Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Int J Solids Struct ; 286-2872024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38130319

RESUMO

Fibrous gels such as cartilage, blood clots, and carbon-nanotube-based sponges with absorbed oils suffer a reduction in volume by the expulsion of liquid under uniaxial tension, and this directly affects crack-tip fields and energy release rates. A continuum model is formulated for isotropic fibrous gels that exhibit a range of behaviors from volume increasing to volume decreasing in uniaxial tension by changing the ratio of two material parameters. The motion of liquid in the pores of such gels is modeled using poroelasticity. The direction of liquid fluxes around cracks is shown to depend on whether the gel locally increases or decreases in volume. The energy release rate for cracks is computed using a surface-independent integral and it is shown to have two contributions - one from the stresses in the solid network, and another from the flow of liquid. The contribution to the integral from liquid permeation tends to be negative when the gel exhibits volume decrease, which effectively is a crack shielding mechanism.

2.
Small ; 19(44): e2303610, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37403276

RESUMO

Cell mechanics is an emerging field of research for translational medicine. Here, the cell is modeled as poroelastic cytoplasm wrapped by tensile membrane (poroelastic@membrane model) and is characterized by the atomic force microscopy (AFM). The parameters of cytoskeleton network modulus EC , cytoplasmic apparent viscosity ηC , and cytoplasmic diffusion coefficient DC are used to describe the mechanical behavior of cytoplasm, and membrane tension γ is used to evaluate the cell membrane. Poroelastic@membrane analysis of breast cells and urothelial cells show that non-cancer cells and cancer cells have different distribution regions and distribution trends in the four-dimensional space composed of EC , ηC . From non-cancer to cancer cells, there is often a trend of γ, EC , ηC decreases and DC increases. Patients with urothelial carcinoma at different malignant stages can be distinguished at high sensitivity and specificity by analyzing the urothelial cells from tissue or urine. However, sampling directly from tumor tissues is an invasive method, may lead to undesirable consequences. Thus, AFM-based poroelastic@membrane analysis of urothelial cells from urine may provide a non-invasive and no-bio-label method to detecting urothelial carcinoma.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Microscopia de Força Atômica/métodos , Elasticidade , Ciência Translacional Biomédica
3.
Biomed Eng Online ; 18(1): 122, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31870380

RESUMO

BACKGROUND: Bone is a hierarchically structured composite material, and different hierarchical levels exhibit diverse material properties and functions. The stress and strain distribution and fluid flow in bone play an important role in the realization of mechanotransduction and bone remodeling. METHODS: To investigate the mechanotransduction and fluid behaviors in loaded bone, a multiscale method was developed. Based on poroelastic theory, we established the theoretical and FE model of a segment bone to provide basis for researching more complex bone model. The COMSOL Multiphysics software was used to establish different scales of bone models, and the properties of mechanical and fluid behaviors in each scale were investigated. RESULTS: FE results correlated very well with analytical in macroscopic scale, and the results for the mesoscopic models were about less than 2% different compared to that in the macro-mesoscale models, verifying the correctness of the modeling. In macro-mesoscale, results demonstrated that variations in fluid pressure (FP), fluid velocity (FV), von Mises stress (VMS), and maximum principal strain (MPS) in the position of endosteum, periosteum, osteon, and interstitial bone and these variations can be considerable (up to 10, 8, 4 and 3.5 times difference in maximum FP, FV, VMS, and MPS between the highest and the lowest regions, respectively). With the changing of Young's modulus (E) in each osteon lamella, the strain and stress concentration occurred in different positions and given rise to microscale spatial variations in the fluid pressure field. The heterogeneous distribution of lacunar-canalicular permeability (klcp) in each osteon lamella had various influence on the FP and FV, but had little effect on VMS and MPS. CONCLUSION: Based on the idealized model presented in this article, the presence of endosteum and periosteum has an important influence on the fluid flow in bone. With the hypothetical parameter values in osteon lamellae, the bone material parameters have effect on the propagation of stress and fluid flow in bone. The model can also incorporate alternative material parameters obtained from different individuals. The suggested method is expected to provide dependable biological information for better understanding the bone mechanotransduction and signal transduction.


Assuntos
Osso e Ossos/fisiologia , Elasticidade , Análise de Elementos Finitos , Fenômenos Biomecânicos , Osso e Ossos/metabolismo , Módulo de Elasticidade , Permeabilidade , Porosidade , Estresse Mecânico , Suporte de Carga
4.
Morphologie ; 103(343): 148-160, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31786098

RESUMO

For precision medicine to be implemented through the lens of in silico technology, it is imperative that biophysical research workflows offer insight into treatments that are specific to a particular illness and to a particular subject. The boundaries of precision medicine can be extended using multiscale, biophysics-centred workflows that consider the fundamental underpinnings of the constituents of cells and tissues and their dynamic environments. Utilising numerical techniques that can capture the broad spectrum of biological flows within complex, deformable and permeable organs and tissues is of paramount importance when considering the core prerequisites of any state-of-the-art precision medicine pipeline. In this work, a succinct breakdown of two precision medicine pipelines developed within two Virtual Physiological Human (VPH) projects are given. The first workflow is targeted on the trajectory of Alzheimer's Disease, and caters for novel hypothesis testing through a multicompartmental poroelastic model which is integrated with a high throughput imaging workflow and subject-specific blood flow variability model. The second workflow gives rise to the patient specific exploration of Aortic Dissections via a multi-scale and compliant model, harnessing imaging, computational fluid-dynamics (CFD) and dynamic boundary conditions. Results relating to the first workflow include some core outputs of the multiporoelastic modelling framework, and the representation of peri-arterial swelling and peri-venous drainage solution fields. The latter solution fields were statistically analysed for a cohort of thirty-five subjects (stratified with respect to disease status, gender and activity level). The second workflow allowed for a better understanding of complex aortic dissection cases utilising both a rigid-wall model informed by minimal and clinically common datasets as well as a moving-wall model informed by rich datasets.


Assuntos
Doença de Alzheimer/fisiopatologia , Dissecção Aórtica/fisiopatologia , Sistema Glinfático/fisiopatologia , Modelos Biológicos , Fluxo Sanguíneo Regional/fisiologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/terapia , Dissecção Aórtica/diagnóstico por imagem , Dissecção Aórtica/terapia , Aorta/diagnóstico por imagem , Aorta/fisiopatologia , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Estudos de Coortes , Simulação por Computador , Conjuntos de Dados como Assunto , Feminino , Humanos , Hidrodinâmica , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X , Fluxo de Trabalho
5.
Theor Biol Med Model ; 15(1): 21, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30348205

RESUMO

BACKGROUND: Many biological soft tissues are hydrated porous hyperelastic materials, which consist of a complex solid skeleton with fine voids and fluid filling these voids. Mechanical interactions between the solid and the fluid in hydrated porous tissues have been analyzed by finite element methods (FEMs) in which the mixture theory was introduced in various ways. Although most of the tissues are surrounded by deformable membranes that control transmembrane flows, the boundaries of the tissues have been treated as rigid and/or freely permeable in these studies. The purpose of this study was to develop a method for the analysis of hydrated porous hyperelastic tissues surrounded by deformable membranes that control transmembrane flows. RESULTS: For this, we developed a new nonlinear finite element formulation of the mixture theory, where the nodal unknowns were the pore water pressure and solid displacement. This method allows the control of the fluid flow rate across the membrane using Neumann boundary condition. Using the method, we conducted a compression test of the hydrated porous hyperelastic tissue, which was surrounded by a flaccid impermeable membrane, and a part of the top surface of this tissue was pushed by a platen. The simulation results showed a stress relaxation phenomenon, resulting from the interaction between the elastic deformation of the tissue, pore water pressure gradient, and the movement of fluid. The results also showed that the fluid trapped by the impermeable membrane led to the swelling of the tissue around the platen. CONCLUSIONS: These facts suggest that our new method can be effectively used for the analysis of a large deformation of hydrated porous hyperelastic material surrounded by a deformable membrane that controls transmembrane flow, and further investigations may allow more realistic analyses of the biological soft tissues, such as brain edema, brain trauma, the flow of blood and lymph in capillaries and pitting edema.


Assuntos
Análise de Elementos Finitos , Especificidade de Órgãos , Reologia , Algoritmos , Fenômenos Biomecânicos , Força Compressiva , Membranas , Modelos Biológicos , Porosidade , Fatores de Tempo , Água/química
6.
Artigo em Inglês | MEDLINE | ID: mdl-38461460

RESUMO

Brain oedema or tissue swelling that develops after ischaemic stroke can cause detrimental effects, including brain herniation and increased intracranial pressure (ICP). These effects can be reduced by performing a decompressive craniectomy (DC) operation, in which a portion of the skull is removed to allow swollen brain tissue to expand outside the skull. In this study, a poroelastic model is used to investigate the effect of brain ischaemic infarct size and location on the severity of brain tissue swelling. Furthermore, the model will also be used to evaluate the effectiveness of DC surgery as a treatment for brain tissue swelling after ischaemia. The poroelastic model consists of two equations: one describing the elasticity of the brain tissue and the other describing the changes in the interstitial tissue pressure. The model is applied on an idealized brain geometry, and it is found that infarcts with radius larger than approximately 14 mm and located near the lateral ventricle produce worse brain midline shift, measured through lateral ventricle compression. Furthermore, the model is also able to show the positive effect of DC treatment in reducing the brain midline shift by allowing part of the brain tissue to expand through the skull opening. However, the model does not show a decrease in the interstitial pressure during DC treatment. Further improvement and validation could enhance the capability of the proposed poroelastic model in predicting the occurrence of brain tissue swelling and DC treatment post ischaemia.

7.
Med Eng Phys ; 126: 104130, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38621832

RESUMO

Biphasic models have been widely used to simulate the time-dependent biomechanical response of soft tissues. Modelling techniques of joints with biphasic weight-bearing soft tissues have been markedly improved over the last decade, enhancing our understanding of the function, degenerative mechanism and outcomes of interventions of joints. This paper reviews the recent advances, challenges and opportunities in computational models of joints with biphasic weight-bearing soft tissues. The review begins with an introduction of the function and degeneration of joints from a biomechanical aspect. Different constitutive models of articular cartilage, in particular biphasic materials, are illustrated in the context of the study of contact mechanics in joints. Approaches, advances and major findings of biphasic models of the hip and knee are presented, followed by a discussion of the challenges awaiting to be addressed, including the convergence issue, high computational cost and inadequate validation. Finally, opportunities and clinical insights in the areas of subject-specific modeling and tissue engineering are provided and discussed.


Assuntos
Cartilagem Articular , Modelos Biológicos , Humanos , Fenômenos Biomecânicos , Articulações/fisiologia , Cartilagem Articular/fisiologia , Simulação por Computador , Articulação do Joelho/fisiologia , Análise de Elementos Finitos
8.
Bioengineering (Basel) ; 11(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39061784

RESUMO

In hydrated soft biological tissues experiencing edema, which is typically associated with various disorders, excessive fluid accumulates and is encapsulated by impermeable membranes. In certain cases of edema, an indentation induced by pressure persists even after the load is removed. The depth and duration of this indentation are used to assess the treatment response. This study presents a mixture theory-based approach to analyzing the edematous condition. The finite element analysis formulation was grounded in mixture theory, with the solid displacement, pore water pressure, and fluid relative velocity as the unknown variables. To ensure tangential fluid flow at the surface of tissues with complex shapes, we transformed the coordinates of the fluid velocity vector at each time step and node, allowing for the incorporation of the transmembrane component of fluid flow as a Dirichlet boundary condition. Using this proposed method, we successfully replicated the distinct behavior of pitting edema, which is characterized by a prolonged recovery time from indentation. Consequently, the proposed method offers valuable insights into the finite element analysis of the edematous condition in biological tissues.

9.
Soft Robot ; 11(3): 453-463, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38153356

RESUMO

Snails employ a distinctive crawling mechanism in which the pedal waves travel along the foot and interact with the mucus to promote efficient movement on various substrates. Inspired by the concavities on the pedal wave, we develop a new bionic snail robot that introduces transverse patterns in a longitudinal wave to periodically change the friction. The poroelastic foam serves as flexible constraint and fills the robot's internal cavity. It contributes to the bending action, and maintains the thinness and softness of the robot. Then, the model of the robot's single segment is built utilizing the Euler-Bernoulli beam theory. The model aligns well with the experimental data, thereby confirming the effectiveness of soft constraints. The evaluation of pedal wave is conducted, which further guides the optimization of the control sequence. The experiments demonstrated the robot performing retrograde wave locomotion on dry substrates. Notably, shear-thickening fluids were found to be suitable for this particular crawling pattern compared with other mucus simulants, resulting in direct wave locomotion with a 49% increase in speed and a 33% reduction in energy usage. The load capacity of the soft snail robot was also enhanced, enabling it to carry loads up to 2.84 times its own weight. The use of mucus in crawling also brings valuable insights for the enhancement of other biomimetic robots.

10.
J Biomech ; 166: 112070, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38569456

RESUMO

Cement-augmentation is a technique commonly used during posterior lumbar instrumented fusion (PLIF) to reinforce compromised osteoporotic vertebral bone, minimize the risk of loosening screws, enhance stability, and improve overall surgical outcomes. In this study, we introduce a novel segmented vertebral body regional modeling approach to investigate the effects of osteoporosis and cement-augmented lumbar fusion on disc biomechanics at spinal levels adjacent to the fused vertebrae. Using our previously validated personalized-poroelastic-osteoligamentous FE model of the spine, fusion was simulated at L4-L5, and the biomechanics of adjacent levels were studied for 30 patients (non-osteoporotic patients (N = 15), osteoporotic patients (N = 15)). PLIF models, with and without cement-augmentation, were developed and compared after an 8 h-rest period (200 N), following a 16 h-cyclic compressive loading of 500-1000 N (40 and 20 min, respectively). Movement in different directions (flexion/ extension/ lateral bending/ axial rotation) was simulated using 10Nm moment before and after cyclic loading. The material mapping algorithm was validated by comparing the results of voxel-based and parametric models. The FE cement-augmented models, subject to daily activity loading, demonstrated significant differences in disc height loss and fluid loss as compared to non-cemented models. The calculated axial stress and fiber strain values were also significantly higher for these models. This work demonstrates that although osteoporosis does not significantly alter the time-dependent characteristics of adjacent IVDs post-surgery, cement-augmentation increases the risk of adjacent segment disease (ASD) incidence. A holistic understanding of the trade-offs and long-term complex interplay between structural reinforcement modalities, including cement augmentation, and altered biomechanics warrants further investigation.


Assuntos
Osteoporose , Fusão Vertebral , Humanos , Análise de Elementos Finitos , Vértebras Lombares/cirurgia , Osteoporose/cirurgia , Cimentos Ósseos , Fusão Vertebral/efeitos adversos , Fenômenos Biomecânicos
11.
J Mech Behav Biomed Mater ; 153: 106486, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428205

RESUMO

In this study, we conduct a multiscale, multiphysics modeling of the brain gray matter as a poroelastic composite. We develop a customized representative volume element based on cytoarchitectural features that encompass important microscopic components of the tissue, namely the extracellular space, the capillaries, the pericapillary space, the interstitial fluid, cell-cell and cell-capillary junctions, and neuronal and glial cell bodies. Using asymptotic homogenization and direct numerical simulation, the effective properties at the tissue level are identified based on microscopic properties. To analyze the influence of various microscopic elements on the effective/macroscopic properties and tissue response, we perform sensitivity analyses on cell junction (cluster) stiffness, cell junction diameter (dimensions), and pericapillary space width. The results of this study suggest that changes in cell adhesion can greatly affect both mechanical and hydraulic (interstitial fluid flow and porosity) features of brain tissue, consistent with the effects of neurodegenerative diseases.


Assuntos
Líquido Extracelular , Espaço Extracelular , Adesão Celular , Simulação por Computador , Porosidade
12.
J Mech Behav Biomed Mater ; 140: 105703, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36764169

RESUMO

The mass density of highly hydrated soft tissues is generally assumed to be very close to that of the water, resulting that the fluid mass fraction (water content) being equal to the fluid volume fraction. Within this context, the present study aims to investigate whether such an assumption actually holds for tendon tissues and to what extent it may affect the constitutive characterizations based on biphasic (poroelastic) models. Once the water content was assessed by a classical drying assay, the fluid volume fraction was obtained based on an image segmentation approach. The main achieved results point out that the fluid volume fraction is ∼20% higher than the water content in the studied tendons (flexor digitorum profundus bovine tendons). Based on this, it is shown that the use of the water content instead of the fluid volume fraction may considerably bias the results drawn by biphasic modeling of tendons. Accordingly, a proper measurement of the fluid volume fraction is then required.


Assuntos
Mãos , Tendões , Animais , Bovinos
13.
Comput Biol Med ; 165: 107380, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37634464

RESUMO

Lymphatic uptake is essential for transporting nutrients, wastes, immune cells, and therapeutic proteins. Despite its importance, the literature lacks a quantitative analysis of the factors that affect lymphatic uptake, including interstitial pressure, downstream pressure, and tissue deformation. In this paper, we present a coupled model of a poroelastic tissue with initial lymphatics and quantify the impact of these factors on the rate of lymphatic uptake. Our results indicate that the lymphatic uptake increases with the amplitude of the oscillating downstream pressure when the amplitude exceeds a threshold. Additionally, the cross-sectional area of initial lymphatics increases with the volumetric strain of the tissue, while the interstitial pressure increases when the strain rate becomes negative. Therefore, the lymphatic uptake reaches its maximum when the tissue has positive volumetric strain while being compressed. We have also investigated the effect of intersection angles and positions of two initial lymphatics and concluded that they have minor impacts on lymphatic uptake. However, the lymphatic uptake per unit length of initial lymphatics decreases with their total length. These findings advance our understanding of lymphatic uptake and can guide the development of strategies to accelerate the transport of therapeutics.


Assuntos
Vasos Linfáticos , Vasos Linfáticos/metabolismo , Sistema Linfático , Transporte Biológico , Pressão
14.
Comput Methods Biomech Biomed Engin ; 26(16): 1941-1950, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36576174

RESUMO

This study aims to establish and validate a poroelastic L4-L5 finite element model to evaluate the effect of different sitting postures and their durations on the mechanical responses of the disc. During the sustained loading conditions, the height loss, fluid loss and von-Mises stress gradually increased, but the intradiscal pressure decreased. The varying rates of aforementioned parameters were more significant at the initial loading stage and less so at the end. The predicted values in the flexed sitting posture were significantly greater than other postures. The extended sitting posture caused an obvious von-Mises stress concentration in the posterior region of the inter-lamellar matrix. From the biomechanical perspective, prolonged sitting may pose a high risk of lumbar disc degeneration, and therefore adjusting the posture properly in the early stage of sitting time may be useful to mitigate that. Additionally, upright sitting is a safer posture, while flexed sitting posture is more harmful.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Análise de Elementos Finitos , Vértebras Lombares/fisiologia , Postura Sentada , Fenômenos Biomecânicos/fisiologia , Disco Intervertebral/fisiologia , Postura/fisiologia
15.
J Mech Behav Biomed Mater ; 137: 105528, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343521

RESUMO

The exceptional functional performance of articular cartilage (load-bearing and lubrication) is attributed to its poroelastic structure and resulting interstitial fluid pressure. Despite this, there remains no engineered cartilage repair material capable of achieving physiologically relevant poroelasticity. In this work we develop in silico models to guide the design approach for poroelastic mimics of articular cartilage. We implement the constitutive models in FEBio, a PDE solver for multiphasic mechanics problems in biological and soft materials. We investigate the influence of strain rate, boundary conditions at the contact interface, and fiber modulus on the reaction force and load sharing between the solid and fluid phases. The results agree with the existing literature that when fibers are incorporated the fraction of load supported by fluid pressure is greatly amplified and increases with the fiber modulus. This result demonstrates that a stiff fibrous phase is a primary design requirement for poroelastic mimics of articular cartilage. The poroelastic model is fit to experimental stress-relaxation data from bovine and porcine cartilage to determine if sufficient design constraints have been identified. In addition, we fit experimental data from FiHy™, an engineered material which is claimed to be poroelastic. The fiber-reinforced poroelastic model was able to capture the primary physics of these materials and demonstrates that FiHy™ is beginning to approach a cartilage-like poroelastic response. We also develop a fiber-reinforced poroelastic model with a bonded interface (rigid contact) to fit stress relaxation data from an osteochondral explant and FiHy™ + bone substitute. The model fit quality is similar for both the chondral and osteochondral configurations and clearly captures the first order physics. Based on this, we propose that physiological poroelastic mimics of articular cartilage should be developed under a fiber-reinforced poroelastic framework.


Assuntos
Cartilagem Articular , Suínos , Bovinos , Animais , Cartilagem Articular/fisiologia , Elasticidade , Modelos Biológicos , Suporte de Carga , Fenômenos Mecânicos , Estresse Mecânico
16.
J Biomech ; 160: 111800, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37797566

RESUMO

Fibril-reinforced poroviscoelastic material models are considered state-of-the-art in modeling articular cartilage biomechanics. Yet, cartilage material parameters are often based on bovine tissue properties in computational knee joint models, although bovine properties are distinctly different from those of humans. Thus, we aimed to investigate how cartilage mechanical responses are affected in the knee joint model during walking when fibril-reinforced poroviscoelastic properties of cartilage are based on human data instead of bovine. We constructed a finite element knee joint model in which tibial and femoral cartilages were modeled as fibril-reinforced poroviscoelastic material using either human or bovine data. Joint loading was based on subject-specific gait data. The resulting mechanical responses of knee cartilage were compared between the knee joint models with human or bovine fibril-reinforced poroviscoelastic cartilage properties. Furthermore, we conducted a sensitivity analysis to determine which fibril-reinforced poroviscoelastic material parameters have the greatest impact on cartilage mechanical responses in the knee joint during walking. In general, bovine cartilage properties yielded greater maximum principal stresses and fluid pressures (both up to 30%) when compared to the human cartilage properties during the loading response in both femoral and tibial cartilage sites. Cartilage mechanical responses were very sensitive to the collagen fibril-related material parameter variations during walking while they were unresponsive to proteoglycan matrix or fluid flow-related material parameter variations. Taken together, human cartilage material properties should be accounted for when the goal is to compare absolute mechanical responses of knee joint cartilage as bovine material parameters lead to substantially different cartilage mechanical responses.

17.
Drug Deliv ; 30(1): 2163003, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36625437

RESUMO

Subcutaneous injection of monoclonal antibodies (mAbs) has attracted much attention in the pharmaceutical industry. During the injection, the drug is delivered into the tissue producing strong fluid flow and tissue deformation. While data indicate that the drug is initially uptaken by the lymphatic system due to the large size of mAbs, many of the critical absorption processes that occur at the injection site remain poorly understood. Here, we propose the MPET2 approach, a multi-network poroelastic and transport model to predict the absorption of mAbs during and after subcutaneous injection. Our model is based on physical principles of tissue biomechanics and fluid dynamics. The subcutaneous tissue is modeled as a mixture of three compartments, i.e., interstitial tissue, blood vessels, and lymphatic vessels, with each compartment modeled as a porous medium. The proposed biomechanical model describes tissue deformation, fluid flow in each compartment, the fluid exchanges between compartments, the absorption of mAbs in blood vessels and lymphatic vessels, as well as the transport of mAbs in each compartment. We used our model to perform a high-fidelity simulation of an injection of mAbs in subcutaneous tissue and evaluated the long-term drug absorption. Our model results show good agreement with experimental data in depot clearance tests.


Assuntos
Anticorpos Monoclonais , Vasos Linfáticos , Injeções Subcutâneas , Sistema Linfático , Simulação por Computador
18.
Front Bioeng Biotechnol ; 11: 1217274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37650042

RESUMO

Introduction: Anterior cervical discectomy and fusion (ACDF) has been considered as the gold standard surgical treatment for cervical degenerative pathologies. Some surgeons tend to use larger-sized interbody cages during ACDF to restore the index intervertebral disc height, hence, this study evaluated the effect of larger-sized interbody cages on the cervical spine with ACDF under both static and cyclic loading. Method: Twenty pre-operative personalized poro-hyperelastic finite element (FE) models were developed. ACDF post-operative models were then constructed and four clinical scenarios (i.e., 1) No-distraction; 2) 1 mm distraction; 3) 2 mm distraction; and 4) 3 mm distraction) were predicted for each patient. The biomechanical responses at adjacent spinal levels were studied subject to static and cyclic loading. Non-parametric Friedman statistical comparative tests were performed and the p values less than 0.05 were reflected as significant. Results: The calculated intersegmental range of motion (ROM) and intradiscal pressure (IDP) from 20 pre-operative FE models were within the overall ranges compared to the available data from literature. Under static loading, greater ROM, IDP, facet joint force (FJF) values were detected post ACDF, as compared with pre-op. Over-distraction induced significantly higher IDP and FJF in both upper and lower adjacent levels in extension. Higher annulus fibrosus stress and strain values, and increased disc height and fluid loss at the adjacent levels were observed in ACDF group which significantly increased for over-distraction groups. Discussion: it was concluded that using larger-sized interbody cages (the height of ≥2 mm of the index disc height) can result in remarkable variations in biomechanical responses of adjacent levels, which may indicate as risk factor for adjacent segment disease. The results of this comprehensive FE investigation using personalized modeling technique highlight the importance of selecting the appropriate height of interbody cage in ACDF surgery.

19.
Comput Methods Biomech Biomed Engin ; 26(11): 1353-1367, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36062938

RESUMO

We developed a novel knee joint model in FEBio to simulate walking. Knee cartilage was modeled using a fibril-reinforced biphasic (FRB) formulation with depth-wise collagen architecture and split-lines to account for cartilage structure. Under axial compression, the knee model with FRB cartilage yielded contact pressures, similar to reported experimental data. Furthermore, gait analysis with FRB cartilage simulated spatial and temporal trends in cartilage fluid pressures, stresses, and strains, comparable to those of a fibril-reinforced poroviscoelastic (FRPVE) material in Abaqus. This knee joint model in FEBio could be used for further studies of knee disorders using physiologically relevant loading.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Cartilagem Articular/fisiologia , Análise de Elementos Finitos , Articulação do Joelho/fisiologia , Marcha/fisiologia , Estresse Mecânico , Modelos Biológicos , Fenômenos Biomecânicos
20.
Acta Biomater ; 167: 69-82, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37331613

RESUMO

The role of poroelasticity on the functional performance of articular cartilage has been established in the scientific literature since the 1960s. Despite the extensive knowledge on this topic there remain few attempts to design for poroelasticity and to our knowledge no demonstration of an engineered poroelastic material that approaches the physiological performance. In this paper, we report on the development of an engineered material that begins to approach physiological poroelasticity. We quantify poroelasticity using the fluid load fraction, apply mixture theory to model the material system, and determine cytocompatibility using primary human mesenchymal stem cells. The design approach is based on a fiber reinforced hydrated network and uses routine fabrication methods (electrohydrodynamic deposition) and materials (poly[ɛ-caprolactone] and gelatin) to develop the engineered poroelastic material. This composite material achieved a mean peak fluid load fraction of 68%, displayed consistency with mixture theory, and demonstrated cytocompatibility. This work creates a foundation for designing poroelastic cartilage implants and developing scaffold systems to study chondrocyte mechanobiology and tissue engineering. STATEMENT OF SIGNIFICANCE: Poroelasticity drives the functional mechanics of articular cartilage (load bearing and lubrication). In this work we develop the design rationale and approach to produce a poroelastic material, known as a fiber reinforced hydrated network (FiHy™), that begins to approach the native performance of articular cartilage. This is the first engineered material system capable of exceeding isotropic linear poroelastic theory. The framework developed here enables fundamental studies of poroelasticity and the development of translational materials for cartilage repair.


Assuntos
Cartilagem Articular , Humanos , Condrócitos , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa