Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Trends Biochem Sci ; 49(3): 247-256, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38072749

RESUMO

In plants, two atypical DNA-dependent RNA polymerases, RNA polymerase IV (Pol IV) and Pol V, and an RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) together produce noncoding RNAs (ncRNAs) to guide the plant-specific RNA-directed DNA methylation (RdDM). Although both Pol IV and Pol V have evolved from the canonical Pol II, they have adapted to different roles in RdDM. The mechanisms of their adaptation are key to understanding plant DNA methylation and the divergent evolution of polymerases. In this review, we summarize insights that have emerged from recent structural studies of Pol IV, Pol V, and RDR2 and discuss their structural features critical for efficient ncRNA production in RdDM.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Metilação de DNA , DNA de Plantas/metabolismo , Arabidopsis/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , RNA não Traduzido/genética , Plantas/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , RNA Interferente Pequeno/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(9): 3899-3908, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30760603

RESUMO

During RNA-directed DNA methylation (RdDM), the DDR complex, composed of DRD1, DMS3, and RDM1, is responsible for recruiting DNA polymerase V (Pol V) to silence transposable elements (TEs) in plants. However, how the DDR complex is regulated remains unexplored. Here, we show that the anaphase-promoting complex/cyclosome (APC/C) regulates the assembly of the DDR complex by targeting DMS3 for degradation. We found that a substantial set of RdDM loci was commonly de-repressed in apc/c and pol v mutants, and that the defects in RdDM activity resulted from up-regulated DMS3 protein levels, which finally caused reduced Pol V recruitment. DMS3 was ubiquitinated by APC/C for degradation in a D box-dependent manner. Competitive binding assays and gel filtration analyses showed that a proper level of DMS3 is critical for the assembly of the DDR complex. Consistent with the importance of the level of DMS3, overaccumulation of DMS3 caused defective RdDM activity, phenocopying the apc/c and dms3 mutants. Moreover, DMS3 is expressed in a cell cycle-dependent manner. Collectively, these findings provide direct evidence as to how the assembly of the DDR complex is regulated and uncover a safeguarding role of APC/C in the regulation of RdDM activity.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/genética , Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Metilação de DNA/genética , RNA Polimerases Dirigidas por DNA/genética , Ciclossomo-Complexo Promotor de Anáfase/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas Cromossômicas não Histona/química , Elementos de DNA Transponíveis/genética , RNA Polimerases Dirigidas por DNA/química , Receptores com Domínio Discoidina/química , Receptores com Domínio Discoidina/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , RNA de Plantas/genética , RNA Interferente Pequeno/genética
3.
J Virol ; 92(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321305

RESUMO

Plants employ RNA-directed DNA methylation (RdDM) and dimethylation of histone 3 lysine 9 (H3K9me2) to silence geminiviruses and transposable elements (TEs). We previously showed that canonical RdDM (Pol IV-RdDM) involving RNA polymerases IV and V (Pol IV and Pol V) is required for Arabidopsis thaliana to recover from infection with Beet curly top virus lacking a suppressor protein that inhibits methylation (BCTV L2-). Recovery, which is characterized by reduced viral DNA levels and symptom remission, allows normal floral development. Here, we used formaldehyde-assisted isolation of regulatory elements (FAIRE) to confirm that >90% of BCTV L2- chromatin is highly compacted during recovery, and a micrococcal nuclease-chromatin immunoprecipitation assay showed that this is largely due to increased nucleosome occupancy. Physical compaction correlated with augmented cytosine and H3K9 methylation and with reduced viral gene expression. We additionally demonstrated that these phenomena are dependent on Pol V and by extension the Pol IV-RdDM pathway. BCTV L2- was also used to evaluate the impact of viral infection on host loci, including repressed retrotransposons Ta3 and Athila6A Remarkably, an unexpected Pol V-dependent hypersuppression of these TEs was observed, resulting in transcript levels even lower than those detected in uninfected plants. Hypersuppression is likely to be especially important for natural recovery from wild-type geminiviruses, as viral L2 and AL2 proteins cause ectopic TE expression. Thus, Pol IV-RdDM targets both viral and TE chromatin during recovery, simultaneously silencing the majority of viral genomes and maintaining host genome integrity by enforcing tighter control of TEs in future reproductive tissues.IMPORTANCE In plants, RdDM pathways use small RNAs to target cytosine and H3K9 methylation, thereby silencing DNA virus genomes and transposable elements (TEs). Further, Pol IV-RdDM involving Pol IV and Pol V is a key aspect of host defense that can lead to recovery from geminivirus infection. Recovery is characterized by reduced viral DNA levels and symptom remission and thus allows normal floral development. Studies described here demonstrate that the Pol V-dependent enhanced viral DNA and histone methylation observed during recovery result in increased chromatin compaction and suppressed gene expression. In addition, we show that TE-associated chromatin is also targeted for hypersuppression during recovery, such that TE transcripts are reduced below the already low levels seen in uninfected plants. Thus, Pol IV-RdDM at once silences the majority of viral genomes and enforces a tight control over TEs which might otherwise jeopardize genome integrity in future reproductive tissue.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Metilação de DNA/genética , DNA de Plantas , DNA Viral , RNA Polimerases Dirigidas por DNA , Geminiviridae , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DNA de Plantas/genética , DNA de Plantas/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Geminiviridae/genética , Geminiviridae/metabolismo , Retroelementos/genética
4.
RNA Biol ; 15(2): 269-279, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29199514

RESUMO

Nuclear multisubunit RNA polymerases IV and V (Pol IV and Pol V) evolved in plants as specialized forms of Pol II. Their functions are best understood in the context of RNA-directed DNA methylation (RdDM), a process in which Pol IV-dependent 24 nt siRNAs direct the de novo cytosine methylation of regions transcribed by Pol V. Pol V has additional functions, independent of Pol IV and 24 nt siRNA biogenesis, in maintaining the repression of transposons and genomic repeats whose silencing depends on maintenance cytosine methylation. Here we report that Pol IV and Pol V play unexpected roles in defining the 3' boundaries of Pol II transcription units. Nuclear run-on assays reveal that in the absence of Pol IV or Pol V, Pol II occupancy downstream of poly A sites increases for approximately 12% of protein-coding genes. This effect is most pronounced for convergently transcribed gene pairs. Although Pols IV and V are detected near transcript ends of the affected Pol II - transcribed genes, their role in limiting Pol II read-through is independent of siRNA biogenesis or cytosine methylation for the majority of these genes. Interestingly, we observed that splicing was less efficient in pol IV or pol V mutant plants, compared to wild-type plants, suggesting that Pol IV or Pol V might affect pre-mRNA processing. We speculate that Pols IV and V (and/or their associated factors) play roles in Pol II transcription termination and pre-mRNA splicing by influencing polymerase elongation rates and/or release at collision sites for convergent genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Arabidopsis/genética , Imunoprecipitação da Cromatina , Metilação de DNA , DNA de Plantas/química , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Mutação , RNA Polimerase II/metabolismo , Splicing de RNA , RNA de Plantas/metabolismo , Análise de Sequência de RNA/métodos
5.
New Phytol ; 212(4): 1094-1105, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27431917

RESUMO

Argonaute (Ago) proteins are important effectors in RNA silencing pathways, but they must interact with other machinery to trigger silencing. Ago hooks have emerged as a conserved motif responsible for interaction with Ago proteins, but little is known about the sequence surrounding Ago hooks that must restrict or enable interaction with specific Argonautes. Here we investigated the evolutionary dynamics of an Ago-binding platform in NRPE1, the largest subunit of RNA polymerase V. We compared NRPE1 sequences from > 50 species, including dense sampling of two plant lineages. This study demonstrates that the Ago-binding platform of NRPE1 retains Ago hooks, intrinsic disorder, and repetitive character while being highly labile at the sequence level. We reveal that loss of sequence conservation is the result of relaxed selection and frequent expansions and contractions of tandem repeat arrays. These factors allow a complete restructuring of the Ago-binding platform over 50-60 million yr. This evolutionary pattern is also detected in a second Ago-binding platform, suggesting it is a general mechanism. The presence of labile repeat arrays in all analyzed NRPE1 Ago-binding platforms indicates that selection maintains repetitive character, potentially to retain the ability to rapidly restructure the Ago-binding platform.


Assuntos
Proteínas Argonautas/metabolismo , Evolução Molecular , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sequências Repetitivas de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , Duplicação Gênica , Modelos Biológicos , Filogenia , Ligação Proteica , Relação Estrutura-Atividade
6.
New Phytol ; 207(4): 1198-212, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25921392

RESUMO

Proteins often function as complexes, yet little is known about the evolution of dissimilar subunits of complexes. DNA-directed RNA polymerases (RNAPs) are multisubunit complexes, with distinct eukaryotic types for different classes of transcripts. In addition to Pol I-III, common in eukaryotes, plants have Pol IV and V for epigenetic regulation. Some RNAP subunits are specific to one type, whereas other subunits are shared by multiple types. We have conducted extensive phylogenetic and sequence analyses, and have placed RNAP gene duplication events in land plant history, thereby reconstructing the subunit compositions of the novel RNAPs during land plant evolution. We found that Pol IV/V have experienced step-wise duplication and diversification of various subunits, with increasingly distinctive subunit compositions. Also, lineage-specific duplications have further increased RNAP complexity with distinct copies in different plant families and varying divergence for subunits of different RNAPs. Further, the largest subunits of Pol IV/V probably originated from a gene fusion in the ancestral land plants. We propose a framework of plant RNAP evolution, providing an excellent model for protein complex evolution.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Evolução Molecular , Genes de Plantas , Filogenia , Subunidades Proteicas/genética , Arabidopsis/enzimologia , Arabidopsis/genética , RNA Polimerases Dirigidas por DNA/química , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Estrutura Terciária de Proteína , Seleção Genética , Análise de Sequência de DNA , Especificidade da Espécie
7.
Plant J ; 73(2): 179-89, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23013441

RESUMO

Transcriptional gene silencing controls transposons and other repetitive elements through RNA-directed DNA methylation (RdDM) and heterochromatin formation. A key component of the Arabidopsis RdDM pathway is ARGONAUTE4 (AGO4), which associates with siRNAs to mediate DNA methylation. Here, we show that AGO4 preferentially targets transposable elements embedded within promoters of protein-coding genes. This pattern of AGO4 binding cannot be simply explained by the sequences of AGO4-bound siRNAs; instead, AGO4 binding to specific gene promoters is also mediated by long non-coding RNAs (lncRNAs) produced by RNA polymerase V. lncRNA-mediated AGO4 binding to gene promoters directs asymmetric DNA methylation to these genomic regions and is involved in regulating the expression of targeted genes. Finally, AGO4 binding overlaps sites of DNA methylation affected by the biotic stress response. Based on these findings, we propose that the targets of AGO4-directed RdDM are regulatory units responsible for controlling gene expression under specific environmental conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Argonautas/genética , RNA Polimerases Dirigidas por DNA/genética , Ensaios Enzimáticos , Genoma de Planta , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica
8.
RNA Biol ; 11(7): 793-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25144332

RESUMO

Long non-coding RNAs (lncRNAs) can be important regulators of various biological processes such as RNA-directed DNA methylation (RdDM). In the RdDM pathway, recruitment of the DNA methylation complex is mediated through complementary pairing between scaffold RNAs and Argonaute-associated siRNAs. Scaffold RNAs are chromatin-associated lncRNAs transcribed by RNA polymerase Pol V or Pol II, while siRNAs originate from Pol IV- or Pol II-dependent production of lncRNAs. In contrast to the vast literature on co-transcriptional and post-transcriptional processing of mRNAs, information is limited for lncRNA regulation that enables their production and function. Recently Arabidopsis RRP6L1, a plant paralog of the conserved nuclear RNA surveillance protein Rrp6, was shown to mediate RdDM through retention of lncRNAs in the chromatin, thereby revealing that accumulation of functional lncRNAs requires more than simply RNA polymerases. By focusing on the canonical RdDM pathway, here we summarize recent evidence that indicate co-transcriptional and/or post-transcriptional regulation of lncRNAs, and highlight the emerging theme of lncRNA regulation by RNA processing factors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , RNA Longo não Codificante/genética , RNA de Plantas/genética , Arabidopsis/genética , Cromatina/genética , Cromatina/metabolismo , Metilação de DNA , RNA Interferente Pequeno/metabolismo
9.
Genome Biol Evol ; 16(6)2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38874416

RESUMO

In flowering plants, euchromatic transposons are transcriptionally silenced by RNA-directed DNA Methylation, a small RNA-guided de novo methylation pathway. RNA-directed DNA Methylation requires the activity of the RNA Polymerases IV and V, which produce small RNA precursors and noncoding targets of small RNAs, respectively. These polymerases are distinguished from Polymerase II by multiple plant-specific paralogous subunits. Most RNA-directed DNA Methylation components are present in all land plants, and some have been found in the charophytic green algae, a paraphyletic group that is sister to land plants. However, the evolutionary origin of key RNA-directed DNA Methylation components, including the two largest subunits of Polymerase IV and Polymerase V, remains unclear. Here, we show that multiple lineages of charophytic green algae encode a single-copy precursor of the largest subunits of Polymerase IV and Polymerase V, resolving the two presumed duplications in this gene family. We further demonstrate the presence of a Polymerase V-like C-terminal domain, suggesting that the earliest form of RNA-directed DNA Methylation utilized a single Polymerase V-like polymerase. Finally, we reveal that charophytic green algae encode a single CLSY/DRD1-type chromatin remodeling protein, further supporting the presence of a single specialized polymerase in charophytic green algae.


Assuntos
Metilação de DNA , RNA Polimerases Dirigidas por DNA , Evolução Molecular , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Filogenia , Carofíceas/genética , Carofíceas/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clorófitas/genética , Clorófitas/enzimologia , Subunidades Proteicas/genética
10.
Front Plant Sci ; 15: 1372880, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576781

RESUMO

RNA-directed DNA methylation (RdDM) is driven by small RNAs (sRNAs) complementary to the nascent transcript of RNA polymerase V (Pol V). sRNAs associated with ARGONAUTE (AGO) proteins are tethered to Pol V mainly by the AGO-hook domain of its subunit NRPE1. We found, by in silico analyses, that Pol V strongly colocalizes on chromatin with another AGO-hook protein, SPT6-like (SPT6L), which is a known essential transcription elongation factor of Pol II. Our phylogenetic analysis revealed that SPT6L acquired its AGO-binding capacity already in the most basal streptophyte algae, even before the emergence of Pol V, suggesting that SPT6L might be a driving force behind the RdDM evolution. Since its emergence, SPT6L with the AGO-hook represents the only conserved SPT6 homolog in Viridiplantae, implying that the same protein is involved in both Pol II and Pol V complexes. To better understand the role of SPT6L in the Pol V complex, we characterized genomic loci where these two colocalize and uncovered that DNA methylation there is more dynamic, driven by higher levels of sRNAs often from non-canonical RdDM pathways and more dependent on chromatin modifying and remodeling proteins like MORC. Pol V loci with SPT6L are highly depleted in helitrons but enriched in gene promoters for which locally and temporally precise methylation is necessary. In view of these results, we discuss potential roles of multiple AGO-hook domains present in the Pol V complex and speculate that SPT6L mediates de novo methylation of naïve loci by interconnecting Pol II and Pol V activities.

11.
Biomolecules ; 11(6)2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198819

RESUMO

Drugs targeting DNA and RNA in mammalian cells or viruses can also affect bacteria present in the host and thereby induce the bacterial SOS system. This has the potential to increase mutagenesis and the development of antimicrobial resistance (AMR). Here, we have examined nucleoside analogues (NAs) commonly used in anti-viral and anti-cancer therapies for potential effects on mutagenesis in Escherichia coli, using the rifampicin mutagenicity assay. To further explore the mode of action of the NAs, we applied E. coli deletion mutants, a peptide inhibiting Pol V (APIM-peptide) and metabolome and proteome analyses. Five out of the thirteen NAs examined, including three nucleoside reverse transcriptase inhibitors (NRTIs) and two anti-cancer drugs, increased the mutation frequency in E. coli by more than 25-fold at doses that were within reported plasma concentration range (Pl.CR), but that did not affect bacterial growth. We show that the SOS response is induced and that the increase in mutation frequency is mediated by the TLS polymerase Pol V. Quantitative mass spectrometry-based metabolite profiling did not reveal large changes in nucleoside phosphate or other central carbon metabolite pools, which suggests that the SOS induction is an effect of increased replicative stress. Our results suggest that NAs/NRTIs can contribute to the development of AMR and that drugs inhibiting Pol V can reverse this mutagenesis.


Assuntos
DNA Polimerase Dirigida por DNA/genética , Proteínas de Escherichia coli/genética , Mutagênese/efeitos dos fármacos , Nucleosídeos/análogos & derivados , Nucleosídeos/farmacologia , Antineoplásicos/farmacologia , Antivirais/farmacologia , Testes de Sensibilidade Microbiana/métodos , Mutagênese/fisiologia , Estavudina/análogos & derivados , Estavudina/farmacologia
12.
Microbiol Mol Biol Rev ; 84(3)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32554755

RESUMO

The lesion bypass pathway, translesion synthesis (TLS), exists in essentially all organisms and is considered a pathway for postreplicative gap repair and, at the same time, for lesion tolerance. As with the saying "a trip is not over until you get back home," studying TLS only at the site of the lesion is not enough to understand the whole process of TLS. Recently, a genetic study uncovered that polymerase V (Pol V), a poorly expressed Escherichia coli TLS polymerase, is not only involved in the TLS step per se but also participates in the gap-filling reaction over several hundred nucleotides. The same study revealed that in contrast, Pol IV, another highly expressed TLS polymerase, essentially stays away from the gap-filling reaction. These observations imply fundamentally different ways these polymerases are recruited to DNA in cells. While access of Pol IV appears to be governed by mass action, efficient recruitment of Pol V involves a chaperone-like action of the RecA filament. We present a model of Pol V activation: the 3' tip of the RecA filament initially stabilizes Pol V to allow stable complex formation with a sliding ß-clamp, followed by the capture of the terminal RecA monomer by Pol V, thus forming a functional Pol V complex. This activation process likely determines higher accessibility of Pol V than of Pol IV to normal DNA. Finally, we discuss the biological significance of TLS polymerases during gap-filling reactions: error-prone gap-filling synthesis may contribute as a driving force for genetic diversity, adaptive mutation, and evolution.


Assuntos
Dano ao DNA , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , DNA Polimerase II/metabolismo , DNA Polimerase beta/metabolismo , DNA Bacteriano/biossíntese , DNA Bacteriano/genética , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Modelos Genéticos , Mutagênese , Recombinases Rec A/metabolismo , Resposta SOS em Genética
13.
Cell Rep ; 19(13): 2796-2808, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28658626

RESUMO

Plant multisubunit RNA polymerase V (Pol V) transcription recruits Argonaute-small interfering RNA (siRNA) complexes that specify sites of RNA-directed DNA methylation (RdDM) for gene silencing. Pol V's largest subunit, NRPE1, evolved from the largest subunit of Pol II but has a distinctive C-terminal domain (CTD). We show that the Pol V CTD is dispensable for catalytic activity in vitro yet essential in vivo. One CTD subdomain (DeCL) is required for Pol V function at virtually all loci. Other CTD subdomains have locus-specific effects. In a yeast two-hybrid screen, the 3'→ 5' exoribonuclease RRP6L1 was identified as an interactor with the DeCL and glutamine-serine (QS)-rich subdomains located downstream of an Argonaute-binding subdomain. Experimental evidence indicates that RRP6L1 trims the 3' ends of Pol V transcripts sliced by Argonaute 4 (AGO4), suggesting a model whereby the CTD enables the spatial and temporal coordination of AGO4 and RRP6L1 RNA processing activities.


Assuntos
Metilação de DNA/imunologia , RNA Polimerases Dirigidas por DNA/imunologia , Inativação Gênica/imunologia
14.
Elife ; 3: e02384, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24843026

RESUMO

Escherichia coli DNA polymerase V (pol V), a heterotrimeric complex composed of UmuD'2C, is marginally active. ATP and RecA play essential roles in the activation of pol V for DNA synthesis including translesion synthesis (TLS). We have established three features of the roles of ATP and RecA. (1) RecA-activated DNA polymerase V (pol V Mut), is a DNA-dependent ATPase; (2) bound ATP is required for DNA synthesis; (3) pol V Mut function is regulated by ATP, with ATP required to bind primer/template (p/t) DNA and ATP hydrolysis triggering dissociation from the DNA. Pol V Mut formed with an ATPase-deficient RecA E38K/K72R mutant hydrolyzes ATP rapidly, establishing the DNA-dependent ATPase as an intrinsic property of pol V Mut distinct from the ATP hydrolytic activity of RecA when bound to single-stranded (ss)DNA as a nucleoprotein filament (RecA*). No similar ATPase activity or autoregulatory mechanism has previously been found for a DNA polymerase.DOI: http://dx.doi.org/10.7554/eLife.02384.001.


Assuntos
Adenosina Trifosfatases/genética , DNA Polimerase Dirigida por DNA/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Adenosina Trifosfatases/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Hidrólise , Mutação , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Recombinases Rec A/genética , Recombinases Rec A/metabolismo
15.
Natl Sci Rev ; 1(2): 219-229, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25635229

RESUMO

Cytosine DNA methylation is an epigenetic modification in eukaryotes that maintains genome integrity and regulates gene expression. The DNA methylation patterns in plants are more complex than those in animals, and plants and animals have common as well as distinct pathways in regulating DNA methylation. Recent studies involving genetic, molecular, biochemical and genomic approaches have greatly expanded our knowledge of DNA methylation in plants. The roles of many proteins as well as non-coding RNAs in DNA methylation have been uncovered.

16.
Mol Plant ; 7(9): 1406-1414, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24966349

RESUMO

RNA-directed DNA methylation (RdDM) is responsible for transcriptional silencing of endogenous transposable elements and introduced transgenes. This process requires non-coding RNAs produced by DNA-dependent RNA polymerases IV and V (Pol IV and Pol V). Pol IV-produced non-coding RNAs are precursors of 24-nt small interfering RNAs, whereas Pol V-produced ncRNAs directly act as scaffold RNAs. In this review, we summarize recent advances in the understanding of RdDM. In particular, we focus on the mechanisms underlying the recruitment of Pol IV and Pol V to chromatin and the targeting of RdDM.


Assuntos
Arabidopsis/genética , Metilação de DNA , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Transcrição Gênica , Arabidopsis/enzimologia , Cromatina/genética , Cromatina/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo
17.
Plant Methods ; 10: 18, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24955108

RESUMO

BACKGROUND: DNA methylation is a conserved epigenetic mark that controls genome stability, development and environmental responses in many eukaryotes. DNA methylation can be guided by non-coding RNAs that include small interfering RNAs and scaffold RNAs. Although measurement of DNA methylation and regulatory non-coding RNAs is desirable for many biologists who are interested in exploring epigenetic regulation in their areas, conventional methods have limitations and are technically challenging. For instance, traditional siRNA detection through RNA hybridization requires relatively large amount of small RNAs and involves radioactive isotopes. An alternative approach is RT-qPCR that employs stem loop primers during reverse transcription; however, it requires a prerequisite that the exact sequences of siRNAs should be known. RESULTS: By using the model organism Arabidopsis thaliana, we developed an easy-to-follow, integrative procedure for time-efficient, quantitative measurement of DNA methylation, small interfering RNAs, and scaffold RNAs. Starting with simplified nucleic acid manipulation, we examined DNA methylation levels by using Chop PCR (methylation-sensitive enzyme digestion followed by PCR), which allowed for fast screening for DNA methylation mutants without the need of transgenic reporters. We deployed a simple bioinformatics method for mining published small RNA databases, in order to obtain the nucleotide (nt) sequences of individual 24nt siRNAs within the regions of interest. The protocol of commercial TaqMan Small RNA Assay was subsequently optimized for reliable quantitative detection of individual siRNAs. We used nested qPCR to quantify scaffold RNAs that are of low abundance and without Poly-A tails. In addition, nuclei fraction enables separation of chromatin-associated scaffold RNAs from their cognate non-scaffold transcripts that have been released from chromatin. CONCLUSIONS: We have developed a procedure for quantitative investigations on nucleic acids that are core components of RNA-directed DNA methylation. Our results not only demonstrated the efficacy of this procedure, but also provide lists of methylation-sensitive restriction enzymes, novel DNA methylation marker loci, and related siRNA sequences, all of which can be valuable for future epigenetic studies. Importantly, step-by-step protocols are provided in details such that the approaches can be easily followed by biologists with little experience in epigenetics.

18.
Genetics ; 194(2): 409-20, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23589461

RESUMO

Escherichia coli DNA polymerases (Pol) II, IV, and V serve dual roles by facilitating efficient translesion DNA synthesis while simultaneously introducing genetic variation that can promote adaptive evolution. Here we show that these alternative polymerases are induced as cells transition from exponential to long-term stationary-phase growth in the absence of induction of the SOS regulon by external agents that damage DNA. By monitoring the relative fitness of isogenic mutant strains expressing only one alternative polymerase over time, spanning hours to weeks, we establish distinct growth phase-dependent hierarchies of polymerase mutant strain competitiveness. Pol II confers a significant physiological advantage by facilitating efficient replication and creating genetic diversity during periods of rapid growth. Pol IV and Pol V make the largest contributions to evolutionary fitness during long-term stationary phase. Consistent with their roles providing both a physiological and an adaptive advantage during stationary phase, the expression patterns of all three SOS polymerases change during the transition from log phase to long-term stationary phase. Compared to the alternative polymerases, Pol III transcription dominates during mid-exponential phase; however, its abundance decreases to <20% during long-term stationary phase. Pol IV transcription dominates as cells transition out of exponential phase into stationary phase and a burst of Pol V transcription is observed as cells transition from death phase to long-term stationary phase. These changes in alternative DNA polymerase transcription occur in the absence of SOS induction by exogenous agents and indicate that cell populations require appropriate expression of all three alternative DNA polymerases during exponential, stationary, and long-term stationary phases to attain optimal fitness and undergo adaptive evolution.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Evolução Molecular , Aptidão Genética , Resposta SOS em Genética , Adaptação Fisiológica/genética , Proliferação de Células , DNA Polimerase Dirigida por DNA/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/fisiologia , Proteínas de Escherichia coli/genética , Mutação , Transcrição Gênica
19.
Electron. j. biotechnol ; Electron. j. biotechnol;15(2): 9-9, Mar. 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-640544

RESUMO

RNA polymerase IV and V are principal players in the RdDM pathway, where their current study has shown interaction of several factors that control DNA silencing of intergenic regions and siRNA production. DNA silencing is an important process during cell differentiation, nuclear structure and viral control. However, RNA pol IV and V are yet to be study in model monocot systems like Oryza sativa that can provide further information on genetic silence mechanism in plats. We show the expression pattern of these polymerases in tissues extracts of Oryza sativa. Detectable amounts of these polymerases are found in specific adult plant tissues and particularly expressed during somatic embryogenesis but not during early stages of normal embryo development. The use of synthetic auxin leads to an induction of both RNA pol IV and V in scutellum tissue where nuclear localization may be required for genome reorganization and gene silencing.


Assuntos
Lactente , RNA Polimerases Dirigidas por DNA/metabolismo , Oryza/enzimologia , Oryza/genética , RNA Polimerases Dirigidas por DNA/genética , Western Blotting , Desenvolvimento Embrionário , Imunofluorescência , Inativação Gênica , Reação em Cadeia da Polimerase em Tempo Real , Sementes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa