Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 953
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(22): e2401656121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38787880

RESUMO

Understanding the dynamics of electric-double-layer (EDL) charging in porous media is essential for advancements in next-generation energy storage devices. Due to the high computational demands of direct numerical simulations and a lack of interfacial boundary conditions for reduced-order models, the current understanding of EDL charging is limited to simple geometries. Here, we present a network model to predict EDL charging in arbitrary networks of long pores in the Debye-Hückel limit without restrictions on EDL thickness and pore radii. We demonstrate that electrolyte transport is described by Kirchhoff's laws in terms of the electrochemical potential of charge (the valence-weighted average of the ion electrochemical potentials) instead of the electric potential. By employing the equivalent circuit representation suggested by these modified Kirchhoff's laws, our methodology accurately captures the spatial and temporal dependencies of charge density and electric potential, matching results obtained from computationally intensive direct numerical simulations. Our network model provides results up to six orders of magnitude faster, enabling the efficient simulation of a triangular lattice of five thousand pores in 6 min. We employ the framework to study the impact of pore connectivity and polydispersity on electrode charging dynamics for pore networks and discuss how these factors affect the time scale, energy density, and power density of capacitive charging. The scalability and versatility of our methodology make it a rational tool for designing 3D-printed electrodes and for interpreting geometric effects on electrode impedance spectroscopy measurements.

2.
Proc Natl Acad Sci U S A ; 121(5): e2320237121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252821

RESUMO

Dynamic 3D covalent organic frameworks (COFs) have shown concerted structural transformation and adaptive gas adsorption due to the conformational diversity of organic linkers. However, the isolation and observation of COF rotamers constitute undergoing challenges due to their comparable free energy and subtle rotational energy barrier. Here, we report the atomic-level observation and structural evolution of COF rotamers by cryo-3D electron diffraction and synchrotron powder X-ray diffraction. Specifically, we optimize the crystallinity and morphology of COF-320 to manifest its coherent dynamic responses upon adaptive inclusion of guest molecules. We observe a significant crystal expansion of 29 vol% upon hydration and a giant swelling with volume change up to 78 vol% upon solvation. We record the structural evolution from a non-porous contracted phase to two narrow-pore intermediate phases and the fully opened expanded phase using n-butane as a stabilizing probe at ambient conditions. We uncover the rotational freedom of biphenylene giving rise to significant conformational changes on the diimine motifs from synclinal to syn-periplanar and anticlinal rotamers. We illustrate the 10-fold increment of pore volumes and 100% enhancement of methane uptake capacity of COF-320 at 100 bar and 298 K. The present findings shed light on the design of smarter organic porous materials to maximize host-guest interaction and boost gas uptake capacity through progressive structural transformation.

3.
Nano Lett ; 24(4): 1284-1293, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38230643

RESUMO

Despite its effectiveness in eliminating cancer cells, ferroptosis is hindered by the high natural antioxidant glutathione (GSH) levels in the tumor microenvironment. Herein, we developed a spatially asymmetric nanoparticle, Fe3O4@DMS&PDA@MnO2-SRF, for enhanced ferroptosis. It consists of two subunits: Fe3O4 nanoparticles coated with dendritic mesoporous silica (DMS) and PDA@MnO2 (PDA: polydopamine) loaded with sorafenib (SRF). The spatial isolation of the Fe3O4@DMS and PDA@MnO2-SRF subunits enhances the synergistic effect between the GSH-scavengers and ferroptosis-related components. First, the increased exposure of the Fe3O4 subunit enhances the Fenton reaction, leading to increased production of reactive oxygen species. Furthermore, the PDA@MnO2-SRF subunit effectively depletes GSH, thereby inducing ferroptosis by the inactivation of glutathione-dependent peroxidases 4. Moreover, the SRF blocks Xc- transport in tumor cells, augmenting GSH depletion capabilities. The dual GSH depletion of the Fe3O4@DMS&PDA@MnO2-SRF significantly weakens the antioxidative system, boosting the chemodynamic performance and leading to increased ferroptosis of tumor cells.


Assuntos
Ferroptose , Nanopartículas , Neoplasias , Humanos , Compostos de Manganês/farmacologia , Óxidos , Antioxidantes , Glutationa , Dióxido de Silício , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Microambiente Tumoral
4.
Small ; : e2312275, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573924

RESUMO

High internal phase emulsions (HIPEs) have been of great interest for fabricating fluorinated porous polymers having controlled pore structures and excellent physicochemical properties. However, it remains a challenge to prepare stable fluorocarbon HIPEs, due to the lack of suitable surfactants. By randomly grating hydrophilic and fluorophilic side chains to polyphosphazene (PPZ), a comb-like amphiphilic PPZ surfactant with biodegradability is designed and synthesized for stabilizing water/fluorocarbon oil-based emulsions. The hydrophilic-lipophilic balance of PPZs can be controlled by tuning the grating ratio of the two side chains, leading to the preparation of stable water-in-oil HIPEs and oil-in-water emulsions, and the production of fluorinated porous polymers and particles by polymerizing the oil phase. These fluorinated porous polymers show excellent thermal stability and, due to the hydrophobicity and porous structure, applications in the field of oil/water separation can be achieved.

5.
Small ; : e2403814, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031105

RESUMO

Flexible porous materials have gained considerable interest for their potential applications in selective absorption and controlled release/storage of specific molecules or compounds. Here, nanoscrolls are proposed as a type of inorganic solids with reversibly flexible mesopores. Nanoscrolls exhibit a rolled-up structure composed of nanosheets with a 1D rod-like morphology, possessing two distinct nanospaces. The first space comprises 1D tubular mesopores located at the center of the rod, while the second space exists in the interlayer regions on the wall of the mesopore, resulting from the layer stacking caused by the scrolling of nanosheets. By replacing the interlayer cations on the nanoscroll walls with other cations, a drastic alteration in the size of the 1D mesopores is observed. For instance, exchanging bulky dodecylammonium cations with small NH4 + cations leads to a substantial change in pore size, with differences ranging from 10 to 20 nm-a notably larger variation compared to previous reports on flexible porous materials. Importantly, the alteration of pore size induced by the exchange reaction is found to be reversible. This reversible alteration in pore size holds promise for applications in host-guest chemistry involving large moieties such as nanoparticles and enzymes.

6.
Small ; 20(17): e2307004, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38145347

RESUMO

Materials for Cs+ adsorption continue to be important for the treatment of various solutions. Metal-organic frameworks (MOFs) with large specific surface areas promise adsorption properties for various gases, vapors, and ions. However, the utilization of MOFs for alkali ion capture, specifically, Cs+ capture is still in its infancy. Herein, MOFs are hybridized with polyoxometalates (POMs) to study the effect of i) MOF type, ii) POM type, and iii) POM loading amounts on Cs+ capture. In particular, the composite of ZIF-8 and [α-PMo12O40]3- (PMo12/ZIF-8) adsorbed Cs+ ions effectively when compared to pristine ZIF-8. In addition, the reduction of Mo within the POM from MoVI to MoV by ascorbic acid during the Cs+ uptake process doubled the Cs+ uptake capacity of PMo12/ZIF-8. This observation can be attributed to the increased overall negative charge of the POM facilitating Cs+ uptake to compensate for the charge imbalance. Hybridization with other MOFs (MIL-101 and UiO-66) largely suppresses the Cs+ uptake, highlighting the importance of hydrophobicity in Cs+ capture. Furthermore, PMo12/ZIF-8 led to an outstanding Cs+ uptake (291.5 mg g-1) with high selectivity (79.6%) from quinary mixtures of alkali metal cations even among other representative porous materials (Prussian blue and zeolites).

7.
Small ; 20(23): e2310331, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38183369

RESUMO

The applications of nanoreactors in biology are becoming increasingly significant and prominent. Specifically, nanoreactors with spatially confined, due to their exquisite design that effectively limits the spatial range of biomolecules, attracted widespread attention. The main advantage of this structure is designed to improve reaction selectivity and efficiency by accumulating reactants and catalysts within the chambers, thus increasing the frequency of collisions between reactants. Herein, the recent progress in the synthesis of spatially confined nanoreactors and their biological applications is summarized, covering various kinds of nanoreactors, including porous inorganic materials, porous crystalline materials with organic components and self-assembled polymers to construct nanoreactors. These design principles underscore how precise reaction control could be achieved by adjusting the structure and composition of the nanoreactors to create spatial confined. Furthermore, various applications of spatially confined nanoreactors are demonstrated in the biological fields, such as biocatalysis, molecular detection, drug delivery, and cancer therapy. These applications showcase the potential prospects of spatially confined nanoreactors, offering robust guidance for future research and innovation.


Assuntos
Nanotecnologia , Nanotecnologia/métodos , Sistemas de Liberação de Medicamentos , Polímeros/química , Humanos , Porosidade
8.
Small ; 20(3): e2305759, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37700638

RESUMO

Metal-free carbon-based materials have gained recognition as potential electrocatalysts for the oxygen reduction reaction (ORR) in new environmentally-friendly electrochemical energy conversion technologies. The presence of effective active centers is crucial for achieving productive ORR. In this study, we present the synthesis of two metal-free dibenzo[a,c]phenazine-based covalent organic frameworks (DBP-COFs), specifically JUC-650 and JUC-651, which serve as ORR electrocatalysts. Among them, JUC-650 demonstrates exceptional catalytic performance for ORR in alkaline electrolytes, exhibiting an onset potential of 0.90 V versus RHE and a half-wave potential of 0.72 V versus RHE. Consequently, JUC-650 stands out as one of the most outstanding metal-free COF-based ORR electrocatalysts report to date. Experimental investigations and density functional theory calculations confirm that modulation of the frameworks' electronic configuration allows for the reduction of adsorption energy at the Schiff-base carbon active sites, leading to more efficient ORR processes. Moreover, the DBP-COFs can be assembled as excellent air cathode catalysts for zinc-air batteries (ZAB), rivaling the performance of commercial Pt/C. This study provides valuable insights for the development of efficient metal-free organoelectrocatalysts through precise regulation of active site strategies.

9.
Small ; : e2310316, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895965

RESUMO

Following the diverse structural characteristics and primary usage, diamond products include nano-polycrystalline diamond (NPD), micron-polycrystalline diamond (MPD), diamond film, porous diamond, and diamond wire drawing die. Among them, porous diamond possesses a distinctive combination of flexible surface functionality and a remarkably high surface area-to-volume ratio (SA/V) compared to traditional bulk materials, which contributes to cross-cutting applications in catalysis, adsorption, and electrochemistry while retaining the superior traits of diamond, particularly its exceptional chemical inertia. To avoid etching or microwave plasma chemical vapor deposition (MPCVD) techniques, this study proposes a high-temperature and high-pressure method based on a soluble skeleton (HPHT-ss) as an efficient and inexpensive approach for synthesizing millimeter-level porous diamonds. Interestingly, porous diamond synthesized by HPHT-ss exhibits multiscale pores distributed as macropores (average 75 µm) and mesopores (average 19 nm), which gives it a unique feature compared with other methods. Pertinent temperature-pressure conditions, HPHT-ss synthesis, and the formation mechanism of porous diamonds are also thoroughly discussed.

10.
Small ; 20(1): e2306209, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37641193

RESUMO

Nanogenerator (NG) is a potential technology that allows to build self-powered systems, sensors, flexible and portable electronics in the current Internet of Things (IoT) generation. Nanogenerators include piezoelectric nanogenerators (PENGs) and triboelectric nanogenerators (TENGs), convert different forms of mechanical motion into useful electrical signals. They have evolved and expanded their applications in various fields since their discovery in 2006 and 2012. Material selection is crucial for designing efficient NGs, with high conversion efficiencies. In the recent past, crystalline porous mat erials (metal-organic frameworks (MOFs) and covalent organic frameworks (COFs)) have been widely reported as potential candidates for nanogenerators, owing to their special properties of large surface area, porosity tailoring, ease of surface, post-synthesis modification, and chemical stability. The present organized review provides a complete overview of all the crystalline porous materials (CPMs)-based nanogenerator devices reported in the literature, including synthesis, characterization, device fabrication, and potential applications. Additionally, this review article discusses current challenges, future directions, and perspectives in the field of CPMs-NGs.

11.
Chemistry ; 30(37): e202400842, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38691421

RESUMO

Recent interest has surged in using heterogeneous carriers to boost synergistic photocatalysis for organic transformations. Heterogeneous catalysts not only facilitate synergistic enhancement of distinct catalytic centers compared to their homogeneous counterparts, but also allow for the easy recovery and reuse of catalysts. This mini-review summarizes recent advancements in developing heterogeneous carriers, including metal-organic frameworks, covalent-organic frameworks, porous organic polymers, and others, for synergistic catalytic reactions. The advantages of porous materials in heterogeneous catalysis originate from their ability to provide a high surface area, facilitate enhanced mass transport, offer a tunable chemical structure, ensure the stability of active species, and enable easy recovery and reuse of catalysts. Both photosensitizers and catalysts can be intricately incorporated into suitable porous carriers to create heterogeneous dual photocatalysts for organic transformations. Notably, experimental evidence from reported cases has shown that the catalytic efficacy of heterogeneous catalysts often surpasses that of their homogeneous analogues. This enhanced performance is attributed to the proximity and confinement effects provided by the porous nature of the carriers. It is expected that porous carriers will provide a versatile platform for integrating diverse catalysts, thus exhibiting superior performance across a range of organic transformations and appealing prospect for industrial applications.

12.
Chemistry ; 30(39): e202401407, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38699860

RESUMO

Semiochemicals can be used to manipulate insect behaviour for sustainable pest management strategies, but their high volatility is a major issue for their practical implementation. Inclusion of these molecules within porous materials is a potential solution to this issue, as it can allow for a slower and more controlled release. In this work, we demonstrate that a series of Zr(IV) and Al(III) metal-organic frameworks (MOFs) with channel-type pores enable controlled release of three semiochemicals over 100 days by pore size design, with the uptake and rate of release highly dependent on the pore size. Insight from grand canonical Monte Carlo simulations indicates that this is due to weaker MOF-guest interactions per guest molecule as the pore size increases. These MOFs are all stable post-release and can be reloaded to show near-identical re-release profiles. These results provide valuable insight on the diffusion behaviour of volatile guests in MOFs, and for the further development of porous materials for sustainable agriculture applications.

13.
Chemistry ; 30(14): e202303618, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38117667

RESUMO

Hydrogen-bonded organic frameworks (HOFs) are porous crystalline materials. The pores in HOFs are usually non-covalent extrinsic pores constructed through the formation of the framework. Supramolecular macrocycles with intrinsic pores in their structures are good candidates for constructing HOFs with intrinsic pores from the macrocycles themselves, thus leading to hierarchically porous structures. Combining the macrocycle and HOFs will endow these hierarchically porous materials with enhanced properties and special functionalities. This review summarizes recent advances in macrocycle-based HOFs, including the macrocycles used for constructing HOFs, the hierarchically porous structures of the HOFs, and the applications induced by the hierarchically HOFs porous structures. This review provides insights for future research on macrocycle-based hierarchically porous HOFs and the appropriate applications of the unique structures.

14.
Chemistry ; 30(11): e202303004, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38189555

RESUMO

Due to the high surface area and uniform porosity of covalent organic frameworks (COFs), they exhibit superior properties in capturing and detecting even trace amounts of gases in the air. However, the COFs materials that possess dual detected functionality are still less reported. Here, an imine-based COF containing thiophene as a donor and triazine as an acceptor to form spatial-distribution-defined D-A structures was prepared. D-A system between thiophene and triazine facilitates the charge transfer process during the protonation process of the imine and the triazine units. The obtained COF exhibits simultaneous sensing ability toward both acidic and alkaline vapors with obvious colorimetric sensing functionality.

15.
Chem Rec ; 24(6): e202400043, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38874111

RESUMO

Functionalized nanoporous heteropoly acids (HPAs) have garnered significant attention in recent years due to their enhanced surface area and porosity, as well as their potential for low-cost regeneration compared to bulk materials. This review aims to provide an overview of the recent advancements in the synthesis and applications of functionalized HPAs. We begin by introducing the fundamental properties of HPAs and their unique structure, followed by a comprehensive overview of the various approaches employed for the synthesis of functionalized HPAs, including salts, anchoring onto supports, and implementing mesoporous silica sieves. The potential applications of functionalized HPAs in various fields are also discussed, highlighting their boosted performance in a wide range of applications. Finally, we address the current challenges and present future prospects in the development of functionalized HPAs, particularly in the context of mesoporous HPAs. This review aims to provide a comprehensive summary of the recent progress in the field, highlighting the significant advancements made in the synthesis and applications of functionalized HPAs.

16.
Chem Rec ; 24(4): e202300352, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501854

RESUMO

Recently, carbon neutrality has been promoted as a potentially practical solution to global CO2 emissions and increasing energy-consumption challenges. Many attempts have been made to remove CO2 from the environment to address climate change and rising sea levels owing to anthropogenic CO2 emissions. Herein, membrane technology is proposed as a suitable solution for carbon neutrality. This review aims to comprehensively evaluate the currently available scientific research on membranes for carbon capture, focusing on innovative microporous material membranes used for CO2 separation and considering their material, chemical, and physical characteristics and permeability factors. Membranes from such materials comprise metal-organic frameworks, zeolites, silica, porous organic frameworks, and microporous polymers. The critical obstacles related to membrane design, growth, and CO2 capture and usage processes are summarized to establish novel membranes and strategies and accelerate their scaleup.

17.
Macromol Rapid Commun ; 45(10): e2300730, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38407503

RESUMO

Chemical sensing of harmful species released either from natural or anthropogenic activities is critical to ensuring human safety and health. Over the last decade, conjugated microporous polymers (CMPs) have been proven to be potential sensor materials with the possibility of realizing sensing devices for practical applications. CMPs found to be unique among other porous materials such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) due to their high chemical/thermal stability, high surface area, microporosity, efficient host-guest interactions with the analyte, efficient exciton migration along the π-conjugated chains, and tailorable structure to target specific analytes. Several CMP-based optical, electrochemical, colorimetric, and ratiometric sensors with excellent selectivity and sensing performance were reported. This review comprehensively discusses the advances in CMP chemical sensors (powders and thin films) in the detection of nitroaromatic explosives, chemical warfare agents, anions, metal ions, biomolecules, iodine, and volatile organic compounds (VOCs), with simultaneous delineation of design strategy principles guiding the selectivity and sensitivity of CMP. Preceding this, various photophysical mechanisms responsible for chemical sensing are discussed in detail for convenience. Finally, future challenges to be addressed in the field of CMP chemical sensors are discussed.


Assuntos
Polímeros , Polímeros/química , Porosidade , Estruturas Metalorgânicas/química , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Pós/química , Substâncias Explosivas/análise , Substâncias Explosivas/química , Substâncias para a Guerra Química/análise , Substâncias para a Guerra Química/química , Propriedades de Superfície
18.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34183394

RESUMO

Micro/nanoswimmers convert diverse energy sources into directional movement, demonstrating significant promise for biomedical and environmental applications, many of which involve complex, tortuous, or crowded environments. Here, we investigated the transport behavior of self-propelled catalytic Janus particles in a complex interconnected porous void space, where the rate-determining step involves the escape from a cavity and translocation through holes to adjacent cavities. Surprisingly, self-propelled nanoswimmers escaped from cavities more than 20× faster than passive (Brownian) particles, despite the fact that the mobility of nanoswimmers was less than 2× greater than that of passive particles in unconfined bulk liquid. Combining experimental measurements, Monte Carlo simulations, and theoretical calculations, we found that the escape of nanoswimmers was enhanced by nuanced secondary effects of self-propulsion which were amplified in confined environments. In particular, active escape was facilitated by anomalously rapid confined short-time mobility, highly efficient surface-mediated searching for holes, and the effective abolition of entropic and/or electrostatic barriers at the exit hole regions by propulsion forces. The latter mechanism converted the escape process from barrier-limited to search-limited. These findings provide general and important insights into micro/nanoswimmer mobility in complex environments.

19.
Bioprocess Biosyst Eng ; 47(4): 533-547, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485804

RESUMO

The calorific value of post-fermentation biogas is a way down below standard and quite low due to the presence of high amount level of carbon dioxide (CO2) biogas mixture. Therefore, it raises the need to process the biogas, separating it from CO2 in order to obtain high-purity biogas as well as to maximize its calorific value. One widely available material that can be used as a sustainable carbon capture adsorbent is silica extracted from bamboo leaves. However, so that silica can act as CO2 adsorber, it is necessary to modify the surface of silica with CTAB and APTES (3-aminopropyl triethoxysilane). In this study, 2-stage method was carried out, namely preparation of mesoporous silica and surface modification using APTES on the mesoporous silica. Experiments in synthesizing APTES-modified silica were obtained by varying its composition: CTAB (1.5-5%w), (HCl 1.5-5 N), and APTES (10-30%). A central composite design (CCD) was employed in exploring the interaction between all variables and also performed for the optimization. Through analysis of variance, it shows that optimum CO2 adsorption capacity reaches 47.02 mg g-1, by applying 4.98% of CTAB, 4.28 N of HCl and 10.08% of APTES. Pseudo-second-order kinetic and Redlich-Peterson isotherm models are more representative to show the adsorption behavior of CO2 into the modified silica. The results show that the modified silica with APTES shows a prospective application of silica for CO2 removal from biogas.


Assuntos
Biocombustíveis , Propilaminas , Silanos , Dióxido de Silício , Cetrimônio , Dióxido de Carbono
20.
Molecules ; 29(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38930782

RESUMO

Ethylene is a plant hormone regulator that stimulates chlorophyll loss and promotes softening and aging, resulting in a deterioration and reduction in the post-harvest life of fruit. Commercial activated carbons have been used as ethylene scavengers during the storage and transportation of a great variety of agricultural commodities. In this work, the effect of the incorporation of copper oxide over activated carbons obtained from baru waste was assessed. Samples were characterized by X-ray diffraction (XRD), N2 adsorption-desorption at -196 °C, field-emission scanning electron microscopy (FESEM) coupled with energy-dispersive X-ray spectroscopy (EDS), and infrared (IR) spectroscopy. The results showed that the amount of ethylene removed using activated carbon obtained from baru waste and impregnated with copper oxide (1667 µg g-1) was significantly increased in comparison to the raw activated carbon (1111 µg g-1). In addition, carbon impregnated with copper oxide exhibited better adsorption performance at a low ethylene concentration. Activated carbons produced from baru waste are promising candidates to be used as adsorbents in the elimination of ethylene during the storage and transportation of agricultural commodities at a lower cost.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa