Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142243

RESUMO

The present work aims to show how the main properties of poly(methacrylic acid) (PMAA) hydrogels can be engineered by means of several silicon-based fillers (Laponite XLS/XLG, montmorillonite (Mt), pyrogenic silica (PS)) employed at 10 wt% concentration based on MAA. Various techniques (FT-IR, XRD, TGA, SEM, TEM, DLS, rheological measurements, UV-VIS) were used to comparatively study the effect of these fillers, in correlation with their characteristics, upon the structure and swelling, viscoelastic, and water decontamination properties of (nano)composite hydrogels. The experiments demonstrated that the nanocomposite hydrogel morphology was dictated by the way the filler particles dispersed in water. The equilibrium swelling degree (SDe) depended on both the pH of the environment and the filler nature. At pH 1.2, a slight crosslinking effect of the fillers was evidenced, increasing in the order Mt < Laponite < PS. At pH > pKaMAA (pH 5.4; 7.4; 9.5), the Laponite/Mt-containing hydrogels displayed a higher SDe as compared to the neat one, while at pH 7.4/9.5 the PS-filled hydrogels surprisingly displayed the highest SDe. Rheological measurements on as-prepared hydrogels showed that the filler addition improved the mechanical properties. After equilibrium swelling at pH 5.4, G' and G" depended on the filler, the Laponite-reinforced hydrogels proving to be the strongest. The (nano)composite hydrogels synthesized displayed filler-dependent absorption properties of two cationic dyes used as model water pollutants, Laponite XLS-reinforced hydrogel demonstrating both the highest absorption rate and absorption capacity. Besides wastewater purification, the (nano)composite hydrogels described here may also find applications in the pharmaceutical field as devices for the controlled release of drugs.


Assuntos
Nanocompostos , Poluentes da Água , Bentonita , Corantes , Preparações de Ação Retardada , Hidrogéis/química , Metacrilatos , Nanocompostos/química , Nanogéis , Silicatos , Silício , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , Água
2.
Mol Biol Rep ; 46(3): 3063-3072, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30859448

RESUMO

The efficiency of solid phase extraction (SPE) of DNA on polymer particles is limited by the features of the applied solid support, such as size, hydrophilicity, and functionality and their application in SPE also requires additional steps and compounds to finally obtain sufficient amount of high-quality DNA. The present study describes a preparation of sub-micrometer monodisperse poly(methacrylic acid-co-ethylene dimethacrylate) (PME) particles by precipitation polymerization. The effect of the ethylene dimethacrylate (EDMA) crosslinker concentration on morphology and particle size, which varied from 730 to 900 nm, was investigated. The particles with 5 and 15 wt% EDMA were selected for a study of SPE of plasmid DNA under various adsorption and elution conditions, followed by the enzymatic restriction of isolated DNA to verify a quality the nucleic acid. The particles with 15 wt% EDMA were suitable for the SPE because they retained better colloidal stability during the adsorption without additional induction of DNA conformational change. The quality of isolated DNA was finally verified by enzymatic restriction by restriction endonuclease EcoRI. Moreover, the developed method using PME particles was successfully utilized for DNA isolation from Escherichia coli lysate.


Assuntos
DNA/isolamento & purificação , Extração em Fase Sólida , DNA/química , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Polímeros/química , Polimetil Metacrilato/química , Extração em Fase Sólida/métodos
3.
Des Monomers Polym ; 20(1): 406-418, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29491812

RESUMO

Sharply thermo- and pH-responsive pentablock terpolymer with a core-shell-corona structure was prepared by RAFT polymerization of N-isopropylacrylamide and methacrylic acid monomers using PEG-based benzoate-type of RAFT agent. The PEG-based RAFT agent could be easily synthesized by dihydroxyl-capped PEG with 4-cyano-4-(thiobenzoyl) sulfanylpentanoic acids, using esterification reaction. This pentablock terpolymer was characterized by 1H NMR, FT-IR, and GPC. The PDI was obtained by GPC, indicating that the molecular weight distribution was narrow and the polymerization was well controlled. The thermo- and pH-responsive micellization of the pentablock terpolymer in aqueous solution was investigated using fluorescence spectroscopy technique, UV-vis transmittance, and TEM. The LCST of pentablock terpolymer increased (over 50 °C) compared to the NIPAM homopolymer (~32 °C), due to the incorporation of the hydrophilic PEG and PMA blocks in pentablock terpolymer (PNIPAM block as the core, PEG the block and the hydrophilic PMA block as the shell and the corona). Also, pH-dependent phase transition behavior shows at a pH value of about ~5.8, according to pKa of MAA. Thus, in acidic solution at room temperature, the pentablock terpolymer self-assembled to form core-shell-corona micelles, with the hydrophobic PMA block as the core, the PNIPAM block and the hydrophilic PEG block as the shell and the corona, respectively.

4.
J Drug Deliv Sci Technol ; 30(Pt B): 352-359, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26688695

RESUMO

Hydrogels have been influential in the development of controlled release systems for a wide variety of therapeutic agents. These materials are attractive as carriers for transmucosal and intracellular drug delivery because of their inherent biocompatibility, tunable physicochemical properties, basic synthesis, and ability to be physiologically responsive. Due to their hydrophilic nature, hydrogel-based carrier systems are not always the best systems for delivery of small molecular weight, hydrophobic therapeutic agents. In this work, versatile hydrogel-based carriers composed of copolymers of methyl methacrylate (MMA) and acrylic acid (AA) were designed and synthesized to create formulations for oral delivery of small molecular weight therapeutic agents. Through practical material selection and careful design of copolymer composition and molecular architecture, we engineered systems capable of responding to physiological changes, with tunable physicochemical properties that are optimized to load, protect, and deliver their payloads to their intended site of action. The synthesized carriers' ability to respond to changes in pH, to load and release small molecular weight drugs, and biocompatibility were investigated. Our results suggest these hydrophilic networks have great potential for controlled delivery of small-molecular weight, hydrophobic and hydrophilic agents.

5.
Biosens Bioelectron ; 251: 116119, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38342057

RESUMO

Poly (3,4-ethylenedioxythiophene) (PEDOT)-based molecularly imprinted electrochemical sensors have attracted widespread attention for monitoring contaminants in food and the environment. However, there are still problems such as poor hydrophilicity, easy agglomeration, and low selectivity in its preparation. In this work, a novel molecularly imprinted composite hollow sphere was prepared by a molecular imprinting technique using nitrogen-doped hollow carbon spheres as matrix material, and PEDOT and poly(methacrylic acid) as monomers. The selective binding capabilities and mechanism of the material to norfloxacin (NOR) were systematically investigated. Then the material-based sensor was constructed, and its electrochemical detection performance toward NOR was thoroughly studied. The sensor exhibited a wide linear range (0.0005-31 µM), a low detection limit (0.061 nM), satisfactory immunity to interference and stability. Besides, the sensor displayed better sensitivity and reliability (spiked recoveries of 98.0-105.2%, relative standard deviation of 3.45-5.69%) for detecting NOR in lake water, honey, and milk than high-performance liquid chromatography. This work provides a new strategy for developing poly(3,4-ethylenedioxythiophene)-based molecularly imprinted electrochemical sensors.


Assuntos
Técnicas Biossensoriais , Impressão Molecular , Norfloxacino , Reprodutibilidade dos Testes , Técnicas Eletroquímicas/métodos , Polímeros/química , Técnicas Biossensoriais/métodos , Impressão Molecular/métodos , Limite de Detecção , Eletrodos
6.
J Sep Sci ; 36(13): 2121-7, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23640909

RESUMO

A solid-phase microextraction (SPME) fiber coated with poly(methacrylic acid-ethylene glycol dimethacrylate) coupled to GC with a micro electron-capture detector was developed for the determination of four chlorphenols in water samples for the first time. A novel and simple method for the preparation of this novel SPME fiber was proposed by copolymerization of methacrylic acid and ethylene glycol dimethacrylate in an appropriate solvent using a glass capillary as a "mold". The factors affecting the polymerization were optimized in detail. Furthermore, the extraction performance of the poly(methacrylic acid-ethylene glycol dimethacrylate) fiber was evaluated. Moreover, experimental headspace-SPME parameters, such as extraction temperature, extraction time, salt concentration, stirring speed, and pH, were optimized by orthogonal array experimental designs. Under the optimized conditions, the target analytes were linear in the range of 0.2-50 ng/mL, and the correlation coefficients were all greater than 0.99. RSD was less than 8.9%, and the detection limits were in the range of 0.1-10 ng/L. Four cholorphenols were detected from tap and lake water samples using the proposed method, with the recoveries of spiked natural water samples were ranged from 91.8 to 110.8, and 90.6 to 111.4% for tap and lake water samples, respectively.

7.
Polymers (Basel) ; 15(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37112066

RESUMO

A hole array was fabricated via photolithography to wet the bottoms of holes using oxygen plasma. Amide-terminated silane, a water immiscible compound before hydrolysis, was evaporated for deposition on the plasma-treated hole template surface. The silane compound was hydrolyzed along the edges of circular sides of the hole bottom to form a ring of an initiator after halogenation. Poly(methacrylic acid) (PMAA) was grafted from the ring of the initiator to attract Ag clusters (AgCs) as AgC-PMAA hybrid ring (SPHR) arrays via alternate phase transition cycles. The SPHR arrays were modified with a Yersinia pestis antibody (abY) to detect the antigen of Yersinia pestis (agY) for plague diagnosis. The binding of the agY onto the abY-anchored SPHR array resulted in a geometrical change from a ring to a two-humped structure. The reflectance spectra could be used to analyze the AgC attachment and the agY binding onto the abY-anchored SPHR array. The linear range between the wavelength shift and agY concentration from 30 to 270 pg mL-1 was established to obtain the detection limit of ~12.3 pg mL-1. Our proposed method provides a novel pathway to efficiently fabricate a ring array with a scale of less than 100 nm, which demonstrates excellent performance in preclinical trials.

8.
Int J Pharm ; 644: 123291, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37544388

RESUMO

This study focuses on the use of methacrylic acid polymers synthesised via the Reversible Addition Fragmentation chain Transfer (RAFT) polymerisation method for the production of amorphous solid dispersions (ASDs) by ball milling, to kinetically solubilize a poorly water-soluble model drug. The solid-state characteristics and the physical stability of the formulations were investigated using X-ray diffraction, differential scanning calorimetry, and infrared spectroscopy. This was followed by dissolution studies in different media. It was discovered that the acidic polymers of methacrylic acid were capable of interacting with the weakly basic drug lidocaine and its hydrochloride salt form to produce ASDs when a polymer to drug ratio of 70:30 w/w was used. The ASDs remained amorphous following storage under accelerated aging conditions (40 °C and 75% relative humidity) over 8 months. Fast dissolution and increased lidocaine solubility in different media were obtained from the ASDs owing to the reduced microenvironment pH and enhanced solubilization of the drug caused by the presence of the acidic polymer in the formulation. Production of ASDs using well-defined RAFT-synthesised acidic polymers is a promising formulation strategy to enhance the pharmaceutical properties of basic poorly water-soluble drugs.


Assuntos
Lidocaína , Ácidos Polimetacrílicos , Polímeros/química , Solubilidade , Água/química , Composição de Medicamentos/métodos
9.
J Funct Biomater ; 14(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37103317

RESUMO

A novel type of porous films based on the ZnO-incorporated chitosan-poly(methacrylic acid) polyelectrolyte complex was developed as a wound healing material. The structure of porous films was established by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and energy dispersive X-ray (EDX) analysis. Scanning electron microscope (SEM) and porosity studies revealed that the pore size and porosity of the developed films increased with the increase in zinc oxide (ZnO) concentration. The porous films with maximum ZnO content exhibited improved water swelling degree (1400%), controlled biodegradation (12%) for 28 days, a porosity of 64%, and a tensile strength of 0.47 MPa. Moreover, these films presented antibacterial activity toward Staphylococcus aureus and Micrococcus sp. due to the existence of ZnO particles. Cytotoxicity studies demonstrated that the developed films had no cytotoxicity against the mouse mesenchymal stem (C3H10T1/2) cell line. These results reveal that ZnO-incorporated chitosan-poly(methacrylic acid) films could be used as an ideal material for wound healing application.

10.
Pharm Nanotechnol ; 11(1): 25-33, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36121089

RESUMO

Polyacrylic and polymethacrylic acids, in combination with polymers such as polyacrylamide, provide the ability for controlled and sustained drug delivery since they represent pHand temperature responsiveness. In addition, the synthesis techniques can be used to develop a higher level of supramolecular structures as the interpenetrating polymer networks - as bulk hydrogels or micro-/nanogels. They can provide the opportunity to organize and build up state-ofthe- art carriers for different types of drugs, thus providing the ability to control their loading capacity and drug release performance. This flash review aims to summarize the efforts for synthesizing such interpenetrating polymer networks and their properties and to demonstrate the authors' contributions to this field.


Assuntos
Polímeros , Ácidos Polimetacrílicos , Resinas Acrílicas , Sistemas de Liberação de Medicamentos/métodos
11.
Polymers (Basel) ; 15(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37765623

RESUMO

In this study, we report the development of a micellar system based on a poly(methacrylic acid)-b-poly(ε-caprolactone)-b-poly(methacrylic acid) triblock copolymer (PMAA16-b-PCL35-b-PMAA16) for the oral delivery of resveratrol. The micellar nanocarriers were designed to comprise a PCL core for solubilizing the poorly water-soluble drug and a hydrated PMAA corona with bioadhesive properties for providing better contact with the gastrointestinal mucosa. The micelles were first formed in an aqueous media via the solvent evaporation method and then loaded with resveratrol (72% encapsulation efficiency). Studies by transmission electron microscopy (TEM) and dynamic and electrophoretic light scattering (DLS and PALS) revealed a spherical shape, nanoscopic size (100 nm) and a negative surface charge (-30 mV) of the nanocarriers. Loading of the drug slightly decreased the hydrodynamic diameter (Dh) and increased the ƺ-potential of micelles. In vitro dissolution tests showed that 80% and 100% of resveratrol were released in 24 h in buffers with pH 1.2 and 6.8, respectively, whereas for the same time, not more than 10% of pure resveratrol was dissolved. A heat-induced albumin denaturation assay demonstrated the advantage of the aqueous micellar formulation of resveratrol, which possessed anti-inflammatory potential as high as that of the pure drug. Further, the micellar resveratrol (5 µM) exerted a strong protective effect and maintained viability of mucosa epithelial HT-29 cells in a co-cultural model, representing the production of inflammatory cytokines. For comparison, the pure resveratrol at the same concentration did not protect the damaged HT-29 cells at all. Thus, the present study revealed that the PMAA-b-PCL-b-PMAA copolymeric micelles might be considered appropriate nanocarriers for the oral delivery of resveratrol.

12.
Polymers (Basel) ; 15(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37376326

RESUMO

Nanomaterials such as pH-responsive polymers are promising for targeted drug delivery systems, due to the difference in pH between tumor and healthy regions. However, there is a significant concern about the application of these materials in this field due to their low mechanical resistance, which can be attenuated by combining these polymers with mechanically resistant inorganic materials such as mesoporous silica nanoparticles (MSN) and hydroxyapatite (HA). Mesoporous silica has interesting properties such as high surface area and hydroxyapatite has been widely studied to aid in bone regeneration, providing special properties adding multifunctionality to the system. Furthermore, fields of medicine involving luminescent elements such as rare earth elements are an interesting option in cancer treatment. The present work aims to obtain a pH-sensitive hybrid system based on silica and hydroxyapatite with photoluminescent and magnetic properties. The nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption methods, CHN elemental analysis, Zeta Potential, scanning electron microscopy (SEM), and transmission electron microscopy (TEM), vibrational sample magnetometry (VSM), and photoluminescence analysis. Incorporation and release studies of the antitumor drug doxorubicin were performed to evaluate the potential use of these systems in targeted drug delivery. The results showed the luminescent and magnetic properties of the materials and showed suitable characteristics for application in the release of pH-sensitive drugs.

13.
Anal Chim Acta ; 1269: 341404, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290858

RESUMO

Dopamine (DA) and l-tyrosine (l-Tyr) are neurotransmitters involved in various neuropsychiatric disorders. Therefore, it is important to monitor their levels for diagnosis and treatment. In this study, we synthesized poly (methacrylic acid)/graphene oxide aerogels (p(MAA)/GOA) by in situ polymerization and freeze-drying using graphene oxide and methacrylic acid as substrates. Then, the p(MAA)/GOA were applied as solid-phase extraction adsorbents to extract DA and l-Tyr from urine samples, followed by quantification using high performance liquid chromatography (HPLC). The p(MAA)/GOA showed better adsorption performance for DA and l-Tyr than commercial adsorbents, likely as a result of the strong adsorption of the target analytes via π-π and hydrogen bonding interactions. Further, the developed method had good linearity (r > 0.9990) at concentrations of DA and l-Tyr of 0.075-2.0 and 0.75-20.0 µg mL-1, respectively, as well as a limit of detection of 0.018-0.048 µg mL-1, limit of quantitation of 0.059-0.161 µg mL-1, spiked recovery of 91.1-104.0%, and interday precision of 3.58-7.30%.The method was successfully applied to determine DA and l-Tyr in the urine samples of patients suffering from depression, demonstrating its potential for clinical applications.


Assuntos
Dopamina , Tirosina , Humanos , Depressão/diagnóstico , Limite de Detecção , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão/métodos
14.
J Biomed Mater Res A ; 110(9): 1564-1578, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35488447

RESUMO

Researchers are faced with everyday demands for safer and more efficient therapy for many diseases, especially serious one such as various types of cancer. Numerous anticancer drugs are poorly-water soluble and therefore their encapsulation and controlled release remain quite challenge. In present study, we deepened our research of hydrophilic carrier based on poly(methacrylic acid) and casein (PMAC) by investigating its potential for encapsulation and controlled release of novel poorly water-soluble dihydropyrimidion-azo-pyridon compound (DHPMP). DHPMP is a dye that has been proven to show cytotoxic activity against chronic myeloid leukemia K562 cells. By encapsulating DHPMP into the carrier and delivering it into the intestines, DHPMP absorption could be the fastest and the number of therapeutic doses and side effects can be reduced. Carriers based on PMAC and DHPMP (PMAC-DHPMP) were synthetized and characterized by FTIR, SEM and single compression tests. The swelling behavior of PMAC-DHPMP carriers and cumulative DHPMP release were investigated depending on the amount of crosslinker and encapsulated DHPMP in two media which were simulating pH environments in human stomach and intestines. The prolonged and controlled release of DHPMP was achieved. In vitro cytotoxic activity of PMAC-DHPMP carriers against K562 cells and the cell cycle analysis showed great potential of the carriers for application in leukemia treatment.


Assuntos
Antineoplásicos , Leucemia , Antineoplásicos/química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos , Liberação Controlada de Fármacos , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Concentração de Íons de Hidrogênio , Água/química
15.
Polymers (Basel) ; 14(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36365699

RESUMO

Poly (methacrylic acid) (PMAA) solutions are known to exhibit a lower critical solution temperature (LCST). A temperature-composition phase diagram of PMAA has been constructed by standard cloud point determination through transmittance measurements, and also by studying the steady states reached under phase separation. This allows us to reconstruct the binodal curve describing the phase behavior of PMAA for both low and high concentration regimes, and to determine accurately the LCST temperature. In a second step, the structures formed following a temperature jump above the cloud point and their evolution in time have been investigated at the nanoscale using small angle neutron scattering (SANS). This approach shows that the formation of phase-separated nanostructures is a slow process, requiring more than 12 h. The formed structures are then shown to depend on the amplitude of the temperature jump above the cloud point. An original mechanism of phase separation is identified in the semi-dilute regime. The growth of micrometric-size droplets with an inner structure displaying the rheological properties of a gel leads to the formation of a percolating network which hinders the influence of gravity. Such a result can explain the slow kinetics of the PMAA LCST transition.

16.
Materials (Basel) ; 14(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946776

RESUMO

The present work aims at comparatively studying the effects of the concentrations of a monomer (10-30 wt% based on the whole hydrogel composition), crosslinking agent (1-3 mol% based on the monomer), and reinforcing agent (montmorillonite-MMT, 1-3 wt.% based on the whole hydrogel composition) on the swelling and viscoelastic properties of the crosslinked hydrogels prepared from methacrylic acid (MAA) and N,N'-methylenebisacrylamide (BIS) in the presence of K2S2O8 in aqueous solution. The viscoelastic measurements, carried out on the as-prepared hydrogels, showed that the monomer concentration had the largest impact, its three-time enhancement causing a 30-fold increase in the storage modulus, as compared with only a fivefold increase in the case of the crosslinking agent and 1.5-fold increase for MMT in response to a similar threefold concentration increase. Swelling studies, performed at three pH values, revealed that the water absorption of the hydrogels decreased with increasing concentration of both the monomer and crosslinking agent, with the amplitude of the effect of concentration modification being similar at pH 5.4 and 7.4 in both cases, but very different at pH 1.2. Further, it was shown that the increased pH differently influenced the swelling degree in the case of the hydrogel series in which the concentrations of the monomer and crosslinking agent were varied. In contrast to the effect of the monomer and crosslinking agent concentrations, the increase in the MMT amount in the hydrogel resulted in an increased swelling degree at pH 5.4 and 7.4, while at pH 1.2, a slight decrease in the water absorption was noticed. The hydrogel crosslinking density determinations revealed that this parameter was most affected by the increase in the monomer concentration.

17.
Int J Pharm ; 606: 120622, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-33932539

RESUMO

Generally, an organic-solvent-based film is denser and tougher than a corresponding aqueous-dispersion-based film. However, Kollicoat® MAE100P films prepared from aqueous dispersions had greater tensile strengths compared to the films cast from organic solutions. It was proposed that MAE100P polymer particles in aqueous media had a core-shell structure with a hydrophilic shell and a hydrophobic core. The hydrophilic shell was rich in ionized methacrylic acid (MAA) groups and the hydrophobic core primarily contained unionized MAA and ethyl acrylate (EA). As a result, ionized MAA formed a continuous phase which worked as a rigid frame and greatly improved the mechanical properties of aqueous-dispersion-based films. In order to prove this theory and investigate the effect of ionization level on this polymer system, the properties of pH, turbidity, zeta potential, and particle size of MAE100P dispersions were measured as a function of ionization level. The tensile strengths and thermal and mechanical properties of MAE100P films prepared from organic solution or aqueous dispersions of different ionization levels were investigated as well. FTIR was used to characterize the polymer films. Drug release in 0.1 N HCl from coated pellets was studied using the basket method. The experimental results showed that the original MAE100P polymer particles (if not specified, the ionization level is 6%) had a highly-charged surface. The properties of polymer aqueous dispersions were significantly changed by the ionization levels. Aqueous-dispersion-based MAE100P films or coats were stronger and comparable to or somewhat more effective in inhibiting drug diffusion than were organic-solvent-based coats. The tensile strength initially increased and then decreased with an increase of ionization level, while the water-uptake rate by the films continuously increased. Two endothermic peaks were observed in the DSC thermograms for cured MAE100P films. The high-Tg endothermic peak increased with an increase in ionization level, while the low-Tg peak didn't exhibit significant change except for the 18% ionization film. In the dynamic mechanical analysis, two relaxations in the storage modulus were observed in the aqueous-dispersion-based films. These data may suggest a two-phase structure in the form of a core-shell structure. The tensile-strength ratio for aqueous-dispersion-based films over organic-solvent-based films for MAE100P was close to that reported for films formed from polymer substances/particles with core-shell structures. In summary, the core-shell structure might result in a two-phase structure in the bulk MAE100P film prepared from aqueous dispersion. This special structure led to significantly-improved mechanical properties for aqueous-dispersion-based MAE100 films. The ionization levels had complicated effects on the polymer system by increasing the amount of ionic aggregates while also solubilizing the polymer and changing the mechanism of film formation.


Assuntos
Polímeros , Implantes de Medicamento , Tamanho da Partícula , Solubilidade , Solventes
18.
Polymers (Basel) ; 13(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502937

RESUMO

Traditional pharmacotherapy suffers from multiple drawbacks that hamper patient treatment such as antibiotic resistances or low drug selectivity and toxicity during systemic applications. Some functional hybrid nanomaterials are designed to handle the drug release process under remote-control. More attention has recently been paid to synthetic polyelectrolytes for their intrinsic properties which allow them to rearrange into compact structures, ideal to be used as drug carriers or probes influencing biochemical processes. The presence of Ag nanoparticles (NPs) in the Poly methyl acrylate (PMA) matrix leads to an enhancement of drug release efficiency, even using a low-power laser whose wavelength is far from the Ag Surface Plasmon Resonance (SPR) peak. Further, compared to the colloids, the nanofiber-based drug delivery system has shown shorter response time and more precise control over the release rate. The efficiency and timing of involved drug release mechanisms has been estimated by the Weibull distribution function, whose parameters indicate that the release mechanism of nanofibers obeys Fick's first law while a non-Fickian character controlled by diffusion and relaxation of polymer chains occurs in the colloidal phase.

19.
Polymers (Basel) ; 13(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34771234

RESUMO

The combination of polymerization-induced self-assembly (PISA) and reversible-addition fragmentation chain transfer (RAFT) emulsion polymerization offers a powerful technique to synthesize diblock copolymers and polymeric nanoparticles in a controlled manner. The RAFT emulsion diblock copolymerization of styrene and methacrylic acid (MAA) by using a trithiocarbonate as surfactant and RAFT agent was investigated. The Z-group of the RAFT agent was modified with a propyl-, butyl- and dodecyl- sidechain, increasing the hydrophobicity of the RAFT agent to offer well-controlled polymerization of poly(methacrylic acid)-block-polystyrene (PMAA-b-PS) diblock copolymers at high solid contents between 30-50 wt% in water. The kinetic data of the PMAA homopolymerization with the three different RAFT agents for various solvents was investigated as well as the RAFT emulsion polymerization of the diblock copolymers in pure water. While the polymerization of PMAA-b-PS with a propyl terminus as a Z-group suffered from slow polymerization rates at solid contents above 30 wt%, the polymerization with a dodecyl sidechain as a Z-group led to full conversion within 2 h, narrow molar mass distributions and all that at a remarkable solid content of up to 50 wt%.

20.
Mater Sci Eng C Mater Biol Appl ; 128: 112273, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474832

RESUMO

To develop novel imprinted poly (methacrylic acid) nanoparticles for the controlled release of Rivastigmine Tartrate (RVS), the amalgamation of molecular imprinting techniques and polymerization of precipitates were applied in this work. By permuting different concentrations of pentaerythritol triacrylate (PETA) or trimethylolpropane triacrylate (TMPTA) as cross-linkers, ten different samples were synthesized, and their abilities assessed for RVS absorption. Among them, uniform mono-disperse nanoparticles were synthesized in an RVS/PMAA/PETA mole ratio of 1:6:12, named molecularly imprinted polymers 2 (MIP2), which showed the highest RVS absorption. Analytical procedures involving the Fourier transform infrared (FT-IR), Thermogeometric analysis (TGA), Field emission scanning electron microscopy (FE-SEM), Dynamic light scattering (DLS), and absorption/desorption porosimetry (BET) measurements were applied to characterize the morphology and physicochemical properties of the MIP2. In addition, the cytotoxicity of the MIP2 sample was measured by MTT assay on an L929 cell line. Studies pertaining to the in-vitro release of RVS from MIP2 samples showed that the prepared sample had a controlled and sustained release compared, which differed from the results obtained from the non-imprinted polymer (NIP) with the same formulization. Results obtained further reinforced the feasibility of prepared MIPs as a prime candidature for RVS drug delivery to alleviate Alzheimer's and other diseases.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Adsorção , Preparações de Ação Retardada , Rivastigmina , Espectroscopia de Infravermelho com Transformada de Fourier , Tartaratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa