Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34507992

RESUMO

All organisms experience fundamental conflicts between divergent metabolic processes. In plants, a pivotal conflict occurs between allocation to growth, which accelerates resource acquisition, and to defense, which protects existing tissue against herbivory. Trade-offs between growth and defense traits are not universally observed, and a central prediction of plant evolutionary ecology is that context-dependence of these trade-offs contributes to the maintenance of intraspecific variation in defense [Züst and Agrawal, Annu. Rev. Plant Biol., 68, 513-534 (2017)]. This prediction has rarely been tested, however, and the evolutionary consequences of growth-defense trade-offs in different environments are poorly understood, especially in long-lived species [Cipollini et al., Annual Plant Reviews (Wiley, 2014), pp. 263-307]. Here we show that intraspecific trait trade-offs, even when fixed across divergent environments, interact with competition to drive natural selection of tree genotypes corresponding to their growth-defense phenotypes. Our results show that a functional trait trade-off, when coupled with environmental variation, causes real-time divergence in the genetic architecture of tree populations in an experimental setting. Specifically, competitive selection for faster growth resulted in dominance by fast-growing tree genotypes that were poorly defended against natural enemies. This outcome is a signature example of eco-evolutionary dynamics: Competitive interactions affected microevolutionary trajectories on a timescale relevant to subsequent ecological interactions [Brunner et al., Funct. Ecol. 33, 7-12 (2019)]. Eco-evolutionary drivers of tree growth and defense are thus critical to stand-level trait variation, which structures communities and ecosystems over expansive spatiotemporal scales.


Assuntos
Populus/crescimento & desenvolvimento , Populus/genética , Seleção Genética/fisiologia , Evolução Biológica , Ecossistema , Florestas , Genética Populacional/métodos , Genótipo , Fenótipo , Folhas de Planta , Plantas , Árvores
2.
New Phytol ; 239(1): 174-188, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37129078

RESUMO

Intraspecific variation in functional traits may mediate tree species' drought resistance, yet whether trait variation is due to genotype (G), environment (E), or G×E interactions remains unknown. Understanding the drivers of intraspecific trait variation and whether variation mediates drought response can improve predictions of species' response to future drought. Using populations of quaking aspen spanning a climate gradient, we investigated intraspecific variation in functional traits in the field as well as the influence of G and E among propagules in a common garden. We also tested for trait-mediated trade-offs in growth and drought stress tolerance. We observed intraspecific trait variation among the populations, yet this variation did not necessarily translate to higher drought stress tolerance in hotter/drier populations. Additionally, plasticity in the common garden was low, especially in propagules derived from the hottest/driest population. We found no growth-drought stress tolerance trade-offs and few traits exhibited significant relationships with mortality in the natural populations, suggesting that intraspecific trait variation among the traits measured did not strongly mediate responses to drought stress. Our results highlight the limits of trait-mediated responses to drought stress and the complex G×E interactions that may underlie drought stress tolerance variation in forests in dry environments.


Assuntos
Clima , Secas , Fenótipo , Florestas , Resistência à Seca , Folhas de Planta/fisiologia
3.
Ann Bot ; 131(1): 229-242, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35641114

RESUMO

BACKGROUND AND AIMS: At the population level, genetic diversity is a key determinant of a tree species' capacity to cope with stress. However, little is known about the relative importance of the different components of genetic diversity for tree stress responses. We compared how two sources of genetic diversity, genotype and cytotype (i.e. differences in ploidy levels), influence growth, phytochemical and physiological traits of Populus tremuloides in the presence and absence of environmental stress. METHODS: In a series of field studies, we first assessed variation in traits across diploid and triploid aspen genotypes from Utah and Wisconsin under non-stressed conditions. In two follow-up experiments, we exposed diploid and triploid aspen genotypes from Wisconsin to individual and interactive drought stress and defoliation treatments and quantified trait variations under stress. KEY RESULTS: We found that (1) tree growth and associated traits did not differ significantly between ploidy levels under non-stressed conditions. Instead, variation in tree growth and most other traits was driven by genotypic and population differences. (2) Genotypic differences were critical for explaining variation of most functional traits and their responses to stress. (3) Ploidy level played a subtle role in shaping traits and trait stress responses, as its influence was typically obscured by genotypic differences. (4) As an exception to the third conclusion, we showed that triploid trees expressed 17 % higher foliar defence (tremulacin) levels, 11 % higher photosynthesis levels and 23 % higher rubisco activity under well-watered conditions. Moreover, triploid trees displayed greater drought resilience than diploids as they produced 35 % more new tissue than diploids when recovering from drought stress. CONCLUSION: Although ploidy level can strongly influence the ecology of tree species, those effects may be relatively small in contrast to the effects of genotypic variation in highly diverse species.


Assuntos
Populus , Árvores , Árvores/fisiologia , Triploidia , Ploidias , Fenótipo , Genótipo , Populus/genética
4.
J Chem Ecol ; 49(5-6): 235-250, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36765024

RESUMO

Trembling aspen (Populus tremuloides) is arguably the most important deciduous tree species in the Intermountain West of North America. There, as elsewhere in its range, aspen exhibits remarkable genetic variation in observable traits such as morphology and phenology. In contrast to Great Lakes populations, however, relatively little is known about phytochemical variation in western aspen. This survey of phytochemistry in western aspen was undertaken to assess how chemical expression varies among genotypes, cytotypes (diploid vs. triploid), and populations, and in response to development and mammalian browsing. We measured levels of foliar nitrogen, salicinoid phenolic glycosides (SPGs) and condensed tannins (CTs), as those constituents influence organismal interactions and ecosystem processes. Results revealed striking genotypic variation and considerable population variation, but minimal cytotype variation, in phytochemistry of western aspen. Levels of SPGs and nitrogen declined, whereas levels of CTs increased, with tree age. Browsed ramets had much higher levels of SPGs, and lower levels of CTs, than unbrowsed ramets of the same genotype. We then evaluated how composite chemical profiles of western aspen differ from those of Great Lakes aspen (assessed in earlier research). Interestingly, mature western aspen trees maintain much higher levels of SPGs, and lower levels of CTs, than Great Lakes aspen. Phenotypic variation in chemical composition of aspen - a foundation species - in the Intermountain West likely has important consequences for organismal interactions and forest ecosystem dynamics. Moreover, those consequences likely play out over spatial and temporal scales somewhat differently than have been documented for Great Lakes aspen.


Assuntos
Ecossistema , Populus , Animais , Folhas de Planta/metabolismo , Compostos Fitoquímicos/metabolismo , Glicosídeos/metabolismo , Populus/metabolismo , América do Norte , Árvores/metabolismo , Nitrogênio/metabolismo , Fenóis/metabolismo , Variação Biológica da População , Geografia , Mamíferos
5.
Oecologia ; 199(1): 119-128, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35449362

RESUMO

Patterns of trait expression within some plant species have recently been shown to align with the leaf economics spectrum paradigm. Resistance to herbivores is also expected to covary with leaf economics traits. We selected 36 mature Populus tremuloides genotypes in a common garden to assess whether aspen leaf economics patterns follow those observed among species globally. We also evaluated leaf economics strategies in the context of insect resistance by conducting bioassays to determine the effects of plant traits on preference and performance of Lymantria dispar. We found that: (1) intraspecific trait patterns of P. tremuloides parallel those exhibited by the interspecific leaf economics spectrum, (2) herbivores preferred leaves from genotypes with resource-acquisitive strategies, and (3) herbivores also performed best on genotypes with resource-acquisitive strategies. We conclude that a leaf economics spectrum that incorporates defense traits is a useful tool for explaining intraspecific patterns of variation in plant strategies, including resistance to herbivores.


Assuntos
Herbivoria , Populus , Animais , Insetos , Fenótipo , Folhas de Planta/genética , Plantas , Populus/genética
6.
J Chem Ecol ; 48(4): 431-440, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35416535

RESUMO

Polyploidy, the expression of more than two sets of chromosomes, is common in plants, and is thought to influence plant trait expression and drive plant species evolution. The degree to which polyploidy influences interactions among physiological processes such as growth and defense in natural populations through its effect on phenotypic variability is poorly understood. We link broad plant genotypic features (including polyploidy) to phenotypic expression of growth and chemical defense in natural populations of quaking aspen (Populus tremuloides) to examine patterns in resource allocation that might drive growth-defense tradeoffs. Quaking aspen are capable of rapid growth, and are also a primary food plant for a large range of herbivores, including insects and ungulates. While often diploid, aspen can exhibit polyploidy as triploid clones. We tested for the effect of genotype, cytotype (ploidy level, divided between diploids and triploids), and ramet age on relationships between growth and leaf chemistry across natural aspen clones in northern Utah. Substantial genotype variability in growth and leaf chemistry occurred across both cytotypes. Phenolic glycosides, but not condensed tannins, were negatively related to growth. Ramet age was also negatively related to growth. Phenolic glycosides were negatively related to condensed tannins, but only for the diploid clones. Triploid clones exhibited ~ 20% higher levels of phenolic glycosides than diploids. Growth in quaking aspen was likely sacrificed for the production of phenolic glycosides. Our study underscores the importance of considering polyploidy, genetic variability, and ramet age in understanding growth-defense tradeoffs in natural populations of clonal organisms, such as quaking aspen.


Assuntos
Populus , Proantocianidinas , Genótipo , Glicosídeos/metabolismo , Folhas de Planta/química , Populus/genética , Populus/metabolismo , Proantocianidinas/metabolismo , Triploidia
7.
New Phytol ; 230(2): 710-719, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33378548

RESUMO

The ability to tolerate neighboring plants (i.e. degree of competitive response) is a key determinant of plant success in high-competition environments. Plant genotypes adjust their functional trait expression under high levels of competition, which may help explain intra-specific variation in competitive response. However, the relationships between traits and competitive response are not well understood, especially in trees. In this study, we investigated among-genotype associations between tree trait plasticity and competitive response. We manipulated competition intensity in experimental stands of trembling aspen (Populus tremuloides) to address the covariance between competition-induced changes in functional trait expression and aspects of competitive ability at the genotype level. Genotypic variation in the direction and magnitude of functional trait responses, especially those of crown foliar mass, phytochemistry, and leaf physiology, was associated with genotypic variation in competitive response. Traits exhibited distinct plastic responses to competition, with varying degrees of genotypic variation and covariance with other trait responses. The combination of genotypic diversity and covariance among functional traits led to tree responses to competition that were coordinated among traits yet variable among genotypes. Such relationships between tree traits and competitive success have the potential to shape stand-level trait distributions over space and time.


Assuntos
Populus , Árvores , Genótipo , Fenótipo , Folhas de Planta , Populus/genética , Árvores/genética
8.
Glob Chang Biol ; 27(17): 4125-4138, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34002431

RESUMO

Global change has altered nitrogen availability in boreal forest soils. As ectomycorrhizal fungi play critical ecological functions, shifts in their abundance and community composition must be considered in the response of forests to changes in nitrogen availability. Furthermore, ectomycorrhizas are symbiotic, so the response of ectomycorrhizal fungi to nitrogen cannot be understood in isolation of their plant partners. Most previous studies, however, neglect to measure the response of host trees to nitrogen addition simultaneously with that of fungal communities. In addition to being one-sided, most of these studies have also been conducted in coniferous forests. Deciduous and "dual-mycorrhizal" tree species, namely those that form ecto- and arbuscular mycorrhizas, have received little attention despite being widespread in the boreal forest. We applied nitrogen (30 kg ha-1  year-1 ) for 13 years to stands dominated by aspen (Populus tremuloides Michx.) and hypothesized that tree stem radial growth would increase, ectomycorrhizal fungal biomass would decrease, ectomycorrhizal fungal community composition would shift, and the abundance of arbuscular mycorrhizal (AM) fungi would increase. Nitrogen addition initially increased stem radial growth of aspen, but it was not sustained at the time we characterized their mycorrhizas. After 13 years, the abundance of fungi possessing extramatrical hyphae, or "high-biomass" ectomycorrhizas, doubled. No changes occurred in ectomycorrhizal and AM fungal community composition, or in ecto- and AM abundance measured as root colonization. This dual-mycorrhizal tree species did not shift away from ectomycorrhizal fungal dominance with long-term nitrogen input. The unexpected increase in high-biomass ectomycorrhizal fungi with nitrogen addition may be due to increased carbon allocation to their fungal partners by growth-limited trees. Given the focus on conifers in past studies, reconciling results of plant-mycorrhizal fungal relationships in stands of deciduous trees may demand a broader view on the impacts of nitrogen addition on the structure and function of boreal forests.


Assuntos
Micorrizas , Populus , Biomassa , Florestas , Fungos , Nitrogênio , Solo , Microbiologia do Solo , Árvores
9.
Ann Bot ; 127(4): 505-517, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32296821

RESUMO

BACKGROUND AND AIMS: Intraspecific variation in foundation species of forest ecosystems can shape community and ecosystem properties, particularly when that variation has a genetic basis. Traits mediating interactions with other species are predicted by simple allocation models to follow ontogenetic patterns that are rarely studied in trees. The aim of this research was to identify the roles of genotype, ontogeny and genotypic trade-offs shaping growth, defence and reproduction in aspen. METHODS: We established a common garden replicating >500 aspen genets in Wisconsin, USA. Trees were measured through the juvenile period into the onset of reproduction, for growth, defence chemistry (phenolic glycosides and condensed tannins), nitrogen, extrafloral nectaries, leaf morphology (specific leaf area), flower production and foliar herbivory and disease. We also assayed the TOZ19 sex marker and heterozygosity at ten microsatellite loci. KEY RESULTS: We found high levels of genotypic variation for all traits, and high heritabilities for both the traits and their ontogenetic trajectories. Ontogeny strongly shaped intraspecific variation, and trade-offs among growth, defence and reproduction supported some predictions while contradicting others. Both direct resistance (chemical defence) and indirect defence (extrafloral nectaries) declined during the juvenile stage, prior to the onset of reproduction. Reproduction was higher in trees that were larger, male and had higher individual heterozygosity. Growth was diminished by genotypic allocation to both direct and indirect defence as well as to reproduction, but we found no evidence of trade-offs between defence and reproduction. CONCLUSIONS: Key traits affecting the ecological communities of aspen have high levels of genotypic variation and heritability, strong patterns of ontogeny and clear trade-offs among growth, defence and reproduction. The architecture of aspen's community genetics - its ontogeny, trade-offs and especially its great variability - is shaped by both its broad range and the diverse community of associates, and in turn further fosters that diversity.


Assuntos
Populus , Ecossistema , Genótipo , Masculino , Folhas de Planta , Populus/genética , Reprodução , Árvores
10.
Ecol Appl ; 31(8): e02438, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34374163

RESUMO

Species responses to climate change depend on environment, genetics, and interactions among these factors. Intraspecific cytotype (ploidy level) variation is a common type of genetic variation in many species. However, the importance of intraspecific cytotype variation in determining demography across environments is poorly known. We studied quaking aspen (Populus tremuloides), which occurs in diploid and triploid cytotypes. This widespread tree species is experiencing contractions in its western range, which could potentially be linked to cytotype-dependent drought tolerance. We found that interactions between cytotype and environment drive mortality and recruitment across 503 plots in Colorado. Triploids were more vulnerable to mortality relative to diploids and had reduced recruitment on more drought-prone and disturbed plots relative to diploids. Furthermore, there was substantial genotype-dependent variation in demography. Thus, cytotype and genotype variation are associated with decline in this foundation species. Future assessment of demographic responses to climate change will benefit from knowledge of how genetic and environmental mosaics interact to determine species' ecophysiology and demography.


Assuntos
Populus , Colorado , Secas , Genótipo , Populus/genética , Árvores
11.
Am J Bot ; 108(8): 1568-1575, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34449081

RESUMO

PREMISE: Phloem tissue allows for sugar transport along the entirety of a plant and, thus, is one of the most important anatomical structures related to growth. It is thought that the sugar-conducting sieve tube may overwinter and that its cells persist multiple seasons in deciduous trees. One possible overwintering strategy is to build up callose on phloem sieve plates to temporarily cease their function. We tested the hypothesis that five deciduous tree species produce callose on their sieve plates on a seasonal basis. METHODS: Young shoots of five deciduous tree species were sampled periodically between April 2019 and February 2020 in Edmonton, Alberta, Canada. After enzymatic digestion of cytoplasmic constituents, cross sections were imaged using scanning electron microscopy to observe and quantify the level of callose deposition at monthly intervals, and sieve plate pore size was measured. Using a conductivity apparatus, we measured xylem native embolism during these sampling periods. RESULTS: Contrary to past work on some of the same species, we found little evidence that sieve tubes overwinter by becoming occluded with callose. Instead, we found that most sieve plates remain open. Xylem embolism was minimal during the peak growing season, but increased over winter. CONCLUSIONS: Many species had been assumed to deposit callose on sieve plates over winter, though anatomical and phenological phloem data were sparse. Our data do not support this notion.


Assuntos
Embolia , Árvores , Glucanos , Floema , Estações do Ano , Xilema
12.
Oecologia ; 197(1): 25-42, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34365517

RESUMO

In recent decades, climate change has disrupted forest functioning by promoting large-scale mortality events, declines in productivity and reduced regeneration. Understanding the temporal dynamics and spatial extent of these changes is critical given the essential ecosystem services provided by forests. As the most widespread tree species in North America, quaking aspen (Populus tremuloides) is well suited for studying the dynamics of tree populations during a period of unprecedented climate change. Synthesizing continent-wide data, we show that mortality rates of mature aspen stems have increased over the past two-to-three decades, while relative gains in aspen basal area have decreased during the same period. Patterns were pervasive across multiple stand size classes and composition types in western North America biomes, suggesting that trends in demographic rates were not simply a reflection of stand development and succession. Our review of the literature revealed that increased aspen mortality and reduced growth rates were most often associated with hotter, drier conditions, whereas reduced recruitment was most often associated with herbivory. Furthermore, interactions between climate and competition, as well as climate and insect herbivory, had important, context-dependent effects on mortality and growth, respectively. Our analyses of aspen across its entire geographic range indicate that this important tree species is experiencing substantial increases in mortality and decreases in population growth rates across multiple biomes. If such trends are not accompanied by increased recruitment, we expect that the reduced dominance of aspen in forests will lead to major declines in the many essential ecosystem services it provides.


Assuntos
Populus , Ecossistema , Florestas , Humanos , Dinâmica Populacional , Árvores
13.
Ecol Appl ; 30(2): e02042, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31758825

RESUMO

Disturbance is a central driver of forest development and ecosystem processes with variable effects within and across ecosystems. Despite the high levels of variation in disturbance severity often observed in forests following natural and anthropogenic disturbance, studies quantifying disturbance impacts often rely on categorical classifications, thus limiting opportunities to examine potential gradients in ecosystem response to a given disturbance or management regime. Given the potential increases in disturbance severity associated with global change, as well as shifts in management regimes related to procurement of biofuel feedstocks, there is an increasing need to quantitatively describe disturbance severity and associated responses of forest development, soil processes, and structural conditions. This study took advantage of two replicated large-scale studies of forest biomass harvesting in Populus tremuloides and Pinus bansksiana forests, respectively, to develop and test the utility of a continuous, quantitative, disturbance severity index (DSI) for describing postharvest response of plant communities and nutrient pools to different levels of biomass removal and legacy retention (i.e., live trees and coarse woody material). There was a high degree of variability in DSI within categorical treatments associated with different levels of legacy retention and regression models using DSI as a predictor explained a portion of the variation (>50%) for many of the ecosystem- and community-level responses to biomass harvesting examined. Nutrient losses associated with biomass harvesting were positively related to disturbance severity, particularly in P. tremuloides forests, with postharvest nutrient availability generally declining along the gradient of impacts. Consistent with expectations from ecological theory, species richness and diversity of woody plant communities were greatest at intermediate disturbance severities and regeneration densities of dominant trees species were most abundant at highest levels of disturbance. Although categorical benchmarks will continue to be the primary way through which management guidelines are conveyed to practitioners, evaluation of their effectiveness at sustaining ecosystem functioning should be through continuous analyses, such as the DSI approach used in this study, to allow for the more precise identification of thresholds that ensure a range of desirable outcomes exist across managed landscapes.


Assuntos
Ecossistema , Pinus , Biomassa , Florestas , Árvores
14.
Ecol Appl ; 30(5): e02097, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32078225

RESUMO

In recent decades, a paradigm shift in forest management and associated policies has led to greater emphasis on harvest practices that retain mature, overstory trees in forest stands that would otherwise be clear-cut. While it is often assumed that the maintenance of compositional and structural complexity, such as that achieved through retention forestry approaches, will also mitigate negative impacts to functional diversity, empirical evidence of this relationship is sparse. We examined the effects of an aggregated retention system on taxonomic and functional diversity in a regenerating aspen-dominated forest. Sampling was conducted along transects arranged to capture the transition from harvested (regenerating) forest to mature, unharvested forest (both intact forest stands and 0.1 ha retention aggregates). We then assessed the magnitude and distance of edge effects on multiple indices of taxonomic and functional diversity as well as functional identity. Twelve years after harvest, the distance and magnitude of edge effects on functional and taxonomic diversity did not differ between the two unharvested patch sizes (intact vs. aggregate); however, intact forest exhibited greater resistance to edge effects and greater depth of edge influence into harvested areas for some traits compared to aggregates. Analyses relying on functional traits were generally applicable across sites within a highly variable forest type, and our results demonstrate the promise of using functional traits to assess management impacts on plant diversity across a landscape. Aggregates maintained some functional attributes associated with interior forest and influenced adjacent regeneration. However, trends in some traits (i.e., shade tolerance and seed mass), particularly in the seedling layer, suggest aggregates of this size provide primarily edge habitat.


Assuntos
Agricultura Florestal , Mariposas , Animais , Ecossistema , Florestas , Árvores
15.
BMC Plant Biol ; 19(1): 4, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606121

RESUMO

BACKGROUND: Plants, fungi, and bacteria form complex, mutually-beneficial communities within the soil environment. In return for photosynthetically derived sugars in the form of exudates from plant roots, the microbial symbionts in these rhizosphere communities provide their host plants access to otherwise inaccessible nutrients in soils and help defend the plant against biotic and abiotic stresses. One role that bacteria may play in these communities is that of Mycorrhizal Helper Bacteria (MHB). MHB are bacteria that facilitate the interactions between plant roots and symbiotic mycorrhizal fungi and, while the effects of MHB on the formation of plant-fungal symbiosis and on plant health have been well documented, the specific molecular mechanisms by which MHB drive gene regulation in plant roots leading to these benefits remain largely uncharacterized. RESULTS: Here, we investigate the effects of the bacterium Pseudomonas fluorescens SBW25 (SBW25) on aspen root transcriptome using a tripartite laboratory community comprised of Populus tremuloides (aspen) seedlings and the ectomycorrhizal fungus Laccaria bicolor (Laccaria). We show that SBW25 has MHB activity and promotes mycorrhization of aspen roots by Laccaria. Using transcriptomic analysis of aspen roots under multiple community compositions, we identify clusters of co-regulated genes associated with mycorrhization, the presence of SBW25, and MHB-associated functions, and we generate a combinatorial logic network that links causal relationships in observed patterns of gene expression in aspen seedling roots in a single Boolean circuit diagram. The predicted regulatory circuit is used to infer regulatory mechanisms associated with MHB activity. CONCLUSIONS: In our laboratory conditions, SBW25 increases the ability of Laccaria to form ectomycorrhizal interactions with aspen seedling roots through the suppression of aspen root antifungal defense responses. Analysis of transcriptomic data identifies that potential molecular mechanisms in aspen roots that respond to MHB activity are proteins with homology to pollen recognition sensors. Pollen recognition sensors integrate multiple environmental signals to down-regulate pollenization-associated gene clusters, making proteins with homology to this system an excellent fit for a predicted mechanism that integrates information from the rhizosphere to down-regulate antifungal defense response genes in the root. These results provide a deeper understanding of aspen gene regulation in response to MHB and suggest additional, hypothesis-driven biological experiments to validate putative molecular mechanisms of MHB activity in the aspen-Laccaria ectomycorrhizal symbiosis.


Assuntos
Micorrizas/crescimento & desenvolvimento , Imunidade Vegetal/genética , Raízes de Plantas/microbiologia , Populus/microbiologia , Pseudomonas fluorescens/metabolismo , Plântula/microbiologia , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/genética , Laccaria/genética , Laccaria/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Populus/genética , Populus/metabolismo , Pseudomonas fluorescens/genética , RNA Bacteriano/genética , RNA Fúngico/genética , RNA de Plantas/genética , Plântula/imunologia , Plântula/metabolismo , Alinhamento de Sequência , Simbiose , Transcriptoma/genética
16.
Ecol Appl ; 29(6): e01948, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31188492

RESUMO

Species that are primarily seral may form stable (self-sustaining) communities under certain disturbance regimes or environmental conditions, yet such populations may also be particularly vulnerable to ecological change. Aspen (Populus spp.) are generally considered seral throughout the Northern Hemisphere, including P. tremuloides, the most widely distributed tree species in North America. Recent declines in aspen populations have occurred, especially along drought-sensitive margins of its range and where fire exclusion and herbivory have promoted community transition. However, aspen also forms stable stands, and examination of the mechanisms that influence persistence can offer conservation insights, especially where populations are vulnerable to changing climate or altered disturbance dynamics. We sampled tree age and stand characteristics of isolated aspen forests in the arid Great Basin (USA) to determine if (1) aspen communities are more fire-dependent and seral or fire-independent and stable; (2) ungulate browsing inhibits aspen stability; and (3) temporal patterns of vegetative reproduction (i.e., ramet establishment or "suckering") are correlated with climate. Aspen size and age class densities strongly fit negative exponential distributions, whether grouped geographically or by functional type, suggesting landscape-scale persistence. Continuous age distributions and high proportions of recruitment-sized to overstory trees suggest stability at stand scales, with exceptions including stands with higher browsing pressure. Few stands had evidence of fire, and relationships between dead tree size and variability in live tree size suggest a lack of fire dependency. Several 5-yr averaged climate variables and one sea surface temperature index were correlated with aspen ramet establishment densities over time, with strongest relationships occurring ~5 yr prior to establishment year, often followed by inverse relationships ~1 yr after. Indeed, aspen establishment density for a recent 41-yr period was reliably reconstructed using antecedent climate conditions derived from a single drought index. Temporally synchronized aspen ramet establishment across the study region may be due to climate-driven storage of nonstructural carbohydrate reserves in clonal root systems later used for regeneration. Complex regeneration dynamics of these self-sustaining aspen stands, especially sensitivity to climate variability, suggest they may serve as harbingers of ecological change in the arid Great Basin and in other aspen populations near their range margin.


Assuntos
Populus , Clima , Florestas , América do Norte , Árvores
17.
J Anim Ecol ; 88(9): 1406-1416, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31135959

RESUMO

The abiotic environment drives species abundances and distributions both directly and indirectly through effects on multi-trophic species interactions. However, few studies have documented the individual and combined consequences of these direct and indirect effects. We studied an ant-tended aphid along an elevational gradient, where lower elevations were more arid. Hypotheses of stronger species interactions at lower elevations and a greater sensitivity of higher trophic levels to climate led us to predict increased top-down control of aphids by natural enemies (third trophic level) but even stronger protection from mutualist ants (fourth trophic level) with increasing aridity. As a result, we predicted that mutualism strength and aphid abundance would increase with aridity. We documented patterns of aphid abundance and tested for both the direct and multi-trophic indirect effects of aridity on aphid performance. To do so, we used both observational and manipulative methods across two years in replicate high- and low-elevation valleys, where summer temperatures decreased by 3.7°C and precipitation increased by 27 mm/mo from low to high elevations. Aphid colonies were 75% larger in the most (vs. least) arid sites, and this was best explained by changes in interactions with predators and ants. Aphids were unaffected by the direct effects of the abiotic environment or its indirect effects via host plant quality. In contrast, natural enemy effects increased with aridity; under ant exclusion, natural enemies had no effect on aphids in the least arid sites but depressed colony growth by 252% in the most arid sites. Ant activity also increased with aridity, with ants discovering more aphid colonies and experimental baits and allocating more foragers per aphid, although there was no effect of aridity on ant abundance or community composition. Correspondingly, the mutualist services provided by ants increased with aridity; ants provided no benefits to aphids in the least arid sites but doubled colony growth in the most arid sites. In summary, an elevational cline in herbivore abundance was driven by a monotonic increase in trophic-level sensitivity to aridity. These findings illustrate that predicting species responses to climate change will require a multi-trophic perspective.


Assuntos
Formigas , Afídeos , Animais , Herbivoria , Plantas , Simbiose
18.
Oecologia ; 189(4): 1061-1070, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30887106

RESUMO

Human activities are altering patterns of ungulate herbivory and wildfire regimes globally with large potential impacts on plant community succession and ecosystem resilience. Aspen (Populus tremuloides) is a keystone species which co-exists with conifer species across temperate forests in North America. Aspen sucker regeneration which is the foundation of aspen-conifer forests succession is often a targeted food source by multiple ungulate species. Using a region-wide exclosure network across a broad gradient of aspen-conifer overstory abundance, we empirically tested the effects of ungulate herbivory and conifer competition (that increases with fire suppression), on the regeneration and recruitment of aspen forests over a 4-year period. The study results indicate that ungulate herbivory and increasing abundance of overstory conifers dramatically reduced aspen regeneration and recruitment success. The average height of aspen suckers exposed to ungulate herbivory was 72% shorter than aspen suckers in fenced plots and resulted in 24% less recruitment. There was a 9% decrease in aspen recruitment and 12% decrease in average aspen height with every 20% increase in overstory conifer density. Aspen suckers were most vulnerable to herbivory at 70 cm height, with the probability of herbivory decreasing under 50 cm or above 90 cm. Steep slope angles and higher winter precipitation increased aspen regeneration and recruitment success. Reduction in aspen recruitment in response to ungulate herbivory and competition by conifers may result in loss of biodiversity, altered forest function and loss of key ecosystem services because of the important role that aspen plays in facilitating forest succession and biodiversity.


Assuntos
Cervos , Herbivoria , Animais , Ecossistema , Florestas , Humanos , América do Norte
19.
Ecotoxicology ; 28(1): 92-102, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30552523

RESUMO

It has been demonstrated that a number of metals including mercury (Hg), zinc (Zn), cadmium (Cd), cobalt (Co), lead (Pb), copper (Cu), and nickel (Ni) decrease seed germination rates and plant growth. The threshold levels of metal toxicity on seed germination, plant development, and gene regulation have not been studied in detail. The main objective of this study was to assess in vitro and in vivo the effects of different doses of nickel on Trembling aspen (Populus tremuloides) seed germination and regulation of the high affinity nickel transporter family protein (AT2G16800) gene. The in vitro assays showed that Nickel completely inhibited seed germination even at the lowest concentration of 0.401 mg Ni per mL (in media) tested. However, when the same concentration of nickel (150 mg Ni per 1 kg of dry soil) was added to soil samples, during the vivo assays, almost all of the seeds germinated. Significant inhibition of seed germination was observed when soil samples were treated with at least 400 mg/kg of Ni. No damages were observed on growing seedlings treated with 150, 400, and 800 mg/kg of Ni. Only the highest dose of 1, 600 mg/kg resulted in visible leaf and stem damages and reduced growth on 75% of seedlings. A significant repression of the AT2G16800 gene was observed for the 400, 800, and 1600 mg/kg of nickel treatments compared to the water control with the lowest level of expression observed in samples treated with 800 mg/kg of Ni. Results of this study suggest that P. tremuloides populations will likely be sustainable for long term in sites that are highly contaminated with Ni including mining regions since the bioavailable amount of this metal is usually below 400 mg/kg in Canada.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Proteínas de Plantas/fisiologia , Populus/fisiologia , Sementes/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Germinação/genética , Níquel , Populus/genética , Poluentes do Solo/toxicidade
20.
Ecology ; 99(6): 1284-1295, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29569245

RESUMO

The boreal biome represents approximately one third of the world's forested area and plays an important role in global biogeochemical and energy cycles. Numerous studies in boreal Alaska have concluded that growth of black and white spruce is declining as a result of temperature-induced drought stress. The combined evidence of declining spruce growth and changes in the fire regime that favor establishment of deciduous tree species has led some investigators to suggest the region may be transitioning from dominance by spruce to dominance by deciduous forests and/or grasslands. Although spruce growth trends have been extensively investigated, few studies have evaluated long-term radial growth trends of the dominant deciduous species (Alaska paper birch and trembling aspen) and their sensitivity to moisture availability. We used a large and spatially extensive sample of tree cores from interior Alaska to compare long-term growth trends among contrasting tree species (white and black spruce vs. birch and aspen). All species showed a growth peak in the mid-1940s, although growth following the peak varied strongly across species. Following an initial decline from the peak, growth of white spruce showed little evidence of a trend, while black spruce and birch growth showed slight growth declines from ~1970 to present. Aspen growth was much more variable than the other species and showed a steep decline from ~1970 to present. Growth of birch, black and white spruce was sensitive to moisture availability throughout most of the tree-ring chronologies, as evidenced by negative correlations with air temperature and positive correlations with precipitation. However, a positive correlation between previous July precipitation and aspen growth disappeared in recent decades, corresponding with a rise in the population of the aspen leaf miner (Phyllocnistis populiella), an herbivorous moth, which may have driven growth to a level not seen since the early 20th century. Our results provide important historical context for recent growth and raise questions regarding competitive interactions among the dominant tree species and exchanges of carbon and energy in the warming climate of interior Alaska.


Assuntos
Picea , Traqueófitas , Alaska , Clima , Árvores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa