Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 75(7): 1997-2012, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38064717

RESUMO

In this study, a chilli pepper (Capsicum annuum) panel for post-harvest carotenoid retention was studied to elucidate underlying mechanisms associated with this commercial trait of interest. Following drying and storage, some lines within the panel had an increase in carotenoids approaching 50% compared with the initial content at the fresh fruit stage. Other lines displayed a 25% loss of carotenoids. The quantitative determination of carotenoid pigments with concurrent cellular analysis indicated that in most cases, pepper fruit with thicker (up to 4-fold) lipid exocarp layers and smooth surfaces exhibit improved carotenoid retention properties. Total cutin monomer content increased in medium/high carotenoid retention fruits and subepidermal cutin deposits were responsible for the difference in exocarp thickness. Cutin biosynthesis and cuticle precursor transport genes were differentially expressed between medium/high and low carotenoid retention genotypes, and this supports the hypothesis that the fruit cuticle can contribute to carotenoid retention. Enzymatic degradation of the cuticle and cell wall suggests that in Capsicum the carotenoids (capsanthin and its esters) are embedded in the lipidic exocarp layer. This was not the case in tomato. Collectively, the data suggest that the fruit cuticle could provide an exploitable resource for the enhancement of fruit quality.


Assuntos
Capsicum , Capsicum/metabolismo , Frutas/metabolismo , Carotenoides/metabolismo
2.
Crit Rev Food Sci Nutr ; 63(19): 3574-3601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34766521

RESUMO

The consumption of small fruits has increased in recent years. Besides their appealing flavor, the commercial success of small fruits has been partially attributed to their high contents of phenolic compounds with multiple health benefits. The phenolic profiles and contents in small fruits vary based on the genetic background, climate, growing conditions, and post-harvest handling techniques. In this review, we critically compare the profiles and contents of phenolics such as anthocyanins, flavonols, flavan-3-ols, and phenolic acids that have been reported in bilberries, blackberries, blueberries, cranberries, black and red currants, raspberries, and strawberries during fruit development and post-harvest storage. This review offers researchers and breeders a general guideline for the improvement of phenolic composition in small fruits while considering the critical factors that affect berry phenolics from cultivation to harvest and to final consumption.


Assuntos
Antocianinas , Frutas , Frutas/química , Fenóis/análise , Flavonóis , Antioxidantes
3.
Mol Biol Rep ; 50(11): 9283-9294, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37812350

RESUMO

BACKGROUND: Deficiency of vitamin E results in several neurological and age-related disorders in humans. Utilization of maize mutants with favourable vte4-allele led to the development of several α-tocopherol (vitamin E) rich (16-19 µg/g) maize hybrids worldwide. However, the degradation of tocopherols during post-harvest storage substantially affects the efficacy of these genotypes. METHODS AND RESULTS: We studied the role of lipoxygenase enzyme and Lipoxygenase 3 (LOX3) gene on the degradation of tocopherols at monthly intervals under traditional storage up to six months in two vte4-based contrasting-tocopherol retention maize inbreds viz. HKI323-PVE and HKI193-1-PVE. The analysis revealed significant degradation of tocopherols across storage intervals in both the inbreds. Lower retention of α-tocopherol was noticed in HKI193-1-PVE. HKI323-PVE with the higher retention of α-tocopherol showed lower lipoxygenase activity throughout the storage intervals. LOX3 gene expression was higher (~ 1.5-fold) in HKI193-1-PVE compared to HKI323-PVE across the storage intervals. Both lipoxygenase activity and LOX3 expression peaked at 120 days after storage (DAS) in both genotypes. Further, a similar trend was observed for LOX3 expression and lipoxygenase activity. The α-tocopherol exhibited a significantly negative correlation with lipoxygenase enzyme and expression of LOX3 across the storage intervals. CONCLUSIONS: HKI323-PVE with high tocopherol retention, low -lipoxygenase activity, and -LOX3 gene expression can act as a potential donor in the vitamin E biofortification program. Protein-protein association network analysis also indicated the independent effect of vte4 and LOX genes. This is the first comprehensive report analyzing the expression of the LOX3 gene and deciphering its vital role in the retention of α-tocopherol in biofortified maize varieties under traditional storage.


Assuntos
Tocoferóis , alfa-Tocoferol , Humanos , Zea mays/genética , Vitamina E , Lipoxigenases
4.
Plant Mol Biol ; 104(4-5): 359-378, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32754876

RESUMO

KEY MESSAGE: An integrative comparative transcriptomic approach on six sugar beet varieties showing different amount of sucrose loss during storage revealed genotype-specific main driver genes and pathways characterizing storability. Sugar beet is next to sugar cane one of the most important sugar crops accounting for about 15% of the sucrose produced worldwide. Since its processing is increasingly centralized, storage of beet roots over an extended time has become necessary. Sucrose loss during storage is a major concern for the sugar industry because the accumulation of invert sugar and byproducts severely affect sucrose manufacturing. This loss is mainly due to ongoing respiration, but changes in cell wall composition and pathogen infestation also contribute. While some varieties can cope better during storage, the underlying molecular mechanisms are currently undiscovered. We applied integrative transcriptomics on six varieties exhibiting different levels of sucrose loss during storage. Already prior to storage, well storable varieties were characterized by a higher number of parenchyma cells, a smaller cell area, and a thinner periderm. Supporting these findings, transcriptomics identified changes in genes involved in cell wall modifications. After 13 weeks of storage, over 900 differentially expressed genes were detected between well and badly storable varieties, mainly in the category of defense response but also in carbohydrate metabolism and the phenylpropanoid pathway. These findings were confirmed by gene co-expression network analysis where hub genes were identified as main drivers of invert sugar accumulation and sucrose loss. Our data provide insight into transcriptional changes in sugar beet roots during storage resulting in the characterization of key pathways and hub genes that might be further used as markers to improve pathogen resistance and storage properties.


Assuntos
Beta vulgaris/genética , Beta vulgaris/metabolismo , Armazenamento de Alimentos , Proteínas de Plantas/genética , Beta vulgaris/anatomia & histologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Raízes de Plantas/anatomia & histologia , Sacarose/análise , Sacarose/metabolismo , Açúcares/análise , Açúcares/metabolismo
5.
J Sci Food Agric ; 99(5): 2579-2588, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30411360

RESUMO

BACKGROUND: Adverse air and soil temperatures are abiotic stresses that occur frequently and vary widely in duration and magnitude. Heat stress limits productivity of cool-weather crops such as potato (Solanum tuberosum) and may degrade crop quality. Stem-end chip defect is a localized discoloration of potato chips that adversely affects finished chip quality. The causes of stem-end chip defects are poorly understood. RESULTS: Chipping potatoes were grown under controlled environmental conditions to test the hypothesis that stem-end chip defect is caused by transient heat stress during the growing season. Heat stress periods with 35 °C days and 29 °C nights were imposed approximately 3 months after planting and lasted for 3, 7 or 14 days. At harvest and after 1, 2 and 3 months of storage at 13 °C, potato tubers were evaluated for glucose, fructose, sucrose and dry matter contents at the basal and apical ends. Chips were fried and rated for defects at the same sampling times. Differences in responses to heat stress were observed among four varieties of chipping potatoes. Heat stress periods of 7 and 14 days increased reducing sugar content in the tuber basal and apical ends, decreased dry matter content, and increased the severity of stem-end chip defects. CONCLUSION: Transient heat stress during the growing season decreased post-harvest chipping potato quality. Tuber reducing sugars and stem-end chip defects increased while dry matter content decreased. Planting varieties with tolerance to transient heat stress may be an effective way to mitigate these detrimental effects on chipping potato quality. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Carboidratos/química , Tubérculos/química , Solanum tuberosum/fisiologia , Animais , Culinária , Resposta ao Choque Térmico , Tubérculos/crescimento & desenvolvimento , Tubérculos/fisiologia , Controle de Qualidade , Lanches , Solanum tuberosum/química , Solanum tuberosum/crescimento & desenvolvimento
6.
J Dev Econ ; 135: 176-198, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31007346

RESUMO

We use panel data from a randomized controlled trial (RCT) administered among 1200 smallholders in Uganda to evaluate input use and food security impacts of an improved maize storage technology. After two seasons, households who received the technology were 10 percentage points more likely to plant hybrid maize varieties that are more susceptible to insect pests in storage than traditional lower-yielding varieties. Treated smallholders also stored maize for a longer period, reported a substantial drop in storage losses, and were less likely to use storage chemicals than untreated cohorts. Our results indicate that policies to promote soft kernel high-yielding hybrid maize varieties in sub-Saharan Africa should consider an improvement in post-harvest storage as a complementary intervention to increase adoption of these varieties.

7.
Food Microbiol ; 64: 56-64, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28213035

RESUMO

The aim of this work was to study the potential of diluted electro-activated solutions of weak organic acid salts (potassium acetate, potassium citrate and calcium lactate) to extend the shelf life of blueberries during post-harvest storage. The sanitizing capacity of these solutions was studied against pathogenic bacteria Listeria monocytogenes and E. coli O157:H7 as well as phytopathogenic fungi A. alternata, F. oxysporum and B. cinerea. The results showed that a 5-min treatment of inoculated blueberries with electro-activated solutions resulted in a 4 log CFU/g reduction in Listeria monocytogenes for all solutions. For E. coli O157:H7, the electro-activated potassium acetate and potassium citrate solutions achieved a decrease of 3.5 log CFU/g after 5 min of berry washing. The most important fungus reduction was found when blueberries were washed with an electro-activated solution of potassium acetate and a NaOCl solution. After 5 min of blueberry washing with an electro-activated potassium acetate solution, a very high reduction effect was observed for A. alternata, F. oxysporum and B. cinerea, which showed survival levels of only 2.2 ± 0.16, 0.34 ± 0.15 and 0.21 ± 0.16 log CFU/g, respectively. Regarding the effect of the washing on the organoleptic quality of blueberries, the obtained results showed no negative effect on the product color or textural profile. Finally, this work suggests that washing with electro-activated solutions of weak organic acid salts can be used to enhance the shelf-life of blueberries during post-harvest storage.


Assuntos
Mirtilos Azuis (Planta)/microbiologia , Ácidos Carboxílicos/farmacologia , Escherichia coli O157/efeitos dos fármacos , Qualidade dos Alimentos , Armazenamento de Alimentos/métodos , Fungos/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Mirtilos Azuis (Planta)/efeitos dos fármacos , Compostos de Cálcio/farmacologia , Ácidos Carboxílicos/química , Contagem de Colônia Microbiana , Desinfetantes/farmacologia , Microbiologia de Alimentos , Lactatos/farmacologia , Acetato de Potássio/farmacologia , Citrato de Potássio/farmacologia , Hipoclorito de Sódio
8.
Asian-Australas J Anim Sci ; 28(10): 1488-95, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26323405

RESUMO

This study was conducted to investigate the effects of post-harvest storage duration and wheat variety on the digestibility and energy content of new season wheat fed to finishing pigs. Two wheat varieties (Shi and Zhong) were harvested in 2013 and stored in the warehouse of the Fengning Pig Experimental Base at China Agricultural University for 3, 6, 9, or 12 mo. For each storage period, 12 barrows were placed in metabolism crates and allotted to diets containing 1 of the 2 wheat varieties in a randomized complete block design. The experimental diets contained 97.34% wheat and 2.66% of a vitamin and trace mineral premix. With an extension of storage duration from 3 mo to 12 mo, the gross energy (GE) and crude protein (CP) of the wheat decreased by 2.0% and 12.01%, respectively, while the concentration of neutral detergent fiber (NDF), acid detergent fiber (ADF) and starch content increased by 30.26%, 19.08%, and 2.46%, respectively. Total non-starch polysaccharide, total arabinose, total xylose and total mannose contents decreased by 46.27%, 45.80%, 41.71%, and 75.66%, respectively. However, there were no significant differences in the chemical composition between the two wheat varieties with the exception of ADF which was approximately 13.37% lower in Shi. With an extension of storage duration from 3 mo to 12 mo, the digestible energy (DE), metabolizable energy (ME) content and the apparent total tract digestibility of GE, CP, dry matter, organic matter, ether extract, ADF and metabolizability of energy in wheat decreased linearly (p<0.01) by 5.74%, 7.60%, 3.75%, 3.88%, 3.50%, 2.47%, 26.22%, 27.62%, and 3.94%, respectively. But the digestibility of NDF changed quadratically (p<0.01). There was an interaction between wheat variety and storage time for CP digestibility (p<0.05), such that the CP digestibility of variety Zhong was stable during 9 mo of storage, while the CP digestibility of variety Shi decreased (p<0.05). In conclusion, the GE, DE, and ME of wheat was stable during the first 3 to 6 mo of post-harvest storage, and decreased during the following 6 to 12 mo of storage under the conditions of this study.

9.
Ann Appl Biol ; 164(2): 286-300, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25540460

RESUMO

Free amino acids and reducing sugars participate in the Maillard reaction during high-temperature cooking and processing. This results not only in the formation of colour, aroma and flavour compounds, but also undesirable contaminants, including acrylamide, which forms when the amino acid that participates in the reaction is asparagine. In this study, tubers of 13 varieties of potato (Solanum tuberosum), which had been produced in a field trial in 2010 and sampled immediately after harvest or after storage for 6 months, were analysed to show the relationship between the concentrations of free asparagine, other free amino acids, sugars and acrylamide-forming potential. The varieties comprised five that are normally used for crisping, seven that are used for French fry production and one that is used for boiling. Acrylamide formation was measured in heated flour, and correlated with glucose and fructose concentration. In French fry varieties, which contain higher concentrations of sugars, acrylamide formation also correlated with free asparagine concentration, demonstrating the complex relationship between precursor concentration and acrylamide-forming potential in potato. Storage of the potatoes for 6 months at 9°C had a significant, variety-dependent impact on sugar and amino acid concentrations and acrylamide-forming potential.

10.
Food Chem ; 460(Pt 3): 140680, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39106756

RESUMO

Hard to cook is a textural defect that affects the nutritional quality of beans stored under adverse temperature and humidity conditions. This defect is related to intrinsic characteristics such as seed coat thickness, composition and microstructure. The aim of the present study was to evaluate the chemical and microstructural characteristics of common bean (Phaseolus vulgaris L.) during 270 days of post-harvest storage at 30 °C and 70% relative humidity. Microstructural analysis revealed alteration of the cotyledon cell wall and seed coat affecting seed viability and restricting seedling emergence. The seed coat thickness contraction from 105.79 µm to 97.35 µm (270 days). Changes are related with the protein bodies migration from cotyledons to seed coat. An increase in neutral detergent fiber and the presence of CaOx crystals were observed, which confer rigidity to the seed coat and affect water diffusion after 150 days causing permeability changes that contributed to seed hardening.


Assuntos
Armazenamento de Alimentos , Phaseolus , Sementes , Phaseolus/química , Phaseolus/crescimento & desenvolvimento , Sementes/química , Sementes/crescimento & desenvolvimento , Cotilédone/química , Cotilédone/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa