Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 758
Filtrar
1.
Mol Pharm ; 21(5): 2555-2564, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38551918

RESUMO

Poloxamer 188 (P188) was hypothesized to be a dual functional excipient, (i) a stabilizer in frozen solution to prevent ice-surface-induced protein destabilization and (ii) a bulking agent to provide elegant lyophiles. Based on X-ray diffractometry and differential scanning calorimetry, sucrose, in a concentration-dependent manner, inhibited P188 crystallization during freeze-drying, while trehalose had no such effect. The recovery of lactate dehydrogenase (LDH), the model protein, was evaluated after reconstitution. While low LDH recovery (∼60%) was observed in the lyophiles prepared with P188, the addition of sugar improved the activity recovery to >85%. The secondary structure of LDH in the freeze-dried samples was assessed using infrared spectroscopy, and only moderate structural changes were observed in the lyophiles formulated with P188 and sugar. Thus, P188 can be a promising dual functional excipient in freeze-dried protein formulations. However, P188 alone does not function as a lyoprotectant and needs to be used in combination with a sugar.


Assuntos
Varredura Diferencial de Calorimetria , Excipientes , Liofilização , Poloxâmero , Trealose , Liofilização/métodos , Poloxâmero/química , Excipientes/química , Trealose/química , Varredura Diferencial de Calorimetria/métodos , Sacarose/química , Difração de Raios X , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/química , Cristalização/métodos , Química Farmacêutica/métodos , Proteínas/química , Composição de Medicamentos/métodos , Congelamento
2.
Biomed Chromatogr ; 38(8): e5901, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38816948

RESUMO

Oral bioavailability of glibenclamide (Glb) was appreciably improved by the formation of an amorphous solid dispersion with Poloxamer-188 (P-188). Poloxamer-188 substantially enhanced the solubility and thereby the dissolution rate of the biopharmaceutics classification system (BCS) class II drug Glb and simultaneously exhibited a better stabilizing effect of the amorphous solid dispersion prepared by the solvent evaporation method. The physical state of the dispersed Glb in the polymeric matrix was characterized by differential scanning calorimetry, X-ray diffraction, scanning electron microscope and Fourier transform infrared studies. In vitro drug release in buffer (pH 7.2) revealed that the amorphous solid dispersion at a Glb-P-188 ratio of 1:6 (SDE4) improved the dissolution of Glb by 90% within 3 h. A pharmacokinetic study of the solid dispersion formulation SDE4 in Wistar rats showed that the oral bioavailability of the drug was greatly increased as compared with the market tablet formulation, Daonil®. The formulation SDE4 resulted in an AUC0-24h ~2-fold higher. The SDE4 formulation was found to be stable during the study period of 6 months.


Assuntos
Disponibilidade Biológica , Glibureto , Poloxâmero , Ratos Wistar , Animais , Glibureto/farmacocinética , Glibureto/química , Glibureto/sangue , Glibureto/administração & dosagem , Ratos , Masculino , Poloxâmero/química , Poloxâmero/farmacocinética , Estabilidade de Medicamentos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos , Varredura Diferencial de Calorimetria , Solubilidade
3.
Drug Dev Ind Pharm ; 50(1): 11-22, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38054848

RESUMO

OBJECTIVE: The present work aims to develop mucoadhesive thermosensitive nasal in situ gel for Promethazine hydrochloride using quality by design (QbD) approach. It can reduce nasal mucociliary clearance (MCC) and increase residence of the drug on nasal mucosa. This might increase drug absorption to improve bioavailability of the drug as compared to oral dosage form. SIGNIFICANCE: Promethazine hydrochloride is an antiemetic drug administered by oral, parenteral and rectal routes. These routes have poor patient compliance or low bioavailability. Nasal route is a better alternative as it has large surface area, high drug absorption rate and no first pass effect. Its only limitation is short drug retention time due to MCC. By formulating a mucoadhesive in situ gel, the MCC can be reduced, and drug absorption will be prolonged. Thus, improving bioavailability. METHOD: In-situ gel was prepared by cold method having material attributes as concentration of Poloxamer 407 (X1) as gelling agent and hydroxypropyl methyl cellulose K4M (X2) as mucoadhesive agent. Critical Quality Attributes (CQA) were gelation temperature, mucoadhesive force and ex-vivo diffusion. Central composite design (CCD) was adopted for optimization. RESULT: Optimized formulation satisfied all the CQA significant for nasal administration. Moreover, the formulation was found to be stable in accelerated stability studies for 3 months. CONCLUSION: It can be concluded that since the drug can easily permeate through nasal mucosa and can gain access directly in the brain without undergoing first pass metabolism along with increased residence due to mucoadhesion, mucoadhesive in situ gel has potential to increase drug bioavailability.


Assuntos
Antieméticos , Prometazina , Humanos , Prometazina/metabolismo , Prometazina/farmacologia , Administração Intranasal , Mucosa Nasal/metabolismo , Antieméticos/metabolismo , Excipientes/metabolismo , Géis/farmacologia , Sistemas de Liberação de Medicamentos/métodos
4.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256239

RESUMO

Ropinirole is a non-ergolinic dopamine agonist used to manage Parkinson's disease and it is characterized by poor oral bioavailability. This study aimed to design and develop advanced drug delivery systems composed of poloxamer 407, a non-ionic surfactant (Tween 80), and cyclodextrins (methyl-ß-CD or hydroxy-propyl-ß-CD) for possible brain targeting of ropinirole after nasal administration for the treatment of Parkinson's disease. The hybrid systems were formed by the thin-film hydration method, followed by an extensive physicochemical and morphological characterization. The in vitro cytotoxicity of the systems on HEK293 cell lines was also tested. In vitro release and ex vivo mucosal permeation of ropinirole were assessed using Franz cells at 34 °C and with phosphate buffer solution at pH 5.6 in the donor compartment, simulating the conditions of the nasal cavity. The results indicated that the diffusion-controlled drug release exhibited a progressive increase throughout the experiment, while a proof-of-concept experiment on ex vivo permeation through rabbit nasal mucosa revealed a better performance of the prepared hybrid systems in comparison to ropinirole solution. The encouraging results in drug release and mucosal permeation indicate that these hybrid systems can serve as attractive platforms for effective and targeted nose-to-brain delivery of ropinirole with a possible application in Parkinson's disease. Further ex vivo and in vivo studies to support the results of the present work are ongoing.


Assuntos
Indóis , Doença de Parkinson , Surfactantes Pulmonares , Humanos , Animais , Coelhos , Tensoativos , Polímeros , Células HEK293 , Doença de Parkinson/tratamento farmacológico , Encéfalo , Lipoproteínas , Mucosa Nasal
5.
AAPS PharmSciTech ; 25(7): 199, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198340

RESUMO

Fenbendazole is an antiparasitic drug widely used in veterinary medicine to treat parasitic infections caused in animals like cattle, horses, sheep, and dogs. Recently, it has been repositioned as a potential alternative for cancer treatment. However, it is a highly hydrophobic molecule (0.9 ug/mL), which can compromise its dissolution rate and absorption. Thus, this work aimed to apply a nanotechnological approach to improve drug solubility and dissolution performance. Fenbendazole nanoparticles stabilized by different poloxamers were obtained by lyophilization without cryoprotectants. The behavior of the drug in the solid state was analyzed by X-ray diffractometry, differential scanning calorimetry, and infrared spectroscopy. The nanosystems were also evaluated for solubility and dissolution rate. A long-term stability evaluation was performed for three years at room temperature. The yields of the lyophilization ranged between 75 and 81% for each lot. The nanoparticles showed a submicron size (< 340 nm) and a low polydispersity depending on the stabilizer. The physicochemical properties of the prepared systems indicated a remarkable amorphization of the drug, which influenced its solubility and dissolution performance. The drug dissolution from both the fresh and aged nanosystems was significantly higher than that of the raw drug. In particular, nanoparticles prepared with poloxamer 407 showed no significant modifications in their particle size in three years of storage. Physical stability studies indicated that the obtained systems prepared with P188, P237, and P407 suffered certain recrystallization during long storage at 25 °C. These findings confirm that selected poloxamers exhibited an important effect in formulating fenbendazole nanosystems with improved dissolution.


Assuntos
Estabilidade de Medicamentos , Fenbendazol , Liofilização , Nanopartículas , Solubilidade , Nanopartículas/química , Fenbendazol/química , Liofilização/métodos , Varredura Diferencial de Calorimetria/métodos , Armazenamento de Medicamentos , Tamanho da Partícula , Difração de Raios X/métodos , Liberação Controlada de Fármacos , Química Farmacêutica/métodos , Poloxâmero/química , Crioprotetores/química
6.
AAPS PharmSciTech ; 25(6): 144, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918282

RESUMO

The current treatment for oral inflammatory ulcerative diseases has limitations. In situ forming hydrogels have shown great potential to deliver therapeutic substances for drug delivery to the buccal cavity. This study aimed to prepare and characterize lipid- and surfactant-based mixed micelle in situ gel (MIG) and evaluate whether it can offer more favorable properties than the in situ gel for effective treatment of the disease. Dexamethasone was incorporated into the MIGs particles, based on Poloxamer 407 and chitosan. The lower gelation time at 37 ℃ was considered a criterion to select superior formulations among the different lipid- and surfactant-based candidates. Further characterization was performed to evaluate the opted formulations regarding morphology, physical stability, rheology, texture, and release profile. All formulations were thermoresponsive and had a shorter gelation time as the temperature increased. Dexamethasone was released in a highly controlled manner, and morphological evaluation revealed that the mixed micelle in situ gels had spherical nanoparticles. Thixotropic behavior was observed in all MIGs, indicating a prolonged retention time of the formulation after oral administration. This study has shown that among different MIGs, the one with oleic acid is a more promising candidate than the in situ gel and other MIGs for drug delivery to the buccal cavity.


Assuntos
Quitosana , Dexametasona , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Géis , Micelas , Poloxâmero , Dexametasona/administração & dosagem , Dexametasona/química , Quitosana/química , Géis/química , Sistemas de Liberação de Medicamentos/métodos , Poloxâmero/química , Tensoativos/química , Química Farmacêutica/métodos , Hidrogéis/química , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Nanopartículas/química , Portadores de Fármacos/química , Reologia/métodos , Úlceras Orais/tratamento farmacológico , Administração Oral , Lipídeos/química , Ácido Oleico/química
7.
AAPS PharmSciTech ; 25(6): 151, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954171

RESUMO

The intranasal route has demonstrated superior systemic bioavailability due to its extensive surface area, the porous nature of the endothelial membrane, substantial blood flow, and circumvention of first-pass metabolism. In traditional medicinal practices, Bacopa monnieri, also known as Brahmi, is known for its benefits in enhancing cognitive functions and potential effects in epilepsy. This study aimed to develop and optimize a thermosensitive in-situ nasal gel for delivering Bacoside A, the principal active compound extracted from Bacopa monnieri. The formulation incorporated Poloxamer 407 as a thermogelling agent and HPMC K4M as the Mucoadhesive polymer. A 32-factorial design approach was employed for Optimization. Among the formulations. F7 exhibited the most efficient Ex-vivo permeation through the nasal mucosa, achieving 94.69 ± 2.54% permeation, and underwent a sol-gel transition at approximately 30.48 °C. The study's factorial design revealed that gelling temperature and mucoadhesive strength were critical factors influencing performance. The potential of in-situ nasal Gel (Optimized Batch-F7) for the treatment of epilepsy was demonstrated in an in-vivo investigation using a PTZ-induced convulsion model. This formulation decreased both the occurrence and intensity of seizures. The optimized formulation F7 showcases significant promise as an effective nasal delivery system for Bacoside A, offering enhanced bioavailability and potentially increased efficacy in epilepsy treatment.


Assuntos
Administração Intranasal , Epilepsia , Géis , Mucosa Nasal , Triterpenos , Animais , Administração Intranasal/métodos , Epilepsia/tratamento farmacológico , Géis/química , Mucosa Nasal/metabolismo , Mucosa Nasal/efeitos dos fármacos , Masculino , Triterpenos/administração & dosagem , Triterpenos/farmacocinética , Triterpenos/farmacologia , Triterpenos/química , Temperatura , Saponinas/administração & dosagem , Saponinas/química , Saponinas/farmacologia , Saponinas/farmacocinética , Química Farmacêutica/métodos , Disponibilidade Biológica , Ratos , Poloxâmero/química , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/farmacologia , Anticonvulsivantes/química
8.
Korean J Physiol Pharmacol ; 28(3): 275-284, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682175

RESUMO

Worldwide, cardiovascular disease is the main cause of death, which accordingly increased by hyperlipidemia. Hyperlipidemia therapy can include lifestyle changes and medications to control cholesterol levels. Statins are the medications of the first choice for dealing with lipid abnormalities. Rosuvastatin founds to control high lipid levels by hindering liver production of cholesterol and to achieve the targeted levels of low-density lipoprotein cholesterol, another lipid lowering agents named ezetimibe may be used as an added therapy. Both rosuvastatin and ezetimibe have low bioavailability which will stand as barrier to decrease cholesterol levels, because of such depictions, formulations of this combined therapy in nanotechnology will be of a great assistance. Our study demonstrated preparations of nanoparticles of this combined therapy, showing their physical characterizations, and examined their behavior in laboratory conditions and vivo habitation. The mean particle size was uniform, polydispersity index and zeta potential of formulations were found to be in the ranges of (0.181-0.72) and (-13.4 to -6.24), respectively. Acceptable limits of entrapment efficiency were affirmed with appearance of spherical and uniform nanoparticles. In vitro testing showed a sustained release of drug exceeded 90% over 24 h. In vivo study revealed an enhanced dissolution and bioavailability from loaded nanoparticles, which was evidenced by calculated pharmacokinetic parameters using triton for hyperlipidemia induction. Stability studies were performed and assured that the formulations are kept the same up to one month. Therefore, nano formulations is a suitable transporter for combined therapy of rosuvastatin and ezetimibe with improvement in their dissolution and bioavailability.

9.
Mol Pharm ; 20(9): 4587-4596, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37535010

RESUMO

The phase behavior of poloxamer 188 (P188) in aqueous solutions, characterized by differential scanning calorimetry (DSC) and synchrotron X-ray diffractometry, revealed solute crystallization during both freezing and thawing. Sucrose and trehalose inhibited P188 crystallization during freeze-thawing (FT). While trehalose inhibited P188 crystallization only during cooling, sucrose completely suppressed P188 crystallization during both cooling and heating. Lactate dehydrogenase (LDH) served as a model protein to evaluate the stabilizing effect of P188. The ability of P188, over a concentration range of 0.003-0.800% w/v, to prevent LDH (10 µg/mL) destabilization was evaluated. After five FT cycles, the aggregation behavior (by dynamic light scattering) and activity recovery were evaluated. While LDH alone was sensitive to interfacial stress, P188 at concentrations of ≥0.100% w/v stabilized the protein. However, as the surfactant concentration decreased, protein aggregation after FT increased. The addition of sugar (1.0% w/v; sucrose or trehalose) improved the stabilizing function of P188 at lower concentrations (≤0.010% w/v), possibly due to the inhibition of surfactant crystallization. Based on a comparison with the stabilization effect of polysorbate (both 20 and 80), it was evident that P188 could be a promising alternative surfactant in frozen protein formulations. However, when the surfactant concentration is low, the potential for P188 crystallization and the consequent compromise in its functionality warrant careful consideration.


Assuntos
Gelo , Poloxâmero , Congelamento , Trealose/química , Proteínas , L-Lactato Desidrogenase/química , Tensoativos , Sacarose/química , Liofilização , Varredura Diferencial de Calorimetria
10.
Dig Dis Sci ; 68(1): 138-146, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35451710

RESUMO

BACKGROUND AND AIMS: We have previously shown that gabexate mesylate-poloxamer 407 conjugate (GMTI) alleviates traumatic pancreatitis in rats. In this study, we evaluated the therapeutic effect of GMTI on sodium taurocholate-induced severe acute pancreatitis (SAP) in an optimized rat model. METHODS: An SAP rat model was established via microinjection of 3.5% sodium taurocholate and retention in the bile duct for 1 min. SAP rats were administered GMTI via tail vein injection (i.v.) or tail vein injection + intraperitoneal injection (i.v. + i.p.). All rats were sacrificed at 12 h after treatment. Biochemical approach and enzyme-linked immunosorbent assay were performed to measure the serum levels of amylase (AMY), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). Hematoxylin and eosin staining and TUNEL assay were conducted to examine histopathology and acinar cell apoptosis in the rat pancreas. RESULTS: SAP was successfully induced in all model rats, as evidenced by progressively aggravating SAP symptoms and signs, pancreatic histopathological abnormalities, as well as elevated serum levels of TNF-α, IL-6, and AMY. The mortality rates at 1 h, 6 h, and 12 h were 0%, 0%, and 25%, respectively. GMTI therapy via i.v. or i.v. + i.p. significantly reduced pancreatic wet weights, ascites amounts, pathological scores, and circulating levels of TNF-α and IL-6 while promoting acinar cell apoptosis in SAP rats. GMTI therapy via i.v. + i.p. outperformed i.v. in improving pancreatic histology and reducing TNF-α and IL-6 serum levels in SAP rats. CONCLUSIONS: Our optimized SAP rat model is reliable and reproducible. GMTI therapy is a promising approach against SAP.


Assuntos
Gabexato , Pancreatite , Ratos , Animais , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Pancreatite/patologia , Gabexato/efeitos adversos , Poloxâmero/farmacologia , Interleucina-6 , Fator de Necrose Tumoral alfa , Ratos Sprague-Dawley , Ácido Taurocólico , Doença Aguda , Pâncreas/patologia
11.
J Korean Med Sci ; 38(17): e135, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37128878

RESUMO

BACKGROUND: In this study, we prepared and evaluated an injectable poloxamer (P407) hydrogel formulation for intratympanic (IT) delivery of dexamethasone (DEX). METHODS: DEX-loaded P407 hydrogels were characterized in terms of thermogelation, drug loading capacities, particle size, and drug release. The in vivo toxicity and drug absorption of the DEX-loaded P407 formulation after IT injection were evaluated using an animal model by performing histopathological analysis and drug concentration measurements. RESULTS: The P407 hydrogel effectively solubilized hydrophobic DEX and demonstrated a sustained release compared to the hydrophilic DEX formulation. The in vivo study showed that the hydrogel formulation delivered considerable drug concentrations to the inner ear and displayed a favorable safety profile without apparent cytotoxicity or inflammation. CONCLUSION: P407 hydrogel can be useful as an injectable inner ear delivery formulation for hydrophobic drugs due to their biocompatibility, drug-solubilizing capacity, thermogelation, and controlled release.


Assuntos
Hidrogéis , Poloxâmero , Animais , Poloxâmero/química , Hidrogéis/química , Liberação Controlada de Fármacos , Dexametasona
12.
Knee Surg Sports Traumatol Arthrosc ; 31(11): 5238-5247, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37594502

RESUMO

PURPOSE: Joint stiffness after arthroscopic rotator cuff repair is a major concern for orthopaedic surgeons. Various antiadhesive agents are commonly administered after rotator cuff repair for its prevention. This study aimed to compare the outcomes among patients injected with different types and amounts of anti-adhesive agents after rotator cuff repair. It was hypothesized that the outcomes might differ depending on the use of the anti-adhesive agent and its type and dose. METHODS: A total of 267 patients who underwent arthroscopic rotator cuff repair with or without subacromial injection of anti-adhesive agents were enrolled. The first group (group A; 51 patients) were injected with 3 mL of poloxamer/sodium alginate-based anti-adhesive agent. The second group (group B; 93 patients) were injected with 3 mL of sodium hyaluronate-based anti-adhesive agent. The third group (group C; 82 patients) were injected with 1.5 mL of sodium hyaluronate-based anti-adhesive agent. Finally, the last group (group D; 41 patients) who did not use anti-adhesive agents served as the control. The range of motion (ROM) and pain VAS scores were measured preoperatively and at 5 weeks, 3 months, 6 months, and 1 year postoperatively. Functional outcomes were evaluated using American Shoulder and Elbow Surgeons and Constant scores, whereas cuff integrity was assessed via MRI or ultrasonography at least 6 months postoperatively. RESULTS: All ROM measurements, pain VAS scores, and functional scores were significantly improved regardless of the use, type, and dose of the anti-adhesive agents. In addition shoulder ROM and rotator cuff healing did not significantly differ among the groups (all n.s.). CONCLUSIONS: No significant differences were found in the clinical and anatomical outcomes according to the type and dose of the anti-adhesive agents subacromially injected after rotator cuff repair. LEVEL OF EVIDENCE: III.

13.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834743

RESUMO

Traumatic brain injury (TBI) is a significant cause of morbidity and mortality worldwide. Varied mechanisms of injury contribute to the heterogeneity of this patient population as demonstrated by the multiple published grading scales and diverse required criteria leading to diagnoses from mild to severe. TBI pathophysiology is classically separated into a primary injury that is characterized by local tissue destruction as a result of the initial blow, followed by a secondary phase of injury constituted by a score of incompletely understood cellular processes including reperfusion injury, disruption to the blood-brain barrier, excitotoxicity, and metabolic dysregulation. There are currently no effective pharmacological treatments in the wide-spread use for TBI, in large part due to challenges associated with the development of clinically representative in vitro and in vivo models. Poloxamer 188 (P188), a Food and Drug Administration-approved amphiphilic triblock copolymer embeds itself into the plasma membrane of damaged cells. P188 has been shown to have neuroprotective properties on various cell types. The objective of this review is to provide a summary of the current literature on in vitro models of TBI treated with P188.


Assuntos
Lesões Encefálicas Traumáticas , Poloxâmero , Humanos , Poloxâmero/farmacologia , Lesões Encefálicas Traumáticas/metabolismo , Membrana Celular/metabolismo , Barreira Hematoencefálica/metabolismo , Neurônios/metabolismo
14.
Molecules ; 28(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37375333

RESUMO

Vaccine technology is still facing challenges regarding some infectious diseases, which can be addressed by innovative drug delivery systems. In particular, nanoparticle-based vaccines combined with new types of adjuvants are actively explored as a platform for improving the efficacy and durability of immune protection. Here, biodegradable nanoparticles carrying an antigenic model of HIV were formulated with two combinations of poloxamers, 188/407, presenting or not presenting gelling properties, respectively. The study aimed to determine the influence of poloxamers (as a thermosensitive hydrogel or a liquid solution) on the adaptive immune response in mice. The results showed that poloxamer-based formulations were physically stable and did not induce any toxicity using a mouse dendritic cell line. Then, whole-body biodistribution studies using a fluorescent formulation highlighted that the presence of poloxamers influenced positively the dissemination profile by dragging nanoparticles through the lymphatic system until the draining and distant lymph nodes. The strong induction of specific IgG and germinal centers in distant lymph nodes in presence of poloxamers suggested that such adjuvants are promising components in vaccine development.


Assuntos
Poloxâmero , Vacinas , Poloxâmero/metabolismo , Adjuvantes de Vacinas , Distribuição Tecidual , Antígenos , Linfonodos/metabolismo , Adjuvantes Imunológicos/química , Células Dendríticas
15.
Molecules ; 28(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37959854

RESUMO

Ionic liquids are promising media for self-assembling block copolymers in applications such as energy storage. A robust design of block copolymer formulations in ionic liquids requires fundamental knowledge of their self-organization at the nanoscale. To this end, here, we focus on modeling two-component systems comprising a Poly(ethylene oxide)-poly (propylene oxide)-Poly(ethylene oxide) (PEO-PPO-PEO) block copolymer (Pluronic P105: EO37PO58EO37) and room temperature ionic liquids (RTILs): protic ethylammonium nitrate (EAN), aprotic ionic liquids (1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6), or 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4). Rich structural polymorphism was exhibited, including phases of micellar (sphere) cubic, hexagonal (cylinder), bicontinuous cubic, and lamellar (bilayer) lyotropic liquid crystalline (LLC) ordered structures in addition to solution regions. The characteristic scales of the structural lengths were obtained using small-angle X-ray scattering (SAXS) data analysis. On the basis of phase behavior and structure, the effects of the ionic liquid solvent on block copolymer organization were assessed and contrasted to those of molecular solvents, such as water and formamide.

16.
Artigo em Inglês | MEDLINE | ID: mdl-37928051

RESUMO

Topical antimicrobial treatments for severe burns and chronic wounds provide effective treatment against infections, but cause pain and discomfort with application. This study aimed to develop an antimicrobial topical formulation comprising thermoreversible poloxamers (Pluronic F127 and F68) and a broad-spectrum antimicrobial agent (ciprofloxacin hydrochloride, CH), that could be sprayed to eliminate application pain while maintaining antimicrobial activity. Formulations were characterized to determine their sprayability under cold conditions, gelation temperature, final storage modulus at skin temperature, drug release profile, ex vivo permeation through impaired porcine skin, and inhibition against common bacterial pathogens that colonize wounds. All cold formulations were sprayable from simple hand-held, pump-action sprayers due to their low viscosity. Upon heating, 17 and 20% Pluronic F127 formulations produced hydrogels eight to ten degrees below skin temperature, independent of ciprofloxacin loading. Increasing concentrations of Pluronic F127 increased the final storage modulus and viscosity of the gels, while inclusion of Pluronic F68 reduced these properties, showing that hydrogel rheological properties at skin temperature can be tuned via choice of formulation. Drug release was directly correlated to the rheological properties, with stiffer gels resulting in a decrease in drug release rate. Overall, gels released about 65-90% of their load within 12 hours. Ex vivo skin permeation demonstrated that drug was well retained in impaired porcine skin, which is desired to continuously treat bacteria localized to the wound. A well-diffusion assay indicated that the hydrogels had greater bacterial inhibition against Pseudomonas aeruginosa, Escherichia coli, and two strains of Staphylococcus aureus when compared to commercial controls. Overall, the results show the potential of CH-loaded poloxamer formulations as suitable sprayable topical dressings to deliver antimicrobials directly to wounds.

17.
AAPS PharmSciTech ; 24(8): 214, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848623

RESUMO

Benzydamine hydrochloride (BZD) having analgesic, anesthetic, and anti-inflammatory effects is used orally or topically in the treatment of disorders such as joint inflammation and muscle pain. Within the scope of this study, sprayable thermosensitive BZD hydrogels were developed using thermoresponsive poloxamers to avoid systemic side effects and to provide better compliance for topical administration. Also, hydroxypropyl methyl cellulose (HPMC) was employed to improve the mechanical strength and bioadhesive properties of the hydrogel. The addition of BZD generally decreased the viscosity of the formulations (p < 0.05), while increasing the gelation temperature (p < 0.05). The formulations that did not have any clogs or leaks in the nozzle of the bottle during the spraying process were considered lead formulations. To spray the formulations easily, it was found that the viscosity at RT should be less than 200 mPa·s, and their gelation temperature should be between 26 and 34°C. Increasing HPMC and poloxamer improved bioadhesion. The amount of HPMC and poloxamers did not cause a significant change in the release characteristics of the formulations (p > 0.05); the release profiles of BZD from the formulations were similar according to model-independent kinetic (f2 > 50). HPMC and poloxamers had important roles in the accumulation of BZD in the skin. In vitro biological activity studies demonstrated that the formulations presented their anti-inflammatory activity with TNF-α inhibition but did not have any effect on the inhibition of COX enzymes as expected. As a result, thermosensitive hydrogels containing BZD might be an appropriate alternative, providing an advantage in terms of easier application compared to conventional gels.


Assuntos
Benzidamina , Hidrogéis , Poloxâmero , Géis , Temperatura , Anti-Inflamatórios/farmacologia , Derivados da Hipromelose , Viscosidade
18.
AAPS PharmSciTech ; 24(6): 167, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552329

RESUMO

Solid lipid nanoparticles (SLnPs) are usually utilized as lipid-based formulations for enhancing oral bioavailability of BCS class IV drugs. Accordingly, the objective of this work was to investigate the effect of formulation and processing variables on the properties of the developed SLnPs for oral delivery of apixaban. Randomized full factorial design (24) was employed for optimization of SLnPs. With two levels for each independent variable, four factors comprising both formulations and processing factors were chosen: the GMS content (A), the Tween 80 content (B), the homogenization time (C), and the content of poloxamer 188 used (D). The modified hot homogenization and sonication method was employed in the formulation of solid lipid nanoparticles loaded with apixaban (APX-SLnPs). The size of APX-SLnPs formulations was measured to lie between 116.7 and 1866 nm, polydispersity index ranged from 0.385 to 1, and zeta potential was discovered to be in the range of - 12.6 to - 38.6 mV. The entrapping efficiency of APX-SLnPs formulations was found to be in the range of 22.8 to 96.7%. The optimized formulation was evaluated in vivo after oral administration to rats. Oral administration of APX-SLnPs resulted in significant prolongation in bleeding time compared with both positive and negative control. This indicates the ability of this system to enhance drug therapeutic effect either by increasing intestinal absorption or trans-lymphatic transport. So, this study highlighted the capability of SLnPs to boost the pharmacological effect of apixaban.


Assuntos
Lipídeos , Nanopartículas , Ratos , Animais , Lipossomos , Tamanho da Partícula , Portadores de Fármacos
19.
AAPS PharmSciTech ; 24(5): 107, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100926

RESUMO

The current study aimed to see the effects of poloxamer P407 on the dissolution performance of hydroxypropyl methylcellulose acetate succinate (AquaSolve™ HPMC-AS HG)-based amorphous solid dispersions (ASD). A weakly acidic, poorly water-soluble active pharmaceutical ingredient (API), mefenamic acid (MA), was selected as a model drug. Thermal investigations, including thermogravimetry (TG) and differential scanning calorimetry (DSC), were conducted for raw materials and physical mixtures as a part of the pre-formulation studies and later to characterize the extruded filaments. The API was blended with the polymers using a twin shell V-blender for 10 min and then extruded using an 11-mm twin-screw co-rotating extruder. Scanning electron microscopy (SEM) was used to study the morphology of the extruded filaments. Furthermore, Fourier-transform infrared spectroscopy (FT-IR) was performed to check the intermolecular interactions of the components. Finally, to assess the in vitro drug release of the ASDs, dissolution testing was conducted in phosphate buffer (0.1 M, pH 7.4) and hydrochloric acid-potassium chloride (HCl-KCl) buffer (0.1 M, pH 1.2). The DSC studies confirmed the formation of the ASDs, and the drug content of the extruded filaments was observed to be within an acceptable range. Furthermore, the study concluded that the formulations containing poloxamer P407 exhibited a significant increase in dissolution performance compared to the filaments with only HPMC-AS HG (at pH 7.4). In addition, the optimized formulation, F3, was stable for over 3 months when exposed to accelerated stability studies.


Assuntos
Química Farmacêutica , Poloxâmero , Solubilidade , Química Farmacêutica/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Temperatura Alta , Composição de Medicamentos/métodos , Varredura Diferencial de Calorimetria , Estabilidade de Medicamentos
20.
Saudi Pharm J ; 31(6): 1077-1083, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37293379

RESUMO

Rutin (RUT) is a phytochemical flavonoid with numerous therapeutic potentials including antihypertension, cardioprotective, neuroprotective, and anti-cancer activities. Its clinical use is inhibited due to its poor aqueous solubility and permeability over oral administration. The present study aimed to overcome these problems through micellization and entrapment of RUT in solid dispersion (SD) using Poloxamer (POL) 407 and 188 as surfactant-based matrices. The RUT/SD formulations were prepared in serial drug loading concentrations in weight percentage to the total solid. The physical properties of the formed RUT/SD solids were characterized by several methods including polarizing microscopy, differential thermal analysis (DTA), X-ray diffractometry (XRD), scanning electron microscopy (SEM) and dissolution study. The dissolution test was performed using a paddle dissolution apparatus and samples were analyzed using UV spectrophotometry. Polarized microscope confirmed that the optical behaviors of the RUT/SD implied a formation of miscible RUT with POL matrices. The morphology of RUT/SDs varied from porous matrices with craters to smoother surfaces as a function of RUT concentrations. XRD and DTA data exhibited that RUT existed as partially amorphous. These data indicated that the higher concentration of RUT in the RUT/SD formulations, the higher amorphous proportion of the RUT in the solid state. Henceforth, this led to an increase in the percentage of dissolved RUT from the developed RUT/SD formulations at 94 to 100% compared to pure RUT at only < 35% within an hour. The present study disclosed the successful improvements in the physical characteristics of the RUT/SD formulations and their potencies for the future development for oral formulation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa