Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Biomed Sci ; 31(1): 45, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693534

RESUMO

Campylobacter jejuni is a very common cause of gastroenteritis, and is frequently transmitted to humans through contaminated food products or water. Importantly, C. jejuni infections have a range of short- and long-term sequelae such as irritable bowel syndrome and Guillain Barre syndrome. C. jejuni triggers disease by employing a range of molecular strategies which enable it to colonise the gut, invade the epithelium, persist intracellularly and avoid detection by the host immune response. The objective of this review is to explore and summarise recent advances in the understanding of the C. jejuni molecular factors involved in colonisation, invasion of cells, collective quorum sensing-mediated behaviours and persistence. Understanding the mechanisms that underpin the pathogenicity of C. jejuni will enable future development of effective preventative approaches and vaccines against this pathogen.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Fatores de Virulência , Campylobacter jejuni/patogenicidade , Campylobacter jejuni/fisiologia , Humanos , Infecções por Campylobacter/microbiologia , Percepção de Quorum
2.
Infect Immun ; 91(4): e0029622, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36877045

RESUMO

Pneumococcal Ser/Thr kinase (StkP) and its cognate phosphatase (PhpP) play a crucial role in bacterial cytokinesis. However, their individual and reciprocal metabolic and virulence regulation-related functions have yet to be adequately investigated in encapsulated pneumococci. Here, we demonstrate that the encapsulated pneumococcal strain D39-derived D39ΔPhpP and D39ΔStkP mutants displayed differential cell division defects and growth patterns when grown in chemically defined media supplemented with glucose or nonglucose sugars as the sole carbon source. Microscopic and biochemical analyses supported by RNA-seq-based global transcriptomic analyses of these mutants revealed significantly down- and upregulated polysaccharide capsule formation and cps2 genes in D39ΔPhpP and D39ΔStkP mutants, respectively. While StkP and PhpP individually regulated several unique genes, they also participated in sharing the regulation of the same set of differentially regulated genes. Cps2 genes were reciprocally regulated in part by the StkP/PhpP-mediated reversible phosphorylation but independent of the MapZ-regulated cell division process. StkP-mediated dose-dependent phosphorylation of CcpA proportionately inhibited CcpA-binding to Pcps2A, supporting increased cps2 gene expression and capsule formation in D39ΔStkP. While the attenuation of the D39ΔPhpP mutant in two mouse infection models corroborated with several downregulated capsules-, virulence-, and phosphotransferase systems (PTS)-related genes, the D39ΔStkP mutant with increased amounts of polysaccharide capsules displayed significantly decreased virulence in mice compared to the D39 wild-type, but more virulence compared to D39ΔPhpP. NanoString technology-based inflammation-related gene expression and Meso Scale Discovery-based multiplex chemokine analysis of human lung cells cocultured with these mutants confirmed their distinct virulence phenotypes. StkP and PhpP may, therefore, serve as critical therapeutic targets.


Assuntos
Monoéster Fosfórico Hidrolases , Proteínas Serina-Treonina Quinases , Humanos , Animais , Camundongos , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Cápsulas/metabolismo , Virulência , Processamento de Proteína Pós-Traducional , Streptococcus pneumoniae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
3.
Clin Infect Dis ; 75(4): 719-722, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-35134152

RESUMO

The Streptococcus pneumoniae capsule is regarded as indispensable in bacteremia. We report an infant with a ventricular septal defect and infective endocarditis caused by nontypeable S. pneumoniae. In-depth investigation confirmed a deficient capsule yet favored pneumococcal fitness for causing infective endocarditis, rather than a host immune disorder, as the cause of infective endocarditis in this case.


Assuntos
Endocardite Bacteriana , Endocardite , Infecções Pneumocócicas , Pneumonia , Endocardite/diagnóstico , Endocardite Bacteriana/diagnóstico , Humanos , Lactente , Infecções Pneumocócicas/diagnóstico , Streptococcus pneumoniae
4.
Emerg Infect Dis ; 28(1): 166-179, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34932448

RESUMO

The Streptococcus pneumoniae polysaccharide capsule plays a role in disease severity. We assessed the association of serotype with case-fatality ratio (CFR) in invasive pneumococcal disease (IPD) and meningitis in South Africa, 2012-2018 (vaccine era), using multivariable logistic regression by manual backward elimination. The most common serotypes causing IPD were 8 and 19A. In patients <15 years of age, serotypes associated with increased CFR in IPD, compared with serotype 8 and controlling for confounding factors, were 11A, 13, 19F, 15A, and 6A. None of these serotypes were associated with increased CFR in meningitis. Among IPD patients >15 years of age, serotype 15B/C was associated with increased CFR. Among meningitis patients of all ages, serotype 1 was associated with increased CFR. PCV13 serotypes 1, 3, 6A, 19A, and 19F should be monitored, and serotypes 8, 12F, 15A, and 15B/C should be considered for inclusion in vaccines to reduce deaths caused by S. pneumoniae.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Humanos , Lactente , Infecções Pneumocócicas/epidemiologia , Vacinas Pneumocócicas , Sorogrupo , África do Sul/epidemiologia
5.
Infect Immun ; 89(11): e0024621, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34251291

RESUMO

Streptococcus pneumoniae serotype 19A prevalence has increased after the implementation of the PCV7 and PCV10 vaccines. In this study, we have provided, with high accuracy, the genetic diversity of the 19A serotype in a cohort of Dutch invasive pneumococcal disease patients and asymptomatic carriers obtained in the period from 2004 to 2016. The whole genomes of the 338 pneumococcal isolates in this cohort were sequenced and their capsule (cps) loci compared to examine their diversity and determine the impact on the production of capsular polysaccharide (CPS) sugar precursors and CPS shedding. We discovered 79 types with a unique cps locus sequence. Most variation was observed in the rmlB and rmlD genes of the TDP-Rha synthesis pathway and in the wzg gene, which is of unknown function. Interestingly, gene variation in the cps locus was conserved in multiple alleles. Using RmlB and RmlD protein models, we predict that enzymatic function is not affected by the single-nucleotide polymorphisms as identified. To determine if RmlB and RmlD function was affected, we analyzed nucleotide sugar levels using ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC-MS). CPS precursors differed between 19A cps locus subtypes, including TDP-Rha, but no clear correlation was observed. Also, significant differences in multiple nucleotide sugar levels were observed between phylogenetically branched groups. Because of indications of a role for Wzg in capsule shedding, we analyzed if this was affected. No clear indication of a direct role in shedding was found. We thus describe genotypic variety in rmlB, rmlD, and wzg in serotype 19A in the Netherlands, for which we have not discovered an associated phenotype.


Assuntos
Cápsulas Bacterianas/genética , Polimorfismo de Nucleotídeo Único , Streptococcus pneumoniae/genética , Regiões Promotoras Genéticas , Sorotipagem , Streptococcus pneumoniae/classificação
6.
BMC Microbiol ; 21(1): 341, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903172

RESUMO

BACKGROUND: Fungal infections impact over 25% of the global population. For the opportunistic fungal pathogen, Cryptococcus neoformans, infection leads to cryptococcosis. In the presence of the host, disease is enabled by elaboration of sophisticated virulence determinants, including polysaccharide capsule, melanin, thermotolerance, and extracellular enzymes. Conversely, the host protects itself from fungal invasion by regulating and sequestering transition metals (e.g., iron, zinc, copper) important for microbial growth and survival. RESULTS: Here, we explore the intricate relationship between zinc availability and fungal virulence via mass spectrometry-based quantitative proteomics. We observe a core proteome along with a distinct zinc-regulated protein-level signature demonstrating a shift away from transport and ion binding under zinc-replete conditions towards transcription and metal acquisition under zinc-limited conditions. In addition, we revealed a novel connection among zinc availability, thermotolerance, as well as capsule and melanin production through the detection of a Wos2 ortholog in the secretome under replete conditions. CONCLUSIONS: Overall, we provide new biological insight into cellular remodeling at the protein level of C. neoformans under regulated zinc conditions and uncover a novel connection between zinc homeostasis and fungal virulence determinants.


Assuntos
Cryptococcus neoformans/patogenicidade , Chaperonas Moleculares/metabolismo , Proteoma/metabolismo , Secretoma/metabolismo , Zinco/metabolismo , Cryptococcus neoformans/metabolismo , Cápsulas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Melaninas/metabolismo , Chaperonas Moleculares/genética , Mutação , Proteômica , Termotolerância , Virulência/genética
7.
BMC Microbiol ; 21(1): 43, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568055

RESUMO

BACKGROUND: Microbial organisms encounter a variety of environmental conditions, including changes to metal ion availability. Metal ions play an important role in many biological processes for growth and survival. As such, microbes alter their cellular protein levels and secretion patterns in adaptation to a changing environment. This study focuses on Klebsiella pneumoniae, an opportunistic bacterium responsible for nosocomial infections. By using K. pneumoniae, we aim to determine how a nutrient-limited environment (e.g., zinc depletion) modulates the cellular proteome and secretome of the bacterium. By testing virulence in vitro, we provide novel insight into bacterial responses to limited environments in the presence of the host. RESULTS: Analysis of intra- and extracellular changes identified 2380 proteins from the total cellular proteome (cell pellet) and 246 secreted proteins (supernatant). Specifically, HutC, a repressor of the histidine utilization operon, showed significantly increased abundance under zinc-replete conditions, which coincided with an expected reduction in expression of genes within the hut operon from our validating qRT-PCR analysis. Additionally, we characterized a putative cation transport regulator, ChaB that showed significantly higher abundance under zinc-replete vs. -limited conditions, suggesting a role in metal ion homeostasis. Phenotypic analysis of a chaB deletion strain demonstrated a reduction in capsule production, zinc-dependent growth and ion utilization, and reduced virulence when compared to the wild-type strain. CONCLUSIONS: This is first study to comprehensively profile the impact of zinc availability on the proteome and secretome of K. pneumoniae and uncover a novel connection between zinc transport and capsule production in the bacterial system.


Assuntos
Cápsulas Bacterianas/genética , Regulação Bacteriana da Expressão Gênica , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Proteômica , Transcrição Gênica , Zinco/metabolismo , Animais , Cápsulas Bacterianas/fisiologia , Proteínas de Bactérias/genética , Klebsiella pneumoniae/química , Klebsiella pneumoniae/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Óperon , Proteoma , Virulência/genética , Fatores de Virulência/genética , Zinco/farmacologia
8.
J Infect Dis ; 221(10): 1669-1676, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31875229

RESUMO

BACKGROUND: Pneumococcus is a diverse pathogen, with >90 serotypes, each of which has a distinct polysaccharide capsule. Pneumococci can switch capsules, evading vaccine pressure. Certain serotype pairs are more likely to occur on the same genetic background as a results of serotype switching, but the drivers of these patterns are not well understood. METHODS: We used the PubMLST and Global Pneumococcal Sequencing Project databases to quantify the number of genetic lineages on which different serotype pairs occur together. We also quantified the genetic diversity of each serotype. Regression model were used to evaluate the relationship between shared polysaccharide components and the frequency of serotype co-occurrence and diversity. RESULTS: A number of serotype pairs occurred together on the same genetic lineage more commonly than expected. Co-occurrence of between-serogroup pairs was more common when both serotypes had glucose as a component of the capsule (and, potentially, glucuronic acid, any-N-acetylated sugar, or ribitol). Diversity also varied markedly by serotype and was associated with the presence of specific sugars in the capsule. CONCLUSIONS: Certain pairs of serotypes are more likely to co-occur on the same genetic background. These patterns were correlated with shared polysaccharide components. This might reflect adaptation of strains to produce capsules with specific characteristics.


Assuntos
Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/genética , Bases de Dados Genéticas , Humanos , Infecções Pneumocócicas/microbiologia , Sorogrupo , Sorotipagem
9.
Proc Natl Acad Sci U S A ; 113(24): 6719-24, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27226298

RESUMO

Polysaccharide capsules are surface structures that are critical for the virulence of many Gram-negative pathogenic bacteria. Salmonella enterica serovar Typhi is the etiological agent of typhoid fever. It produces a capsular polysaccharide known as "Vi antigen," which is composed of nonstoichiometrically O-acetylated α-1,4-linked N-acetylgalactosaminuronic acid residues. This glycan is a component of currently available vaccines. The genetic locus for Vi antigen production is also present in soil bacteria belonging to the genus Achromobacter Vi antigen assembly follows a widespread general strategy with a characteristic glycan export step involving an ATP-binding cassette transporter. However, Vi antigen producers lack the enzymes that build the conserved terminal glycolipid characterizing other capsules using this method. Achromobacter species possess a Vi antigen-specific depolymerase enzyme missing in S enterica Typhi, and we exploited this enzyme to isolate acylated Vi antigen termini. Mass spectrometry analysis revealed a reducing terminal N-acetylhexosamine residue modified with two ß-hydroxyl acyl chains. This terminal structure resembles one half of lipid A, the hydrophobic portion of bacterial lipopolysaccharides. The VexE protein encoded in the Vi antigen biosynthesis locus shares similarity with LpxL, an acyltransferase from lipid A biosynthesis. In the absence of VexE, Vi antigen is produced, but its physical properties are altered, its export is impaired, and a Vi capsule structure is not assembled on the cell surface. The structure of the lipidated terminus dictates a unique assembly mechanism and has potential implications in pathogenesis and vaccine production.


Assuntos
Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Lipídeo A/biossíntese , Polissacarídeos Bacterianos/biossíntese , Salmonella typhi/metabolismo , Achromobacter/genética , Achromobacter/metabolismo , Aciltransferases/genética , Proteínas de Bactérias/genética , Ácidos Hexurônicos/metabolismo , Lipídeo A/genética , Polissacarídeos Bacterianos/genética , Salmonella typhi/genética
10.
Glycobiology ; 27(1): 87-98, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27496760

RESUMO

Cryptococcus neoformans, an opportunistic fungal pathogen, produces a glycan capsule to evade the immune system during infection. This definitive virulence factor is composed mainly of complex polysaccharides, which are made in the secretory pathway by reactions that utilize activated nucleotide sugar precursors. Although the pathways that synthesize these precursors are known, the identity and the regulation of the nucleotide sugar transporters (NSTs) responsible for importing them into luminal organelles remain elusive. The UDP-galactose transporter, Ugt1, was initially identified by homology to known UGTs and glycan composition analysis of ugt1Δ mutants. However, sequence is an unreliable predictor of NST substrate specificity, cells may express multiple NSTs with overlapping specificities, and NSTs may transport multiple substrates. Determining NST activity thus requires biochemical demonstration of function. We showed that Ugt1 transports both UDP-galactose and UDP-N-acetylgalactosamine in vitro. Deletion of UGT1 resulted in growth and mating defects along with altered capsule and cellular morphology. The mutant was also phagocytosed more readily by macrophages than wild-type cells and cleared more quickly in vivo and in vitro, suggesting a mechanism for the lack of virulence observed in mouse models of infection.


Assuntos
Criptococose/genética , Cryptococcus neoformans/imunologia , Proteínas de Transporte de Monossacarídeos/imunologia , Uridina Difosfato Galactose/imunologia , Sequência de Aminoácidos/genética , Animais , Transporte Biológico/genética , Criptococose/enzimologia , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/patogenicidade , Modelos Animais de Doenças , Galactose/química , Galactose/genética , Humanos , Camundongos , Proteínas de Transporte de Monossacarídeos/genética , Polissacarídeos/genética , Polissacarídeos/imunologia , Especificidade por Substrato , Uridina Difosfato Galactose/genética
11.
J Infect Dis ; 213(8): 1330-9, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26671885

RESUMO

BACKGROUND: Uropathogenic Escherichia coli (UPEC), a leading cause of urinary tract and invasive infections worldwide, is rapidly acquiring multidrug resistance, hastening the need for selective new anti-infective agents. Here we demonstrate the molecular target of DU011, our previously discovered potent, nontoxic, small-molecule inhibitor of UPEC polysaccharide capsule biogenesis and virulence. METHODS: Real-time polymerase chain reaction analysis and a target-overexpression drug-suppressor screen were used to localize the putative inhibitor target. A thermal shift assay quantified interactions between the target protein and the inhibitor, and a novel DNase protection assay measured chemical inhibition of protein-DNA interactions. Virulence of a regulatory target mutant was assessed in a murine sepsis model. RESULTS: MprA, a MarR family transcriptional repressor, was identified as the putative target of the DU011 inhibitor. Thermal shift measurements indicated the formation of a stable DU011-MprA complex, and DU011 abrogated MprA binding to its DNA promoter site. Knockout of mprA had effects similar to that of DU011 treatment of wild-type bacteria: a loss of encapsulation and complete attenuation in a murine sepsis model, without any negative change in antibiotic resistance. CONCLUSIONS: MprA regulates UPEC polysaccharide encapsulation, is essential for UPEC virulence, and can be targeted without inducing antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Cápsulas Bacterianas/metabolismo , Descoberta de Drogas/métodos , Proteínas de Escherichia coli/antagonistas & inibidores , Técnicas de Silenciamento de Genes/métodos , Proteínas Repressoras/antagonistas & inibidores , Escherichia coli Uropatogênica/genética , Animais , Antibacterianos/química , Cápsulas Bacterianas/efeitos dos fármacos , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Repressoras/genética , Escherichia coli Uropatogênica/efeitos dos fármacos , Virulência
12.
J Infect Dis ; 209(1): 74-82, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23945372

RESUMO

BACKGROUND: The Cryptococcus neoformans polysaccharide capsule is a well-characterized virulence factor with immunomodulatory properties. The organism and/or shed capsule is postulated to raise intracranial pressure (ICP) in cryptococcal meningitis (CM) by mechanical obstruction of cerebrospinal fluid (CSF) outflow. Little is known regarding capsule phenotype in human cryptococcosis. We investigated the relationship of ex vivo CSF capsular phenotype with ICP and CSF immune response, as well as in vitro phenotype. METHODS: In total, 134 human immunodeficiency virus (HIV)-infected Ugandan adults with CM had serial lumbar punctures with measurement of CSF opening pressures, quantitative cultures, ex vivo capsule size and shedding, viscosity, and CSF cytokines; 108 had complete data. Induced capsular size and shedding were measured in vitro for 48 C. neoformans isolates. RESULTS: Cryptococcal strains producing larger ex vivo capsules in the baseline (pretreatment) CSF correlated with higher ICP (P = .02), slower rate of fungal clearance (P = .02), and paucity of CSF inflammation, including decreased CSF white blood cell (WBC) count (P < .001), interleukin (IL)-4 (P = .02), IL-6 (P = .01), IL-7 (P = .04), IL-8 (P = .03), and interferon γ (P = .03). CSF capsule shedding did not correlate with ICP. On multivariable analysis, capsule size remained independently associated with ICP. Ex vivo capsular size and shedding did not correlate with that of the same isolates grown in vitro. CONCLUSIONS: Cryptococcal capsule size ex vivo is an important contributor to virulence in human cryptococcal meningitis.


Assuntos
Infecções Oportunistas Relacionadas com a AIDS/microbiologia , Cryptococcus neoformans/citologia , Cryptococcus neoformans/imunologia , Cápsulas Fúngicas/imunologia , Meningite Criptocócica/microbiologia , Infecções Oportunistas Relacionadas com a AIDS/líquido cefalorraquidiano , Infecções Oportunistas Relacionadas com a AIDS/imunologia , Adulto , Análise de Variância , Antifúngicos/farmacologia , Líquido Cefalorraquidiano/citologia , Líquido Cefalorraquidiano/microbiologia , Citocinas , Feminino , Cápsulas Fúngicas/química , Cápsulas Fúngicas/microbiologia , Humanos , Pressão Intracraniana/imunologia , Masculino , Meningite Criptocócica/líquido cefalorraquidiano , Meningite Criptocócica/imunologia , Fenótipo , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Uganda , Viscosidade
13.
Microbiol Spectr ; 12(7): e0341923, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38842336

RESUMO

Cryptococcus neoformans is a fungal pathogen responsible for >200,000 yearly cases with a mortality as high as 81%. This burden results, in part, from an incomplete understanding of its pathogenesis and ineffective antifungal treatments; hence, there is a pressing need to understand the biology and host interactions of this yeast to develop improved treatments. Protein palmitoylation is important for cryptococcal virulence, and we previously identified the substrates of its main palmitoyl transferase. One of them was encoded by the uncharacterized gene CNAG_02129. In the filamentous fungus Neurospora crassa, a homolog of this gene named hyphal anastomosis protein 13 plays a role in proper cellular communication and filament fusion. In Cryptococcus, cellular communication is essential during mating; therefore, we hypothesized that CNAG_02129, which we named hyphal anastomosis protein 1 (HAM1), may play a role in mating. We found that ham1Δ mutants produce more fusion products during mating, filament more robustly, and exhibit competitive fitness defects under mating and non-mating conditions. Additionally, we found several differences with the major virulence factor, the polysaccharide capsule, that may affect virulence, consistent with prior studies linking virulence to mating. We observed that ham1Δ mutants have decreased capsule attachment and transfer but exhibit higher amounts of exopolysaccharide shedding and biofilm production. Finally, HAM1 expression is significantly lower in mating media relative to non-mating conditions, consistent with it acting as a negative regulator of mating. Understanding the connection between mating and virulence in C. neoformans may open new avenues of investigation into ways to improve the treatment of this disease. IMPORTANCE: Fungal mating is a vital part of the lifecycle of the pathogenic yeast Cryptococcus neoformans. More than just ensuring the propagation of the species, mating allows for sexual reproduction to occur and generates genetic diversity as well as infectious propagules that can invade mammalian hosts. Despite its importance in the biology of this pathogen, we still do not know all of the major players regulating the mating process and if they are involved or impact its pathogenesis. Here, we identified a novel negative regulator of mating that also affects certain cellular characteristics known to be important for virulence. This gene, which we call HAM1, is widely conserved across the cryptococcal family as well as in many pathogenic fungal species. This study will open new avenues of exploration regarding the function of uncharacterized but conserved genes in a variety of pathogenic fungal species and specifically in serotype A of C. neoformans.


Assuntos
Criptococose , Cryptococcus neoformans , Proteínas Fúngicas , Fatores de Virulência , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Cryptococcus neoformans/fisiologia , Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Virulência/genética , Criptococose/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Genes Fúngicos Tipo Acasalamento/genética , Fenótipo , Regulação Fúngica da Expressão Gênica , Animais , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Camundongos
14.
bioRxiv ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38585947

RESUMO

Cryptococcus neoformans is a fungal pathogen responsible for >200,000 yearly cases with a mortality as high as 81%. This burden results, in part, from an incomplete understanding of its pathogenesis and ineffective antifungal treatments; hence, there is a pressing need to understand the biology and host interactions of this yeast to develop improved treatments. Protein palmitoylation is important for cryptococcal virulence, and we previously identified the substrates of its main palmitoyl transferase. One of them was encoded by the uncharacterized gene CNAG_02129. In the filamentous fungus Neurospora crassa, a homolog of this gene named HAM-13 plays a role in proper cellular communication and filament fusion. In Cryptococcus, cellular communication is essential during mating, therefore we hypothesized that CNAG_02129, which we named HAM1, may play a role in mating. We found that ham1Δ mutants produce more fusion products during mating, filament more robustly, and exhibit competitive fitness defects under mating and non-mating conditions. Additionally, we found several differences with the major virulence factor, the polysaccharide capsule, that may affect virulence, consistent with prior studies linking virulence to mating. We observed that ham1Δ mutants have decreased capsule attachment and transfer but exhibit higher amounts of exopolysaccharide shedding and biofilm production. Lastly, HAM1 expression is significantly lower in mating media relative to non-mating conditions, consistent with it acting as a negative regulator of mating. Understanding the connection between mating and virulence in C. neoformans may open new avenues of investigation into ways to improve the treatment of this disease.

15.
J Fungi (Basel) ; 10(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38667950

RESUMO

Cryptococcus neoformans is a facultative intracellular fungal pathogen. Ten-generation-old (10GEN) C. neoformans cells are more resistant to phagocytosis and killing by macrophages than younger daughter cells. However, mechanisms that mediate this resistance and intracellular parasitism are poorly understood. Here, we identified important factors for the intracellular survival of 10GEN C. neoformans, such as urease activity, capsule synthesis, and DNA content using flow cytometry and fluorescent microscopy techniques. The real-time visualization of time-lapse imaging was applied to determine the phagosomal acidity, membrane permeability, and vomocytosis (non-lytic exocytosis) rate in J774 macrophages that phagocytosed C. neoformans of different generational ages. Our results showed that old C. neoformans exhibited higher urease activity and enhanced Golgi activity. In addition, old C. neoformans were more likely to be arrested in the G2 phase, resulting in the occasional formation of aberrant trimera-like cells. To finish, the advanced generational age of the yeast cells slightly reduced vomocytosis events within host cells, which might be associated with increased phagolysosome pH and membrane permeability. Altogether, our results suggest that old C. neoformans prevail within acidic phagolysosomes and can manipulate the phagosome pH. These strategies may be used by old C. neoformans to resist phagosomal killing and drive cryptococcosis pathogenesis. The comprehension of these essential host-pathogen interactions could further shed light on mechanisms that bring new insights for novel antifungal therapeutic design.

16.
Methods Mol Biol ; 2775: 141-153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758316

RESUMO

This chapter describes methodological details for preparing specimens of Cryptococcus neoformans (although it can be applied to any species of the genus) and their subsequent analysis by scanning and transmission electron microscopy. Adaptations to conventional protocols for better preservation of the sample, as well as to avoid artifacts, are presented. The protocols may be used to examine both the surface ultrastructure and the interior of this pathogenic fungus in detail.


Assuntos
Artefatos , Cryptococcus neoformans , Cryptococcus neoformans/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Microscopia Eletrônica de Varredura/métodos , Manejo de Espécimes/métodos
17.
J Fungi (Basel) ; 9(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37623554

RESUMO

Cryptococcosis is a systemic mycosis affecting immunosuppressed individuals, caused by various Cryptococcus species. The current treatment utilizes a combination of antifungal drugs, but issues such as nephrotoxicity, restricted or limited availability in certain countries, and resistance limit their effectiveness. Repurposing approved drugs presents a viable strategy for developing new antifungal options. This study investigates the potential of glatiramer acetate (Copaxone®) as a chemotherapy candidate for Cryptococcus neoformans infection. Various techniques are employed to evaluate the effects of glatiramer acetate on the fungus, including microdilution, XTT analysis, electron and light microscopy, and physicochemical measurements. The results demonstrate that glatiramer acetate exhibits antifungal properties, with an IC50 of 0.470 mg/mL and a minimum inhibitory concentration (MIC) of 2.5 mg/mL. Furthermore, it promotes enhanced cell aggregation, facilitates biofilm formation, and increases the secretion of fungal polysaccharides. These findings indicate that glatiramer acetate not only shows an antifungal effect but also modulates the key virulence factor-the polysaccharide capsule. In summary, repurposing glatiramer acetate as a potential chemotherapy option offers new prospects for combating C. neoformans infection. It addresses the limitations associated with current antifungal therapies by providing an alternative treatment approach.

18.
Future Microbiol ; 18: 1061-1075, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37721517

RESUMO

Background: Cryptococcus neoformans is an opportunistic fungal pathogen that causes infections mainly in immunosuppressed individuals, such as transplant recipients. Aims: This study investigated the effects of rapamycin, an immunosuppressant drug, on the cellular organization, biophysical characteristics, and main virulence factors of C. neoformans. Methods: Morphological, structural, physicochemical and biophysical analyses of cells and secreted polysaccharides of the reference H99 C. neoformans strain were investigated under the effect of subinhibitory concentrations of rapamycin. Results: Rapamycin at a minimum inhibitory concentration of 2.5 µM reduced C. neoformans cell viability by 53%, decreased capsule, increased cell size, chitin and lipid body formation, and changed peptidase and urease activity. Conclusion: Further studies are needed to assess how rapamycin affects the virulence factors and pathogenicity of C. neoformans.


Cryptococcosis is a fungal infection caused by a type of fungus called Cryptococcus. Among the Cryptococcus group, Cryptococcus neoformans is often linked to fungal infections in people who have a weak immune system (known as being immunosuppressed). The main aim of this work was to look at the effect of an immunosuppressant called rapamycin, which is commonly used to prevent organ transplant rejection, on the ability of C. neoformans to cause infection. The results showed that this drug stopped the growth of the fungus, dampening its ability to cause disease.


Assuntos
Criptococose , Cryptococcus neoformans , Humanos , Fatores de Virulência , Sirolimo/farmacologia , Criptococose/microbiologia , Virulência
19.
Indian J Med Microbiol ; 44: 100350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37356826

RESUMO

PURPOSE: Streptococcus pneumoniae is an important human respiratory tract pathogen causing pneumococcal diseases in majority of children and adults. The capsule is a significant virulence factor of Pneumococci which determines the bacterial serotype and is the component used for synthesis of pneumococcal vaccines. This cross-sectional study aimed to isolate Streptococcus pneumoniae from clinical samples and determine the occurrence of its circulating serotypes in Assam, North East India. MATERIALS AND METHODS: A total of 80 clinical samples were collected from June 2019 to May 2020 from patients clinically suspected from pneumococcal infection and also included samples routinely sent to bacteriology laboratory. Isolation and identification of S. pneumoniae was performed using conventional culture and molecular methods. Antibiotic susceptibility patterns were monitored. Capsular serotyping was performed using PCR of cpsA gene followed by DNA sequencing. RESULTS: Majority of the cases suspected of pneumococcal infection belong to the paediatric group aged less than 5 years. Out of 80 samples, 10 (12.50%) were found to be positive by PCR of recP gene. Culture was positive in 80% (8/10) of the total positives. Co-trimoxazole resistance was seen in 33.33% of the isolate from sputum. Serotypes 6A, 6B, 6C and 19F were detected in our region, out of which 6C is a non-vaccine serotype. CONCLUSION: Continued surveillance is needed to monitor trends in non-vaccine serotypes that may emerge as highly associated with antibiotic resistance. Also, the need to continuous monitoring of the antibiotic susceptibility of S. pneumoniae in North eastern parts of India is of outmost importance.


Assuntos
Hospitais , Infecções Pneumocócicas , Streptococcus pneumoniae , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Distribuição por Idade , Infecções Pneumocócicas/líquido cefalorraquidiano , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/microbiologia , Saliva/microbiologia , Sorotipagem , Distribuição por Sexo , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/isolamento & purificação , Fatores de Virulência , Estudos Transversais , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Índia/epidemiologia
20.
Antibiotics (Basel) ; 13(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275320

RESUMO

The frequently multidrug-resistant bacterial pathogen Acinetobacter baumannii is a leading cause of nosocomial infections, including ventilator-associated pneumonia, such that the World Health Organization and US Centers for Disease Control and Prevention have declared it a top priority candidate for novel drug development. Nearly all clinical A. baumannii strains express a thick surface polysaccharide capsule that protects against desiccation, host defenses, and disinfectants. In this study, we investigated the contribution of the polysaccharide capsule to virulence caused by the A. baumannii clinical isolate Ab Lac-4, which is rare in its ability to cause pneumonia and disseminated sepsis in healthy mice. We assessed the role of the capsule in wildtype Lac-4 (WT) by generating a premature stop codon in wza, which codes for the polysaccharide export protein. The wza# mutant was hypersensitive to killing by complement, whole blood, and healthy human neutrophils compared to WT and a revertant mutant (wza-Rev). Furthermore, the wza# mutant was highly attenuated in murine sepsis and unable to disseminate from the lungs during pneumonia. This study reinforces the capsule as a key contributor to Ab Lac-4 hypervirulence.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa