computacional , Exoma , Feminino , Genes Recessivos , Genes Ligados ao Cromossomo X , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Deficiência Intelectual/diagnóstico , Cariótipo , Masculino , Mutação , Fluxo de Trabalho
14.
Cancers (Basel) ; 15(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37627074

RESUMO

Plexins are a family of nine single-pass transmembrane receptors with a conserved GTPase activating protein (GAP) domain. The plexin family is divided into four subfamilies: Type-A, type-B, type-C, and type-D plexins. Plexins function as receptors for axon guidance factors of the semaphorin family. The semaphorin gene family contains 22 genes that are divided into eight subclasses of which subclasses three to seven represent vertebrate semaphorins. The plexins and their semaphorin ligands have important roles as regulators of angiogenesis, cancer proliferation, and metastasis. Class 3 semaphorins, with the exception of sema3E, are the only semaphorins that do not bind directly to plexins. In order to transduce their signals, they bind instead to complexes consisting of receptors of the neuropilin family and various plexins. Some plexins also form complexes with tyrosine-kinase receptors such as the epidermal growth factor receptor ErbB2, the mesenchymal epithelial transition factor receptor (MET), and the Vascular endothelial growth factor receptor 2 (VEGFR2) and, as a result, can modulate cell proliferation and tumor progression. This review focuses on the roles of the different plexins in the control of cancer cell proliferation and invasiveness. Plexins also affect tumor progression and tumor metastasis by indirect mechanisms, such as modulation of angiogenesis and immune responses. However, these topics are not covered in the present review.

15.
Cancers (Basel) ; 15(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067240

RESUMO

According to recent evidence, some groups of semaphorins (SEMAs) have been associated with cancer progression. These proteins are able to modulate the cellular signaling of particular receptor tyrosine kinases (RTKs) via the stimulation of SEMA-specific coreceptors, namely plexins (plexin-A, -B, -C, -D) and neuropilins (Np1, Np2), which share common domains with RTKs, leading to the coactivation of the latter receptors. MET, ERBB2, VEGFR2, PFGFR, and EGFR, among others, represent acknowledged targets of semaphorins that are often associated with tumor progression or poor prognosis. In particular, higher expression of SEMA6 family proteins in cancer cells and stromal cells of the cancer niche is often associated with enhanced tumor angiogenesis, metastasis, and resistance to anticancer therapy. Notably, high SEMA6 expression in malignant tumor cells such as melanoma, pleural mesothelioma, gastric cancer, lung adenocarcinoma, and glioblastoma may serve as a prognostic biomarker of tumor progression. To date, very few studies have focused on the mechanisms of transmembrane SEMA6-driven tumor progression and its underlying interplay with RTKs within the tumor microenvironment. This review presents the growing evidence in the literature on the complex and shaping role of SEMA6 family proteins in cancer responsiveness to environmental stimuli.

16.
Inflamm Regen ; 42(1): 5, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35045890

RESUMO

The global prevalence of metabolic diseases, such as obesity, diabetes, and atherosclerosis, is rapidly increasing and has now reached epidemic proportions. Chronic tissue inflammation is a characteristic of these metabolic diseases, indicating that immune responses are closely involved in the pathogenesis of metabolic disorders. However, the regulatory mechanisms underlying immunometabolic crosstalk in these diseases are not completely understood. Recent studies have revealed the multifaceted functions of semaphorins, originally identified as axon guidance molecules, in regulating tissue inflammation and metabolic disorders, thereby highlighting the functional coupling between semaphorin signaling and immunometabolism. In this review, we explore how semaphorin signaling transcends beyond merely guiding axons to controlling immune responses and metabolic diseases.

17.
Front Cell Dev Biol ; 10: 814160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325362

RESUMO

Extracellular signaling proteins serve as neuronal growth cone guidance molecules during development and are well positioned to be involved in neuronal regeneration and recovery from injury. Semaphorins and their receptors, the plexins, are a family of conserved proteins involved in development that, in the nervous system, are axonal guidance cues mediating axon pathfinding and synapse formation. The Caenorhabditis elegans genome encodes for three semaphorins and two plexin receptors: the transmembrane semaphorins, SMP-1 and SMP-2, signal through their receptor, PLX-1, while the secreted semaphorin, MAB-20, signals through PLX-2. Here, we evaluate the locomotion behavior of knockout animals missing each of the semaphorins and plexins and the neuronal morphology of plexin knockout animals; we described the cellular expression pattern of the promoters of all plexins in the nervous system of C. elegans; and we evaluated their effect on the regrowth and reconnection of motoneuron neurites and the recovery of locomotion behavior following precise laser microsurgery. Regrowth and reconnection were more prevalent in the absence of each plexin, while recovery of locomotion surpassed regeneration in all genotypes.

18.
Cells ; 11(19)2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36231105

RESUMO

Chronic pain is a debilitating condition that influences the social, economic, and psychological aspects of patients' lives. Hence, the need for better treatment is drawing extensive interest from the research community. Developmental molecules such as Wnt, ephrins, and semaphorins are acknowledged as central players in the proper growth of a biological system. Their receptors and ligands are expressed in a wide variety in both neurons and glial cells, which are implicated in pain development, maintenance, and resolution. Thereby, it is not surprising that the impairment of those pathways affects the activities and functions of the entire cell. Evidence indicates aberrant activation of their pathways in the nervous system in rodent models of chronic pain. In those conditions, Wnt, ephrin, and semaphorin signaling participate in enhancing neuronal excitability, peripheral sensitization, synaptic plasticity, and the production and release of inflammatory cytokines. This review summarizes the current knowledge on three main developmental pathways and their mechanisms linked with the pathogenesis and progression of pain, considering their impacts on neuronal and glial cells in experimental animal models. Elucidations of the downstream pathways may provide a new mechanism for the involvement of Wnt, ephrin, and semaphorin pathways in pain chronicity.


Assuntos
Dor Crônica , Semaforinas , Animais , Orientação de Axônios , Citocinas , Efrinas/metabolismo , Semaforinas/metabolismo
19.
Immunol Res ; 70(2): 135-142, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35031951

RESUMO

Semaphorin-3A (Sema-3A), a secreted member of the semaphorin family, is well known for playing regulatory functions at all stages of the immune response. Sema-3A transduces signals by binding to its cognate receptors, namely, class A plexins (Plxns A1 to A4) and neuropilin-1 (Nrp-1). The downstream diverse signaling pathways induced by connecting Sema-3A to its receptors were found to be involved in the pathogenesis of different immunological disorders, ranging from cancer to autoimmunity and allergies. Recent studies have demonstrated that Sema-3A expression is diminished in the murine models and patients with allergic rhinitis (AR; a chronic inflammatory disorder of the nasal mucosa), suggesting the involvement of Sema-3A in AR pathogenesis. Investigations also revealed that treatment of these mice with exogenous Sema-3A protein alleviates the clinical symptom scores of AR, thereby compensating for the reduced expression of Sema-3A in AR. Indeed, Sema-3A treatment could suppress allergic responses in AR via inhibiting Th2/Th17 responses and boosting Th1/Treg responses. Also, Sema-3A could diminish dendritic cell (DC) maturation and T cell proliferation. Since it is implicated in the pathogenesis of AR; thus, Sema-3A turns to be a promising tool of therapy to be studied and utilized in this disease. This review intends to highlight the recent evidence on the role of Sema-3A in AR pathogenesis and summarizes the recent findings regarding the expression status of Sema-3A, as well as its therapeutic potential for treating this disease. HIGHLIGHTS: Sema-3A plays regulatory functions at all stages of the immune response. Sema-3A receptors are the class A plexins (A1-A4) and neuropilin-1 (Nrp-1). Sema-3A expression is reduced in murine models and patients with allergic rhinitis. Connecting Sema-3A to Nrp-1 increases Foxp3 expression in Treg cells. Injecting Sema-3A protein exerts therapeutic effects in mouse models of allergic diseases. Sema-3A shows promise as a therapeutic tool for the treatment of allergic rhinitis.


Assuntos
Rinite Alérgica , Semaforina-3A , Animais , Humanos , Camundongos , Neuropilina-1 , Rinite Alérgica/tratamento farmacológico , Semaforina-3A/metabolismo , Semaforina-3A/farmacologia , Transdução de Sinais , Linfócitos T Reguladores
20.
Int Immunopharmacol ; 95: 107556, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33756227

RESUMO

The immune and nervous systems possess a highly intricate network of synaptic connections, shared messenger molecules, and exquisite communication ways, allowing intercellular signal transduction. The semaphorins (Semas) were initially identified as axonal guidance molecules in the development of the nervous system but later were found to be implicated also in regulating the immune system, known in this case as the "immune Semas" or "immunoregulatory Semas". Increasingly, these molecules are involved in multiple aspects of both physiological and pathological immune responses and were recently indicated to take part in various immunological disorders, encompassing allergy, cancer, and autoimmunity. Semas transduce signals by connecting to their cognate receptors, namely, plexins and neuropilins. Some of them, like Sema-3F, have been found to function as the inducer of the remyelination process whereas some others, like Sema-3A and Sema-4D, act to inhibit this process, either directly or indirectly. Besides, Sema-4A is crucial to the differentiation of T helper type 1 (Th1) and Th17 cells that are potentially involved in the pathogenesis of multiple sclerosis (MS), an autoimmune disease of the central nervous system. This review aims to reveal the role of immune Semas in the pathogenesis of MS and its animal model, experimental autoimmune encephalomyelitis, focusing on the therapeutic usages of these molecules to treat this neurodegenerative disease.


Assuntos
Esclerose Múltipla/imunologia , Semaforinas/imunologia , Animais , Células Dendríticas/imunologia , Humanos , Ativação de Macrófagos , Macrófagos/imunologia , Esclerose Múltipla/terapia , Proteínas do Tecido Nervoso/imunologia , Receptores de Superfície Celular/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa