Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Biochem Genet ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877158

RESUMO

Endophytic fungi associated with plants may contain undiscovered bioactive compounds. Under standard laboratory conditions, most undiscovered compounds are inactive, whereas their production could be stimulated under different cultivation conditions. In this study, six endophytic fungi were isolated from the bark of Koelreuteria paniculata in Quancheng Park, Jinan City, Shandong Province, one of which was identified as a new subspecies of Aureobasidium pullulans, named A. pullulans KB3. Additionally, metabolomic tools were used to screen suitable media for A. pullulans KB3 fermentation, and the results showed that peptone dextrose medium (PDM) was more beneficial to culture A. pullulans KB3 for isolation of novel compounds. Sphaerolone, a polyketone compound, was initially isolated from A. pullulans KB3 via scaled up fermentation utilizing PDM. Additionally, the whole-genome DNA of A. pullulans KB3 was sequenced to facilitate compound isolation and identify the biosynthesis gene clusters (BGCs). This study reports the multi-omics (metabolome and genome) analysis of A. pullulans KB3, laying the foundation for discovering novel compounds of silent BGCs and identifying their biosynthesis pathway.

2.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279347

RESUMO

The copolymers of carbon monoxide (CO) and ethylene, namely aliphatic polyketones (PKs), have attracted considerable attention due to their unique property and degradation. Based on the arrangement of the ethylene and carbonyl groups in the polymer chain, PKs can be divided into perfect alternating and non-perfect alternating copolymers. Perfect alternating PKs have been previously reviewed, we herein focus on recent advances in the synthesis of PKs without a perfect alternating structure including non-perfect alternating PKs and PE with in-chain ketones. The chain structure of PKs, catalytic copolymerization mechanism, and non-alternating polymerization catalysts including phosphine-sulfonate Pd, diphosphazane monoxide (PNPO) Pd/Ni, and phosphinophenolate Ni catalysts are comprehensively summarized. This review aims to enlighten the design of ethylene/CO non-alternating polymerization catalysts for the development of new polyketone materials.


Assuntos
Monóxido de Carbono , Etilenos , Polimerização , Monóxido de Carbono/química , Etilenos/química , Polímeros/química
3.
Molecules ; 28(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37513182

RESUMO

d-pantolactone is an intermediate in the synthesis of d-pantothenic acid, which is known as vitamin B5. The commercial synthesis of d-pantolactone is carried out through the selective resolution of dl-pantolactone catalyzed by lactone hydrolase. In contrast to a kinetic resolution approach, the deracemization of dl-pantolactone is a simpler, greener, and more sustainable way to obtain d-pantolactone with high optical purity. Herein, an efficient three-enzyme cascade was developed for the deracemization of dl-pantolactone, using l-pantolactone dehydrogenase from Amycolatopsis methanolica (AmeLPLDH), conjugated polyketone reductase from Zygosaccharomyces parabailii (ZpaCPR), and glucose dehydrogenase from Bacillus subtilis (BsGDH). The AmeLPLDH was used to catalyze the dehydrogenated l-pantolactone into ketopantolactone; the ZpaCPR was used to further catalyze the ketopantolactone into d-pantolactone; and glucose dehydrogenase together with glucose fulfilled the function of coenzyme regeneration. All three enzymes were co-expressed in E. coli strain BL21(DE3), which served as the whole-cell biocatalyst. Under optimized conditions, 36 h deracemization of 1.25 M dl-pantolactone d-pantolactone led to an e.e.p value of 98.6%, corresponding to productivity of 107.7 g/(l·d).


Assuntos
4-Butirolactona , Escherichia coli , Glucose 1-Desidrogenase
4.
Chem Biodivers ; 19(10): e202200751, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36082622

RESUMO

Chemical studies on the culture broth of the endophytic fungus Alternaria sp. J030 led to the identification of three benzylated hydroxyacetophenone derivatives, bauvaroalterins A-C (1-3), and 34 structurally diverse metabolites (4-37). The new structures were elucidated by extensive spectroscopic analyses including UV, IR, 1D and 2D NMR, HR-ESI-MS, and further confirmed using single crystal X-ray diffraction. The in vitro anti-neuroinflammatory effects of the co-isolated metabolites were evaluated in lipopolysaccharide (LPS)-stimulated microglial cells. Compounds 1-3 were shown to significantly reduce LPS-induced NO production by inhibiting the expression of iNOS, as well as inhibiting LPS-induced production of the inflammatory factors TNF-α, IL-1ß and IL-6. Further studies revealed that 1-3 were capable of down-regulating the expression of NF-κB subunits p50 and p65, thereby suppressing the activation of NF-κB by inhibiting the LPS-induced phosphorylation of IκB-α. Together these findings demonstrate that bauvaroalterins A-C (1-3) exert anti-neuroinflammatory effects via inhibition of the NF-κB/iNOS signalling pathway in LPS induced BV-2 cells.


Assuntos
Lipopolissacarídeos , NF-kappa B , Lipopolissacarídeos/farmacologia , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Alternaria/metabolismo , Anti-Inflamatórios , Interleucina-6/metabolismo , Microglia
5.
Angew Chem Int Ed Engl ; 61(29): e202204126, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35575978

RESUMO

Transition-metal-catalyzed copolymerization of ethylene with carbon monoxide affords polyketones materials with excellent mechanical strength, photodegradability, surface and barrier properties. Unlike the widely used and rather expensive Pd catalysts, Ni-catalyzed carbonylative polymerization is very difficult since the strong binding affinity of CO to Ni deactivates the highly electrophilic metal center easily. In this study, various cationic P,O-coordinated Ni complexes were synthesized using the electronic modulation strategy, and the catalyst with strong electron-donating substituents exhibits an excellent productivity of 104  g polymer (g Ni)-1 , which represents a rare discovery that a Ni complex could operate with such exceptional efficiency in comparison with Pd catalysts. Notably, those Ni catalysts were also efficient for terpolymerization of ethylene, propylene with CO for producing commercial polyketone materials with low melting temperatures and easy processibility.

6.
Bioorg Chem ; 116: 105309, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34479054

RESUMO

Six new polyketone metabolites, compounds (1-6) and seven known polyketone compounds (7-13) were isolated from Rhodiola tibetica endophytic fungus Alternaria sp. The structural elucidation of five new polyketone metabolites were elucidated on the basis of spectroscopic including 2D NMR and HRMS and spectrometric analysis. Inhibition rate evaluation revealed that compounds 1(EC50 = 0.02 mM), 3(EC50 = 0.3 mM), 6(EC50 = 0.07 mM), 8(EC50 = 0.1 mM) and 9(EC50 = 0.04 mM) had inhibitory effect on the SARS-CoV-2 virus.


Assuntos
Alternaria/química , Antivirais/isolamento & purificação , Antivirais/farmacologia , Cetonas/isolamento & purificação , Cetonas/farmacologia , Polímeros/isolamento & purificação , Polímeros/farmacologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/química , Humanos , Cetonas/química , Estrutura Molecular , Polímeros/química
7.
Bioorg Chem ; 90: 103046, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31212182

RESUMO

Chemical investigation of the EtOAc extract of the plant-associated fungus Alternaria alternate in rice culture led to the isolation of a novel liphatic polyketone, alternin A (1), a new indole alkaloid (8), and a new sesquiterpene (11), together with 12 known compounds. Their structures were elucidated by the interpretation of extensive spectroscopic data, and the absolute configurations of 1-3 were established using calculations of ECD spectra, NMR data, and optical rotation values. Compound 1 possesses an unprecedented C25 liphatic polyketone skeleton. Compounds 5 and 10 exhibited potential cytotoxic activities against MCF-7 and HepG cells, and compounds 2, 7, and 9 exhibited potential neuroprotective activities in glutamate induced-PC12 injured cells.


Assuntos
Alternaria/química , Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Endófitos/química , Fármacos Neuroprotetores/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Psidium/microbiologia
8.
Beilstein J Org Chem ; 13: 1816-1822, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28904625

RESUMO

Thiazolium carbene-catalyzed reactions of 1,2-diketones and 1,2,3-triketones with enones and ynones have been investigated. The diketones gave α,ß-double acylation products via unique Breslow intermediates isolable as acid salts, whereas the triketones formed stable adducts with the NHC instead of the coupling products.

9.
Polymers (Basel) ; 16(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000745

RESUMO

Today, polymeric drug delivery systems (DDS) appear as an interesting solution against bacterial resistance, having great advantages such as low toxicity, biocompatibility, and biodegradability. In this work, two polyketones (PK) have been post-functionalized with sodium taurinate (PKT) or potassium sulfanilate (PKSK) and employed as carriers for Vancomycin against bacterial infections. Modified PKs were easily prepared by the Paal-Knorr reaction and loaded with Vancomycin at a variable pH. All polymers were characterized by FT-IR, DSC, TGA, SEM, and elemental analysis. Antimicrobial activity was tested against Gram-positive Staphylococcus aureus ATCC 25923 and correlated to the different pHs used for its loading (between 2.3 and 8.8). In particular, the minimum inhibitory concentrations achieved with PKT and PKSK loaded with Vancomycin were similar, at 0.23 µg/mL and 0.24 µg/mL, respectively, i.e., six times lower than that with Vancomycin alone. The use of post-functionalized aliphatic polyketones has thus been demonstrated to be a promising way to obtain very efficient polymeric DDS.

10.
Membranes (Basel) ; 14(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38248704

RESUMO

Over half of the pharmaceutical industry's capital investments are related to the purification of active pharmaceutical ingredients (APIs). Thus, a cost-effective purification process with a highly concentrated solution is urgently required. In addition, the purification process should be nonthermal because most APIs and their intermediates are temperature-sensitive. This study investigated a high-degree concentration organic solvent forward osmosis (OSFO) membrane process. A polyketone-based thin-film composite hollow fiber membrane with a polyamide selective layer on the bore surface was used as the OSFO membrane to achieve a high tolerance for organic solvents and an effective concentration. MeOH, sucrose octaacetate (SoA), and 2M polyethylene glycol 400 (PEG-400)/MeOH solution were used as the solvent, model API, and a draw solution (DS), respectively. OSFO was performed at room temperature (23 ± 3 °C). Consequently, the 11 wt% SoA/MeOH solution was concentrated to 52 wt% without any SoA leakage into the DS. To our knowledge, there are no studies in which up to a 5 wt% concentration by OSFO has been demonstrated. However, the final feed solution contained 17 wt% PEG-400. This study demonstrates the promising potential of OSFO for pharmaceutical pre-concentration and the technical problems that need to be solved for social implementation.

11.
Polymers (Basel) ; 15(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37177175

RESUMO

Anion-exchange membranes (AEMs) are involved in a wide range of applications, including fuel cells and water electrolysis. A straightforward method for the preparation of efficient AEMs consists of polymer functionalization with robust anion-exchange sites. In this work, an aliphatic polyketone was functionalized with 1-(3-aminopropyl)imidazole through the Paal-Knorr reaction, with a carbonyl (CCO %) conversion of 33%. The anion-exchange groups were generated by the imidazole quaternization by using two different types of alkyl halides, i.e., 1,4-iodobutane and 1-iodobutane, with the aim of modulating the degree of crosslinking of the derived membrane. All of the membranes were amorphous (Tg ∼ 30 °C), thermally resistant up to 130 °C, and had a minimum Young's modulus of 372 ± 30 MPa and a maximum of 86 ± 5 % for the elongation at break for the least-crosslinked system. The ionic conductivity of the AEMs was determined at 25 °C by electrochemical impedance spectroscopy (EIS), with a maximum of 9.69 mS/cm, i.e., comparable with that of 9.66 mS/cm measured using a commercially available AEM (Fumasep-PK-130). Future efforts will be directed toward increasing the robustness of these PK-based AEMs to meet all the requirements needed for their application in electrolytic cells.

12.
Polymers (Basel) ; 15(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37571051

RESUMO

Today, the high concentrations of copper found in water resources result in an urgent problem to solve since human health and aquatic ecosystems have been affected. Functionalized crosslinked polyketone resins (XLPK) have demonstrated high performance for the uptake of heavy metals in water solutions. In addition, its green chemical synthesis makes these resins very attractive as sorbents for metal ions contained in wastewater. XLPK are not soluble in aqueous media and do not require any catalyst, solvent, or harsh conditions to carry out the uptake process. In this paper, a series of functionalized XLPK with pending amino-derivatives namely; butylamine (BA), amino 2-propanol (A2P), 4-(aminomethyl) benzoic acid (HAMC), 6-aminohexanoic acid (PAMBA), and 1,2 diamino propane (DAP) directly attached to the pyrrole backbone of the polymers and crosslinked by di-amine derivatives was investigated using Density Functional Theory (DFT) calculations. Our computational analysis revealed that dipole-dipole interactions played a crucial role in enhancing the adsorption of Cu2+ ions onto XLPKs. The negatively charged ketone moieties and functional groups within XLPKs were identified as key adsorption sites for the selective binding of Cu2+ ions. Additionally, we found that XLPKs exhibited strong electrostatic interactions primarily through the -NH2 and -C=O groups. Evaluation of the adsorption energies in XLPK-Cu(II) complexes showed that the DAP-Cu(II) complex exhibited the highest stability, attributed to strong Cu(II)-N binding facilitated by the amino moiety (-NH2). The remaining XLPKs displayed binding modes involving oxygen atoms (Cu(II)-O) within the ketone moieties in the polymer backbone. Furthermore, the complexation and thermochemical analysis emphasized the role of the coordinator atom (N or O) and the coordinating environment, in which higher entropic effects involved in the adsorption of Cu2+ ions onto XLPKs describes a lower spontaneity of the adsorption process. The adsorption reactions were favored at lower temperatures and higher pressures. These findings provide valuable insights into the reactivity and adsorption mechanisms of functionalized and crosslinked polyketones for Cu2+ uptake, facilitating the design of high-performance polymeric resins for water treatment applications.

13.
Polymers (Basel) ; 13(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802662

RESUMO

In this work, we report a facile way to control crystalline structures of polyketone (PK) films by combining plasma surface treatment with chemical vapor deposition (CVD) technique. The crystalline structure of PKs grown on plasma-treated graphene and the resulting thermal and mechanical properties were systematically discussed. Every graphene sheet used in this work was produced by CVD method and the production of PKs having different crystallinity were performed on the O2- and N2-doped graphene sheets. It was evident that the CVD-grown graphene sheets acted as the nucleating agents for promoting the crystallization of ß-form PK, while suppressing the growth of α-form PK crystals. Regardless of the increase in surface roughness of graphene, surface functionality of the CVD-grown graphene was found to be an important factor in determining the crystalline structure of PK. N2 plasma treatment of the CVD-grown graphene promoted growth of the ß-form PK, whereas the O2 plasma treatment of CVD graphene led to transformation of the unoriented ß-form PK into the oriented α-form PK. Thus, the resulting thermal and mechanical properties of the PKs were highly dependent on the surface functionality of the CVD graphene. The method of controlling crystalline structure of the PKs suggested in this study, is expected to be very effective in realizing the PK with good processability, heat resistance and mechanical properties.

14.
ACS Appl Mater Interfaces ; 13(49): 59288-59297, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34856800

RESUMO

Most nontraditional intrinsic luminescent (NTIL) polymers currently show blue fluorescence. Tuning the emission color of NTIL polymers is of fundamental importance for their applications, but it still remains a scientific challenge. Herein, we initially develop an efficient strategy for bathochromic shifting of NTIL polymers by through-space acceptor-donor charge transfer between the in chain and the side chain. A variety of functionalized polyketones (FPK-R; where R = H, Ph, Me, tBu, F, and Cl) with furan rings built into the polymer chain were prepared by the Paal-Knorr reaction. FPK-R polymers showed bright and bathochromic-shifted fluorescence compared with their counterparts. The emission color could be tuned by changing the postfunctionalization conversion and varying the styrenic monomer substituent. Experimental and theoretical investigations revealed that the color tunability originated from enhanced through-space charge transfer between the side chain phenyl and the in chain furan rings.

15.
Polymers (Basel) ; 13(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494537

RESUMO

Among smart materials, self-healing is one of the most studied properties. A self-healing polymer can repair the cracks that occurred in the structure of the material. Polyketones, which are high-performance thermoplastic polymers, are a suitable material for a self-healing mechanism: a furanic pendant moiety can be introduced into the backbone and used as a diene for a temperature reversible Diels-Alder reaction with bismaleimide. The Diels-Alder adduct is formed at around 50 °C and broken at about 120 °C, giving an intrinsic, stimuli-responsive self-healing material triggered by temperature variations. Also, reduced graphene oxide (rGO) is added to the polymer matrix (1.6-7 wt%), giving a reversible OFF-ON electrically conductive polymer network. Remarkably, the electrical conductivity is activated when reaching temperatures higher than 100 °C, thus suggesting applications as electronic switches based on self-healing soft devices.

16.
Polymers (Basel) ; 13(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34641218

RESUMO

Polyketones (PKs) having strong hydrogen bonding properties and a chain extender are used as additives in the melt processing of nylon 6 (PA6). Their effect on the chain structure and properties of PA6 is studied to enhance the processability of PA6 in melt processing. The addition of the chain extender to PA6 increases the melt viscosity by forming branches on the backbone. The addition of PKs results in an additional increase in viscosity through the hydrogen bonding between N-H of PA6 and C=O of PK. The change in the N-H bond FT-IR peak of PA6 and the swelling data of the PA6/PK blend containing a chain extender, styrene maleic anhydride copolymer (ADR), suggest that incorporation of chain extender and PK in the melt processing of PA6 results in physical crosslinks through hydrogen bonding between the branched PA6 formed by the addition of chain extender and PK chains. This change in the chain structure of PA6 not only increases the melt strength of PA6 but also increases randomness resulting in decreased crystallinity.

17.
Polymers (Basel) ; 12(4)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316345

RESUMO

In this work, we investigated the functionalization of polyketone 30 (PK30) with glycyl-glycine (Gly-Gly) via the Paal-Knorr reaction with the aim of homogenously dispersing two types of reduced graphene oxide (rGO, i.e., lrGO and hrGO, the former characterized by a lower degree of reduction in comparison to the latter) by non-covalent interactions. The functional PK30-Gly-Gly polymer was effective in preparing composites with homogeneously distributed rGO characterized by an effective percolation threshold at 5 wt. %. All the composites showed a typical semiconductive behavior and stable electrical response after several heating/cooling cycles from 30 to 115 °C. Composites made by hrGO displayed the same resistive behaviour even if flanked by a considerable improvement on conductivity, in agreement with the more reduced rGO content. Interestingly, no permanent percolative network was shown by the composite with 4 wt. % of lrGO at temperatures higher than 45 °C. This material can be used as an ON-OFF temperature sensor and could find interesting applications as sensing material in soft robotics applications.

18.
ACS Appl Mater Interfaces ; 12(6): 7586-7594, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31967779

RESUMO

Energy-efficient membrane technology has received tremendous attention for the separation of organic molecules; however, the separation of molecules of less than 100 Da has remained challenging. Herein, a membrane fabricated from interfacial polymerization on a polyketone support was used as an organic solvent reverse osmosis (OSRO) membrane for the separation of organic liquid mixtures. The chemically stable and highly cross-linked selective layer exhibited outstanding separation factors toward large nonpolar molecules from small polar ones with high fluxes. For example, separation factors of 8.4, 11.1, 14.9, and 38.0 were achieved toward toluene, pentane, hexane, and heptane (10 wt % in mixtures), respectively, from methanol solution at 3 MPa, with fluxes around 5 LMH. This membrane outperformed the currently available reverse osmosis membrane and organic solvent nanofiltration membranes in terms of stability and separation factor. This work promotes the development of OSRO separation of organic liquid mixtures without phase change.

19.
Polymers (Basel) ; 12(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899443

RESUMO

In this work, we prepared color-changing colloids by using the electrostatic self-assembly approach. The supramolecular structures are composed of a pH-responsive polymeric surfactant and the water-soluble porphyrin 5,10,15,20-tetrakis-(sulfonatophenyl)porphyrin (TPPS). The pH-responsive surfactant polymer was achieved by the chemical modification of an alternating aliphatic polyketone (PK) via the Paal-Knorr reaction with N-(2-hydroxyethyl)ethylenediamine (HEDA). The resulting polymer/dye supramolecular systems form colloids at the submicron level displaying negative zeta potential at neutral and basic pH, and, at acidic pH, flocculation is observed. Remarkably, the colloids showed a gradual color change from green to pinky-red due to the protonation/deprotonation process of TPPS from pH 2 to pH 12, revealing different aggregation behavior.

20.
J Colloid Interface Sci ; 544: 230-240, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30851684

RESUMO

Enzymes play vital roles in biological transformations due to incomparable selectivity. Enzymatic membrane reactors (EMRs) combine enzymes with membranes, and many researchers have studied the synergistic effect of EMRs exerting on enzyme performance. Before the utility of EMRs can expand from natural aqueous media to organic solvents, robust membranes must be developed to promote enzyme protection from hostile forms of media. For this study, laccase was immobilized on an organic-solvent-resistant hydroxylated polyketone (PK-OH) membrane via covalent bonds and served as a model enzyme. Ketone groups facilitated the immobilization via hydrogen bonds, leading to a high immobilization density of 462 µg/cm2. In homogeneous aqueous-organic solvents, the activity of immobilized laccase was up to 3.5 times greater than that of free laccase towards 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid). In addition, the results also showed improved activity towards highly concentrated 2,4,6-trichlorophenol and bisphenol A (1.4 g/L). Furthermore, the activity in filtration mode showed a 240% increase over that in batch mode. The immobilized laccase maintained its activity after 40 days of storage, 10 reuse cycles, and 50 h of continuous reaction. These results show that robust polyketone based membrane support will create opportunities for the application of EMRs in aqueous-organic solvents.


Assuntos
Enzimas Imobilizadas/metabolismo , Cetonas/química , Lacase/metabolismo , Membranas Artificiais , Solventes/química , Compostos Benzidrílicos/química , Reatores Biológicos , Catálise , Clorofenóis/química , Estabilidade Enzimática , Cinética , Fenóis/química , Ácidos Sulfônicos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa