Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(2): 323-333.e9, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33306959

RESUMO

The December 2019 outbreak of a novel respiratory virus, SARS-CoV-2, has become an ongoing global pandemic due in part to the challenge of identifying symptomatic, asymptomatic, and pre-symptomatic carriers of the virus. CRISPR diagnostics can augment gold-standard PCR-based testing if they can be made rapid, portable, and accurate. Here, we report the development of an amplification-free CRISPR-Cas13a assay for direct detection of SARS-CoV-2 from nasal swab RNA that can be read with a mobile phone microscope. The assay achieved ∼100 copies/µL sensitivity in under 30 min of measurement time and accurately detected pre-extracted RNA from a set of positive clinical samples in under 5 min. We combined crRNAs targeting SARS-CoV-2 RNA to improve sensitivity and specificity and directly quantified viral load using enzyme kinetics. Integrated with a reader device based on a mobile phone, this assay has the potential to enable rapid, low-cost, point-of-care screening for SARS-CoV-2.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , Telefone Celular/instrumentação , Imagem Óptica/métodos , RNA Viral/análise , Carga Viral/métodos , Animais , Teste de Ácido Nucleico para COVID-19/economia , Teste de Ácido Nucleico para COVID-19/instrumentação , Sistemas CRISPR-Cas , Linhagem Celular , Proteínas do Nucleocapsídeo de Coronavírus/genética , Humanos , Nasofaringe/virologia , Imagem Óptica/instrumentação , Fosfoproteínas/genética , Testes Imediatos , Interferência de RNA , RNA Viral/genética , Sensibilidade e Especificidade , Carga Viral/economia , Carga Viral/instrumentação
2.
Small ; : e2401148, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801400

RESUMO

Electrochemical paper-based microfluidics has attracted much attention due to the promise of transforming point-of-care diagnostics by facilitating quantitative analysis with low-cost and portable analyzers. Such devices harness capillary flow to transport samples and reagents, enabling bioassays to be executed passively. Despite exciting demonstrations of capillary-driven electrochemical tests, conventional methods for fabricating electrodes on paper impede capillary flow, limit fluidic pathways, and constrain accessible device architectures. This account reviews recent developments in paper-based electroanalytical devices and offers perspective by revisiting key milestones in lateral flow tests and paper-based microfluidics engineering. The study highlights the benefits associated with electrochemical sensing and discusses how the detection modality can be leveraged to unlock novel functionalities. Particular focus is given to electrofluidic platforms that embed electrodes into paper for enhanced biosensing applications. Together, these innovations pave the way for diagnostic technologies that offer portability, quantitative analysis, and seamless integration with digital healthcare, all without compromising the simplicity of commercially available rapid diagnostic tests.

3.
Anal Bioanal Chem ; 416(13): 3107-3115, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38589616

RESUMO

Through enabling whole blood detection in point-of-care testing (POCT), sedimentation-based plasma separation promises to enhance the functionality and extend the application range of lateral flow assays (LFAs). To streamline the entire process from the introduction of the blood sample to the generation of quantitative immune-fluorescence results, we combined a simple plasma separation technique, an immunoreaction, and a micropump-driven external suction control system in a polymer channel-based LFA. Our primary objective was to eliminate the reliance on sample-absorbing separation membranes, the use of active separation forces commonly found in POCT, and ultimately allowing finger prick testing. Combining the principle of agglutination of red blood cells with an on-device sedimentation-based separation, our device allows for the efficient and fast separation of plasma from a 25-µL blood volume within a mere 10 min and overcomes limitations such as clogging, analyte adsorption, and blood pre-dilution. To simplify this process, we stored the agglutination agent in a dried state on the test and incorporated a filter trench to initiate sedimentation-based separation. The separated plasma was then moved to the integrated mixing area, initiating the immunoreaction by rehydration of probe-specific fluorophore-conjugated antibodies. The biotinylated immune complex was subsequently trapped in the streptavidin-rich detection zone and quantitatively analyzed using a fluorescence microscope. Normalized to the centrifugation-based separation, our device demonstrated high separation efficiency of 96% and a yield of 7.23 µL (= 72%). Furthermore, we elaborate on its user-friendly nature and demonstrate its proof-of-concept through an all-dried ready-to-go NT-proBNP lateral flow immunoassay with clinical blood samples.


Assuntos
Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Humanos , Peptídeo Natriurético Encefálico/sangue , Peptídeo Natriurético Encefálico/isolamento & purificação , Fragmentos de Peptídeos/sangue , Testes Imediatos , Imunoensaio/métodos , Imunoensaio/instrumentação , Desenho de Equipamento
4.
Sensors (Basel) ; 24(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38257606

RESUMO

In the constantly evolving field of medical diagnostics, triboelectric nanogenerators (TENGs) stand out as a groundbreaking innovation for simultaneously harnessing mechanical energy from micromovements and sensing stimuli from both the human body and the ambient environment. This advancement diminishes the dependence of biosensors on external power sources and paves the way for the application of TENGs in self-powered medical devices, especially in the realm of point-of-care diagnostics. In this review, we delve into the functionality of TENGs in point-of-care diagnostics. First, from the basic principle of how TENGs effectively transform subtle physical movements into electrical energy, thereby promoting the development of self-powered biosensors and medical devices that are particularly advantageous for real-time biological monitoring. Then, the adaptable design of TENGs that facilitate customization to meet individual patient needs is introduced, with a focus on their biocompatibility and safety in medical applications. Our in-depth analysis also covers TENG-based biosensor designs moving toward exceptional sensitivity and specificity in biomarker detection, for accurate and efficient diagnoses. Challenges and future prospects such as the integration of TENGs into wearable and implantable devices are also discussed. We aim for this review to illuminate the burgeoning field of TENG-based intelligent devices for continuous, real-time health monitoring; and to inspire further innovation in this captivating area of research that is in line with patient-centered healthcare.


Assuntos
Monitoramento Biológico , Testes Imediatos , Humanos , Fontes de Energia Elétrica , Eletricidade , Inteligência
5.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731897

RESUMO

Inspired by nature's remarkable ability to form intricate minerals, researchers have unlocked transformative strategies for creating next-generation biosensors with exceptional sensitivity, selectivity, and biocompatibility. By mimicking how organisms orchestrate mineral growth, biomimetic and bioinspired materials are significantly impacting biosensor design. Engineered bioinspired materials offer distinct advantages over their natural counterparts, boasting superior tunability, precise controllability, and the ability to integrate specific functionalities for enhanced sensing capabilities. This remarkable versatility enables the construction of various biosensing platforms, including optical sensors, electrochemical sensors, magnetic biosensors, and nucleic acid detection platforms, for diverse applications. Additionally, bioinspired materials facilitate the development of smartphone-assisted biosensing platforms, offering user-friendly and portable diagnostic tools for point-of-care applications. This review comprehensively explores the utilization of naturally occurring and engineered biominerals and materials for diverse biosensing applications. We highlight the fabrication and design strategies that tailor their functionalities to address specific biosensing needs. This in-depth exploration underscores the transformative potential of biominerals and materials in revolutionizing biosensing, paving the way for advancements in healthcare, environmental monitoring, and other critical fields.


Assuntos
Materiais Biomiméticos , Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Materiais Biomiméticos/química , Humanos , Minerais/química , Minerais/análise , Animais , Biomimética/métodos
6.
Crit Rev Biochem Mol Biol ; 56(6): 543-586, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34263688

RESUMO

The introduction of nucleic acid amplification techniques has revolutionized the field of medical diagnostics in the last decade. The advent of PCR catalyzed the increasing application of DNA, not just for molecular cloning but also for molecular based diagnostics. Since the introduction of PCR, a deeper understanding of molecular mechanisms and enzymes involved in DNA/RNA replication has spurred the development of novel methods devoid of temperature cycling. Isothermal amplification methods have since been introduced utilizing different mechanisms, enzymes, and conditions. The ease with which isothermal amplification methods have allowed nucleic acid amplification to be carried out has had a profound impact on the way molecular diagnostics are being designed after the turn of the millennium. With all the advantages isothermal amplification brings, the issues or complications surrounding each method are heterogeneous making it difficult to identify the best approach for an end-user. This review pays special attention to the various isothermal amplification methods by classifying them based on the mechanistic characteristics which include reaction formats, amplification information, promoter, strand break, and refolding mechanisms. We would also compare the efficiencies and usefulness of each method while highlighting the potential applications and detection methods involved. This review will serve as an overall outlook on the journey and development of isothermal amplification methods as a whole.


Assuntos
Técnicas de Amplificação de Ácido Nucleico/métodos , DNA , Temperatura
7.
J Biol Chem ; 298(3): 101678, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35122792

RESUMO

Detecting the mycobacterial glycolipid lipoarabinomannan (LAM) in urine by anti-LAM antibodies fills a gap in the diagnostic armamentarium of much needed simple rapid tests for tuberculosis, but lacks high sensitivity in all patient groups. A better understanding of LAM structure from clinically relevant strains may allow improvements in diagnostic performance. De et al. have recently determined the structures of LAM from three epidemiologically important lineages of Mycobacterium tuberculosis and probed their interaction with an anti-LAM monoclonal antibody. Their results not only identify a series of tailoring modifications that impact antibody binding but also provide a roadmap for improving U-LAM-based diagnostics.


Assuntos
Lipopolissacarídeos , Mycobacterium tuberculosis , Tuberculose , Humanos , Lipopolissacarídeos/química , Lipopolissacarídeos/urina , Mycobacterium tuberculosis/química , Sensibilidade e Especificidade , Tuberculose/diagnóstico , Tuberculose/microbiologia , Tuberculose/urina
8.
Small ; 19(28): e2207404, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36974592

RESUMO

Surface-enhanced Raman spectroscopy (SERS)-based biosensors have attracted much attention for their label-free detection, ultrahigh sensitivity, and unique molecular fingerprinting. In this study, a wafer-scale, ultrasensitive, highly uniform, paper-based, portable SERS detection platform featuring abundant and dense gold nanopearls with narrow gap distances, are prepared and deposited directly onto ultralow-surface-energy fluorosilane-modified cellulose fibers through simple thermal evaporation by delicately manipulating the atom diffusion behavior. The as-designed paper-based SERS substrate exhibits an extremely high Raman enhancement factor (3.9 × 1011 ), detectability at sub-femtomolar concentrations (single-molecule level) and great signal reproductivity (relative standard deviation: 3.97%), even when operated with a portable 785-nm Raman spectrometer. This system is used for fingerprinting identification of 12 diverse analytes, including clinical medicines (cefazolin, chloramphenicol, levetiracetam, nicotine), pesticides (thiram, paraquat, carbaryl, chlorpyrifos), environmental carcinogens (benzo[a]pyrene, benzo[g,h,i]perylene), and illegal drugs (methamphetamine, mephedrone). The lowest detection concentrations reach the sub-ppb level, highlighted by a low of 16.2 ppq for nicotine. This system appears suitable for clinical applications in, for example, i) therapeutic drug monitoring for individualized medication adjustment and ii) ultra-early diagnosis for pesticide intoxication. Accordingly, such scalable, portable and ultrasensitive fibrous SERS substrates open up new opportunities for practical on-site detection in biofluid analysis, point-of-care diagnostics and precision medicine.


Assuntos
Nanopartículas Metálicas , Praguicidas , Ouro/química , Nicotina , Praguicidas/análise , Análise Espectral Raman/métodos , Tiram/análise , Nanopartículas Metálicas/química
9.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33483726

RESUMO

Extended turnaround times and large economic costs hinder the usage of currently applied screening methods for bacterial pathogen identification (ID) and antimicrobial susceptibility testing. This review provides an overview of current detection methods and their usage in a clinical setting. Issues of timeliness and cost could soon be circumvented, however, with the emergence of detection methods involving single molecule sequencing technology. In the context of bringing diagnostics closer to the point of care, we examine the current state of Oxford Nanopore Technologies (ONT) products and their interaction with third-party software/databases to assess their capabilities for ID and antimicrobial resistance (AMR) prediction. We outline and discuss a potential diagnostic workflow, enumerating (1) rapid sample prep kits, (2) ONT hardware/software and (3) third-party software and databases to improve the cost, accuracy and turnaround times for ID and AMR. Multiple studies across a range of infection types support that the speed and accuracy of ONT sequencing is now such that established ID and AMR prediction tools can be used on its outputs, and so it can be harnessed for near real time, close to the point-of-care diagnostics in common clinical circumstances.


Assuntos
Bactérias/genética , Infecções Bacterianas/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento por Nanoporos/métodos , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Farmacorresistência Bacteriana/genética , Humanos , Testes de Sensibilidade Microbiana , Testes Imediatos , Software
10.
HIV Med ; 24(8): 859-876, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37041113

RESUMO

BACKGROUND: Despite expanded access to antiretroviral therapy (ART) and the rollout of the World Health Organization's (WHO) 'test-and-treat' strategy, the proportion of people with HIV (PWH) presenting with advanced HIV disease (AHD) remains unchanged at approximately 30%. Fifty percent of persons with AHD report prior engagement to care. ART failure and insufficient retention in HIV care are major causes of AHD. People living with AHD are at high risk for opportunistic infections and death. In 2017, the WHO published guidelines for the management of AHD that included a comprehensive package of care for screening and prophylaxis of major opportunistic infections (OIs). In the interim, ART regimens have evolved: integrase inhibitors are first-line therapy globally, and the diagnostic landscape is evolving. The objective of this review is to highlight novel point-of-care (POC) diagnostics and treatment strategies that can facilitate OI screening and prophylaxis for persons with AHD. METHODS: We reviewed the WHO guidelines for recommendations for persons with AHD. We summarized the scientific literature on current and emerging diagnostics, along with emerging treatment strategies for persons with AHD. We also highlight the key research and implementation gaps together with potential solutions. RESULTS: While POC CD4 testing is being rolled out in order to identify persons with AHD, this alone is insufficient; implementation of the Visitect CD4 platform has been challenging given operational and test interpretation issues. Numerous non-sputum POC TB diagnostics are being evaluated, many with limited sensitivity. Though imperfect, these tests are designed to provide rapid results (within hours) and are relatively affordable for resource-poor settings. While novel POC diagnostics are being developed for cryptococcal infection, histoplasmosis and talaromycosis, implementation science studies are urgently needed to understand the clinical benefit of these tests in the routine care. CONCLUSIONS: Despite progress with HIV treatment and prevention, a persistent 20%-30% of PWH present to care with AHD. Unfortunately, these persons with AHD continue to carry the burden of HIV-related morbidity and mortality. Investment in the development of additional POC or near-bedside CD4 platforms is urgently needed. Implementation of POC diagnostics theoretically could improve HIV retention in care and thereby reduce mortality by overcoming delays in laboratory testing and providing patients and healthcare workers with timely same-day results. However, in real-world scenarios, people with AHD have multiple comorbidities and imperfect follow-up. Pragmatic clinical trials are needed to understand whether these POC diagnostics can facilitate timely diagnosis and treatment, thereby improving clinical outcomes such as HIV retention in care.


Assuntos
Infecções por HIV , Infecções Oportunistas , Humanos , Infecções por HIV/diagnóstico , Infecções por HIV/tratamento farmacológico , Testes Imediatos , Acessibilidade aos Serviços de Saúde , Antirretrovirais/uso terapêutico , Infecções Oportunistas/tratamento farmacológico
11.
J Med Virol ; 95(10): e29158, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37842790

RESUMO

During the SARS-CoV-2 pandemic, rapid and sensitive detection of SARS-CoV-2 has been of high importance for outbreak control. Reverse transcriptase polymerase chain reaction (RT-PCR) is the current gold standard, however, the procedures require an equipped laboratory setting and personnel, which have been regularly overburdened during the pandemic. This often resulted in long waiting times for patients. In contrast, reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) is a simple, cost-efficient, and fast procedure, allowing for rapid and remote detection of SARS-CoV-2. In the current study, we performed a clinical evaluation of a new point-of-care test system based on LAMP-technology for SARS-CoV-2 detection, providing a result within 25 min (1copy™ COVID-19 MDx Kit Professional system). We tested 112 paired nasopharyngeal swabs, collected in the COVID-19 Ghent University Hospital test center, using the 1copy™ COVID-19 MDx Kit Professional system, and RT-PCR as the reference method. The test system was found to have a clinical sensitivity of 93.24% (69/74) (95% confidence interval [CI]: 84.93%-97.77%) and specificity of 97.37% (37/38) (95% CI: 86.19%-99.93%). Due to its easy smartphone operation and ready-to-use reagents, it ought to be easily applied in for instance general practices, pharmacies, nursing homes, schools, and companies. This would facilitate an efficient SARS-CoV-2 outbreak control and quarantine policy, as diagnosis can occur sooner in a near-patient setting.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Teste para COVID-19 , Smartphone , Técnicas de Laboratório Clínico/métodos , Sensibilidade e Especificidade , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/genética
12.
Anal Bioanal Chem ; 415(8): 1421-1435, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36754874

RESUMO

The emergence of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in 2019 caused an increased interest in neutralizing antibody tests to determine the immune status of the population. Standard live-virus-based neutralization assays such as plaque-reduction assays or pseudovirus neutralization tests cannot be adapted to the point-of-care (POC). Accordingly, tests quantifying competitive binding inhibition of the angiotensin-converting enzyme 2 (ACE2) receptor to the receptor-binding domain (RBD) of SARS-CoV-2 by neutralizing antibodies have been developed. Here, we present a new platform using sulforhodamine B encapsulating liposomes decorated with RBD as foundation for the development of both a fluorescent, highly feasible high-throughput (HTS) and a POC-ready neutralizing antibody assay. RBD-conjugated liposomes are incubated with serum and subsequently immobilized in an ACE2-coated plate or mixed with biotinylated ACE2 and used in test strip with streptavidin test line, respectively. Polyclonal neutralizing human antibodies were shown to cause complete binding inhibition, while S309 and CR3022 human monoclonal antibodies only caused partial inhibition, proving the functionality of the assay. Both formats, the HTS and POC assay, were then tested using 20 sera containing varying titers of neutralizing antibodies, and a control panel of sera including prepandemic sera and reconvalescent sera from respiratory infections other than SARS-CoV-2. Both assays correlated well with a standard pseudovirus neutralization test (r = 0.847 for HTS and r = 0.614 for POC format). Furthermore, excellent correlation (r = 0.868) between HTS and POC formats was observed. The flexibility afforded by liposomes as signaling agents using different dyes and sizes can hence be utilized in the future for a broad range of multianalyte neutralizing antibody diagnostics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , Lipossomos , Anticorpos Antivirais , Sistemas Automatizados de Assistência Junto ao Leito , COVID-19/diagnóstico , Anticorpos Neutralizantes
13.
Anal Bioanal Chem ; 415(22): 5451-5462, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37389600

RESUMO

One of the most important reasons for an increased mortality rate of cancer is late diagnosis. Point-of-care (POC) diagnostic sensors can provide rapid and cost-effective diagnosis and monitoring of cancer biomarkers. Portable, disposable, and sensitive sarcosine solid-contact ion-selective potentiometric sensors (SC-ISEs) were fabricated as POC analyzers for the rapid determination of the prostate cancer biomarker sarcosine. Tungsten trioxide nanoparticles (WO3 NPs), polyaniline nanoparticles (PANI NPs), and PANI-WO3 nanocomposite were used as ion-to-electron transducers on screen-printed sensors. WO3 NPs and PANI-WO3 nanocomposite have not been investigated before as ion-to-electron transducer layers in potentiometric SC sensors. The designated sensors were characterized using SEM, XRD, FTIR, UV-VIS spectroscopy, and EIS. The inclusion of WO3 and PANI in SC sensors enhanced the transduction at the interface between the screen-printed SC and the ion-selective membrane, offering lower potential drift, a longer lifetime, shorter response time, and better sensitivity. The proposed sarcosine sensors exhibited Nernstian slopes over linear response ranges 10-3-10-7 M, 10-3-10-8 M, 10-5-10-9 M, and 10-7-10-12 M for control, WO3 NPs, PANI NPs, and PANI-WO3 nanocomposite-based sensors, respectively. From a comparative point of view between the four sensors, PANI-WO3 nanocomposite inclusion offered the lowest potential drift (0.5 mV h-1), the longest lifetime (4 months), and the best LOD (9.95 × 10-13 M). The proposed sensors were successfully applied to determine sarcosine as a potential prostate cancer biomarker in urine without prior sample treatment steps. The WHO ASSURED criteria for point-of-care diagnostics are met by the proposed sensors.


Assuntos
Nanocompostos , Neoplasias da Próstata , Masculino , Humanos , Biomarcadores Tumorais , Sarcosina , Próstata , Polímeros/química , Óxidos/química , Neoplasias da Próstata/diagnóstico , Testes Imediatos , Nanocompostos/química
14.
Sensors (Basel) ; 23(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36772748

RESUMO

Numerous immunoassays have been successfully integrated on disc-based centrifugal platforms (CDs) over the last 20 years. These CD devices can be used as portable point-of-care (POC) platforms with sample-to-answer capabilities where bodily fluids such as whole blood can be used as samples directly without pre-processing. In order to use whole blood as a sample on CDs, centrifugation is used to separate red blood cells from plasma on CDs. There are several techniques for using specific fluidic patterns in the centrifugal fluidic network, such as reciprocation, that enhances the sensitivity of the immunoassays, including those using microarray antigen membranes. Present work demonstrates, for the first time, simultaneous integration of blood plasma separation (BPS) and reciprocation on the CD platform. The integrated design allows plasma that is separated from the red blood cells in a sedimentation chamber to flow into the reciprocation chamber via a narrow connecting channel of 0.5 mm × 0.5 mm cross-section. Due to the small cross-section of the connecting channel, there is no inflow of the red blood cell into the reciprocation chamber during subsequent fluidic operations of the CD. While no inflow of the red blood cells into the reciprocation chamber was observed, the conditions of 20 g jerk acceleration were also simulated in ANSYS finite element analysis software, and it was found that the CD design that was used is capable of retaining red blood cells in the sedimentation chamber. Experimentally, the isolation of red blood cells in the sedimentation chamber was confirmed using the ImageJ image processor to detect the visible color-based separation of the plasma from the blood. A fluorescent analyte testing on the bio-sensing array of the presented novel integrated design and on the standard reciprocation design CD was conducted for 7 min of reciprocation in each case. The test analyte was Europium Streptavidin Polystyrene analyte (10-3 mg/mL) and the microarray consisted of Biotin bovine serum albumin (BSA) dots. The fluorescent signals for the standard and integrated designs were nearly identical (within the margin of error) for the first several minutes of reciprocation, but the fluorescent signal for the integrated design was significantly higher when the reciprocation time was increased to 7 min.


Assuntos
Técnicas Analíticas Microfluídicas , Técnicas Analíticas Microfluídicas/métodos , Centrifugação/métodos , Imunoensaio/métodos , Plasma
15.
Sensors (Basel) ; 23(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37430517

RESUMO

Rapid, easy-to-use, and low-cost systems for biological sample testing are important for point-of-care diagnostics and various other health applications. The recent pandemic of Coronavirus Disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) showed an urgent need to rapidly and accurately identify the genetic material of SARS-CoV-2, an enveloped ribonucleic acid (RNA) virus, in upper respiratory specimens from people. In general, sensitive testing methods require genetic material extraction from the specimen. Unfortunately, current commercially available extraction kits are expensive and involve time-consuming and laborious extraction procedures. To overcome the difficulties associated with common extraction methods, we propose a simple enzymatic assay for the nucleic acid extraction step using heat mediation to improve the polymerase chain reaction (PCR) reaction sensitivity. Our protocol was tested on Human Coronavirus 229E (HCoV-229E) as an example, which comes from the large coronaviridae family of viruses that affect birds, amphibians, and mammals, of which SARS-CoV-2 is a member. The proposed assay was performed using a low-cost, custom-made, real-time PCR system that incorporates thermal cycling and fluorescence detection. It had fully customizable reaction settings to allow versatile biological sample testing for various applications, including point-of-care medical diagnosis, food and water quality testing, and emergency health situations. Our results show that heat-mediated RNA extraction is a viable extraction method when compared to commercial extraction kits. Further, our study showed that extraction has a direct impact on purified laboratory samples of HCoV-229E, but no direct impact on infected human cells. This is clinically relevant, as it allows us to circumvent the extraction step on clinical samples when using PCR.


Assuntos
COVID-19 , Ácidos Nucleicos , Animais , Humanos , Reação em Cadeia da Polimerase em Tempo Real , RNA , COVID-19/diagnóstico , SARS-CoV-2/genética , Mamíferos , Teste para COVID-19
16.
Int J Mol Sci ; 24(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37834437

RESUMO

The recent pandemic of SARS-CoV-2 has underscored the critical need for rapid and precise viral detection technologies. Point-of-care (POC) technologies, which offer immediate and accurate testing at or near the site of patient care, have become a cornerstone of modern medicine. Prokaryotic Argonaute proteins (pAgo), proficient in recognizing target RNA or DNA with complementary sequences, have emerged as potential game-changers. pAgo present several advantages over the currently popular CRISPR/Cas systems-based POC diagnostics, including the absence of a PAM sequence requirement, the use of shorter nucleic acid molecules as guides, and a smaller protein size. This review provides a comprehensive overview of pAgo protein detection platforms and critically assesses their potential in the field of viral POC diagnostics. The objective is to catalyze further research and innovation in pAgo nucleic acid detection and diagnostics, ultimately facilitating the creation of enhanced diagnostic tools for clinic viral infections in POC settings.


Assuntos
Ácidos Nucleicos , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Células Procarióticas/metabolismo , Testes Imediatos , Sistemas CRISPR-Cas
17.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175522

RESUMO

Rapid, inexpensive, and accurate determination of nucleic acids is a decisive factor in evaluating population's health and monitoring treatment at point-of-care (POC) settings. Testing systems with visual outputs can provide instrument-free signal detection. Isothermal amplification technologies can substitute conventional polymerase chain reaction (PCR) testing due to compatibility with the POC diagnostic. Here, we have visually detected DNA fragments obtained by stem-loop-primer-assisted isothermal amplification (SPA), but not those obtained by PCR or LAMP amplification using DNA nanomachines with peroxidase-like activity (PxDM) with sensitivity to a single nucleotide substitution. Compared to the diagnostics with conventional loop-mediated isothermal amplification (LAMP), the PxDM method produces no false positive signals with the non-specific amplification products. The study suggests that PxDM, in conjunction with SPA isothermal amplification, can become a valid platform for POC testing systems.


Assuntos
Ácidos Nucleicos , Peroxidase , DNA , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase/métodos , Peroxidases , Sensibilidade e Especificidade
18.
Clin Microbiol Rev ; 34(4): e0032920, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34378956

RESUMO

Parasitic neglected tropical diseases (NTDs) affect over one billion people worldwide, with individuals from communities in low-socioeconomic areas being most at risk and suffering the most. Disease management programs are hindered by the lack of infrastructure and resources for clinical sample collection, storage, and transport and a dearth of sensitive diagnostic methods that are inexpensive as well as accurate. Many diagnostic tests and tools have been developed for the parasitic NTDs, but the collection and storage of clinical samples for molecular and immunological diagnosis can be expensive due to storage, transport, and reagent costs, making these procedures untenable in most areas of endemicity. The application of membrane technology, which involves the use of specific membranes for either sample collection and storage or diagnostic procedures, can streamline this process, allowing for long-term sample storage at room temperature. Membrane technology can be used in serology-based diagnostic assays and for nucleic acid purification prior to molecular analysis. This facilitates the development of relatively simple and rapid procedures, although some of these methods, mainly due to costs, lack accessibility in low-socioeconomic regions of endemicity. New immunological procedures and nucleic acid storage, purification, and diagnostics protocols that are simple, rapid, accurate, and cost-effective must be developed as countries progress control efforts toward the elimination of the parasitic NTDs.


Assuntos
Parasitos , Doenças Parasitárias , Medicina Tropical , Animais , Humanos , Doenças Negligenciadas/diagnóstico , Doenças Negligenciadas/epidemiologia , Doenças Parasitárias/diagnóstico , Testes Imediatos , Tecnologia
19.
Nervenarzt ; 94(8): 664-675, 2023 Aug.
Artigo em Alemão | MEDLINE | ID: mdl-37378909

RESUMO

BACKGROUND: Neurogenic dysphagia is a frequent symptom in a variety of neurological diseases. The establishment of the flexible endoscopic evaluation of swallowing (FEES) in the field of neurology has led to improvements in the diagnostics and treatment of patients with dysphagia. OBJECTIVE: The aim of this review is to present the development of the FEES examination in the field of neurology. Furthermore, the additive value in the diagnostic classification of neurogenic dysphagia is elucidated and the impact on treatment management in patients with dysphagia is highlighted. MATERIAL AND METHODS: Narrative literature review. RESULTS: The FEES examination is a safe and well-tolerated method for the diagnostics of neurogenic dysphagia. It enables the valid investigation of the swallowing function within the very heterogeneous neurological patient population. It has become an important diagnostic tool, not only in the assessment of the severity of dysphagia and the risk of aspiration but also as a reliable method for the etiological classification of symptoms of deglutition disorders. As FEES can be performed at the bedside and does not require radiation exposure, it can be used not only to examine critically ill patients (point of care diagnostics) but also to monitor treatment. CONCLUSION: The systematic endoscopic evaluation of swallowing is established as an important functional diagnostic tool in the field of neurology. Further developments to increase the use of FEES in clinically related disciplines such as neurosurgery, neuro-oncology or psychiatry are pending.


Assuntos
Transtornos de Deglutição , Doenças do Sistema Nervoso , Neurologia , Humanos , Deglutição , Transtornos de Deglutição/diagnóstico , Transtornos de Deglutição/etiologia , Endoscopia/efeitos adversos , Doenças do Sistema Nervoso/diagnóstico
20.
J Intern Med ; 291(4): 438-457, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34816527

RESUMO

Recent trends across Europe show a year-on-year increase in the number of patients with acute medical illnesses presenting to hospitals, yet there are no plans for a substantial expansion in acute hospital infrastructure or staffing to address demand. Strategies to meet increasing demand need to consider the fact that there is limited capacity in acute hospitals and focus on new care models in both hospital and community settings. Increasing the efficiency of acute hospital provision by reducing the length of stay entails supporting acute ambulatory care, where patients receive daily acute care interventions but do not stay overnight in the hospitals. This approach may entail daily transfer between home and an acute setting for ongoing treatment, which is unsuitable for some patients living with frailty. Acute hospital at home (HaH) is a care model which, thanks to advances in point of care diagnostic capability, can provide a credible model of acute medical assessment and treatment without the need for hospital transfer. Investment and training to support scaling up of HaH are key strategic aims for integrated healthcare systems.


Assuntos
Fragilidade , Hospitais , Europa (Continente)/epidemiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa