RESUMO
Infertility has become a global disease burden. Although assisted reproductive technologies are widely used, the assisted reproduction birth rate is no more than 30% worldwide. Therefore, understanding the mechanisms of reproduction can provide new strategies to improve live birth rates and clinical outcomes of enhanced implantation. Long noncoding RNAs (lncRNAs) have been reported to exert regulatory roles in various biological processes and diseases in many species. In this review, we especially focus on the role of lncRNAs in human reproduction. We summarize the function and mechanisms of lncRNAs in processes vital to reproduction, such as spermatogenesis and maturation, sperm motility and morphology, follicle development and maturation, embryo development and implantation. Then, we highlight the importance and diverse potential of lncRNAs as good diagnostic molecular biomarkers and therapeutic targets for infertility treatment.
Assuntos
Infertilidade , RNA Longo não Codificante , Humanos , Masculino , RNA Longo não Codificante/genética , Motilidade dos Espermatozoides , Reprodução/genética , Espermatogênese/genéticaRESUMO
Respiratory syncytial virus (RSV) is the most common pathogen causing acute lower respiratory tract infection in infants and children. Due to limited knowledge of the pathological and molecular mechanisms of immunodeficiency underlying RSV disease, there is currently a lack of an approved and effective RSV vaccine to combat RSV infections. This study aimed to identify genes associated with immune dysfunction using bioinformatics methods to gain insights into the role of dysregulated immune genes in RSV disease progression, and to predict potential therapeutic drugs by targeting dysregulated immune-related genes. 423 immune-related differential genes (DEIRGs) were filtered from the blood samples of 87 healthy individuals and 170 RSV patients. According to CIBERSORT analysis, the blood of RSV patients showed increased infiltration of various immune cells. Subsequently, ten immune-related hub genes were screened via Protein-Protein Interaction Networks. Six signature immune-related genes (RPS2, RPS5, RPS13, RPS14, RPS18, and RPS4X) as candidate characteristic genes for the diagnostic model were identified by Lasso regression. The AUC value of the ROC curve of the six signature genes was 0.884. This result, intriguingly, suggested that all six immune-related genes with a good internal validation effect were ribosome family genes. Finally, through molecular docking analyses targeting these differential immune genes, ADO and fluperlapine were found to have high stable binding to major proteins of important immune-related genes in nine drug-protein interactions. Overall, the present study screened immune-related genes that are dysregulated in the development of RSV disease to investigate the pathogenesis of RSV infection from the standpoint of immune disorders. Unexpectedly, bioinformatics analysis revealed that ribosome family genes may be involved in the immune dysregulation of RSV disease, and these genes as targets formed the basis for potential drug modification candidates in RSV disease.
RESUMO
INTRODUCTION: Lung cancer is one of the most malignant cancers and the leading cause of cancer-related deaths worldwide, while acquired chemoresistance would represent a major problem in the treatment of non-small cell lung cancer (NSCLC) because of the reduced treatment effect and increased rates of recurrence. METHODS: To establish the chemoresistant NSCLC cells, doxorubicin was treated to A549 cells over 3 months at gradually increasing concentrations from 0.03 to 0.5 µM. Real-time PCR and Western blotting were employed for investigating mRNA and protein expression of the glutathione peroxidase (GPX) protein family and multidrug resistance protein 1 (MRP1) in A549 and A549/CR cells. We also employed gas chromatography mass-spectrometry and nano electrospray ionization mass-spectrometry coupled with multivariate statistical analysis to characterize the unique metabolic and lipidomic profiles of chemoresistant NSCLC cells in order to identify potential therapeutic targets. RESULTS: Reactive oxygen species levels were decreased, and mRNA and protein levels of GPX2 and multidrug resistance protein 1 (MRP1) were increased in A549/CR. We identified 87 metabolites and intact lipid species in A549 and A549/CR. Among these metabolites, lactic acid, glutamic acid, glycine, proline, aspartic acid, succinic acid, and ceramide, alongside the PC to PE ratio, and arachidonic acid-containing phospholipids were suggested as characteristic features of chemoresistant NSCLC cells (A549/CR). CONCLUSIONS: This study reveals characteristic feature differences between drug-resistance NSCLC cells and their parental cells. We suggest potential therapeutic targets in chemoresistant NSCLC. Our results provide new insight into metabolic and lipidomic alterations in chemoresistant NSCLC. This could be used as fundamental information to develop therapeutic strategies for the treatment of chemoresistant NSCLC patients.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Lipidômica , MetabolômicaRESUMO
The objective of this study is to analyze the differential protein expression profile in cerebral cortex of rats with middle cerebral ischemia/reperfusion (MCAO/R), explore the brain damage mechanism of MCAO/R at protein level, and provide experimental foundation for searching specific marker proteins of MCAO/R. Rat model of MCAO/R was established by modified suture-occluded method, and the model was evaluated by the results of brain 2,3,5-triphenyltetrazolium chloride (TTC) and hematoxylin-eosin (HE) staining. Cerebral cortex of rats from sham-operated group (Sham) and MCAO/R groups was used for FASP enzymatic hydrolysis, i-TRAQ quantitative labeling, and reverse-phase liquid chromatography purification and separation. Orbitrap Q Exactive mass spectrometry was used for qualitative and quantitative analyses of total differential protein expression profiles. MCAO/R rats had obvious cerebral infarction lesions, and the relative surface area of cerebral infarction was significantly different compared with sham rats, suggesting that MCAO/R rat model was successfully prepared. There were 199 significant difference proteins (MCAO/R vs Sham, p < 0.05, |fold change|> 1.2), including 104 up-regulated proteins and 95 down-regulated proteins. Gene ontology (GO) enrichment analysis showed that the up-regulated proteins were mainly concentrated in the biological processes of positive regulation of NF-κB transcription and I-κB kinase-NF-κB, etc. Down-regulated proteins were mainly concentrated in long-term synaptic potentiation, cellular response to DNA damage stimulus, etc. KEGG pathway analysis showed that the pathway involved in differential proteins includes oxidative phosphorylation, metabolic pathway, and Ras signaling pathway. Network analysis of differential proteins showed that Alb, ndufb5, ndufs7, ApoB, Cdc42, Ndufa3, Igf1r, P4hb, Mbp, Gc, Nme1, Akt2, and other proteins may play an important role in regulating oxidative stress, apoptosis, and inflammatory response in MCAO/R. Quantitative proteomics based on i-TRAQ labeling reveals the effect of inflammation and apoptosis in brain damage mechanism of MCAO/R. Besides, this research provide some experimental foundation for search and determination of potential therapeutic targets of MCAO/R.
Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Animais , Encéfalo , Córtex Cerebral , Infarto da Artéria Cerebral Média , Proteômica , Ratos , ReperfusãoRESUMO
BACKGROUND: Keratinocytes and fibroblasts represent the major cell types in the epidermis and dermis of the skin and play a significant role in maintenance of skin homeostasis. However, the biological characteristics of keratinocytes and fibroblasts remain to be elucidated. The purpose of this study was to compare the gene expression pattern between keratinocytes and fibroblasts and to explore novel biomarker genes so as to provide potential therapeutic targets for skin-related diseases such as burns, wounds, and aging. METHODS: Skin keratinocytes and fibroblasts were isolated from newborn mice. To fully understand the heterogeneity of gene expression between keratinocytes and fibroblasts, differentially expressed genes (DEGs) between the two cell types were detected by RNA-seq technology. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the known genes of keratinocytes and fibroblasts and verify the RNA-seq results. RESULTS: Transcriptomic data showed a total of 4309 DEGs (fold-change > 1.5 and q-value < 0.05). Among them, 2197 genes were highly expressed in fibroblasts and included 10 genes encoding collagen, 16 genes encoding transcription factors, and 14 genes encoding growth factors. Simultaneously, 2112 genes were highly expressed in keratinocytes and included 7 genes encoding collagen, 14 genes encoding transcription factors, and 8 genes encoding growth factors. Furthermore, we summarized 279 genes specifically expressed in keratinocytes and 33 genes specifically expressed in fibroblasts, which may represent distinct molecular signatures of each cell type. Additionally, we observed some novel specific biomarkers for fibroblasts such as Plac8 (placenta-specific 8), Agtr2 (angiotensin II receptor, type 2), Serping1 (serpin peptidase inhibitor, clade G, member 1), Ly6c1 (lymphocyte antigen 6 complex, locus C1), Dpt (dermatopontin), and some novel specific biomarkers for keratinocytes such as Ly6a (lymphocyte antigen 6 complex, locus A) and Lce3c (late cornified envelope 3C), Ccer2 (coiled-coil glutamate-rich protein 2), Col18a1 (collagen, type XVIII, alpha 1) and Col17a1 (collagen type XVII, alpha 1). In summary, these data provided novel identifying biomarkers for two cell types, which can provide a resource of DEGs for further investigations.
Assuntos
Biomarcadores/metabolismo , Fibroblastos/metabolismo , Queratinócitos/metabolismo , Dermatopatias/metabolismo , Pele/metabolismo , Animais , Autoantígenos/metabolismo , Células Cultivadas , Masculino , Camundongos , Colágenos não Fibrilares/metabolismo , Análise de Sequência de RNA/métodos , Colágeno Tipo XVIIRESUMO
Long noncoding RNAs (lncRNAs) are composed of nucleotides located in the nucleus and cytoplasm; these are transcribed by RNA polymerase II and are greater than 200 nt in length. LncRNAs fulfill important functions in a variety of biological processes, including genome imprinting, cell differentiation, apoptosis, stem cell pluripotency, X chromosome inactivation and nuclear transport. As high throughput sequencing technology develops, a substantial number of lncRNAs have been found to be related to a variety of biological processes, such as development of the testes, maintaining the self-renewal and differentiation of spermatogonial stem cells, and regulating spermatocyte meiosis. These indicate that lncRNAs can be used as biomarkers and potential therapeutic targets for male infertility. However, only a few comprehensive reviews have described the role of lncRNAs in male reproduction. In this paper, we summarize recent findings relating to the role of lncRNAs in spermatogenesis, their potential as biomarkers for male infertility and the relationship between reproductive arrest and transgenerational effects. Finally, we suggest specific targets for the treatment of male infertility from the perspective of lncRNAs.
Assuntos
Infertilidade Masculina/genética , RNA Longo não Codificante/genética , Espermatogênese , Animais , Proliferação de Células , Humanos , Infertilidade Masculina/patologia , Infertilidade Masculina/terapia , Masculino , Meiose , RNA Longo não Codificante/análise , Espermatócitos/citologia , Espermatócitos/metabolismo , Espermatócitos/patologiaRESUMO
UNLABELLED: : Advances in DNA and RNA sequencing revealed substantially greater genomic complexity in breast cancer than simple models of a few driver mutations would suggest. Only very few, recurrent mutations or copy-number variations in cancer-causing genes have been identified. The two most common alterations in breast cancer are TP53 (affecting the majority of triple-negative breast cancers) and PIK3CA (affecting almost half of estrogen receptor-positive cancers) mutations, followed by a long tail of individually rare mutations affecting <1%-20% of cases. Each cancer harbors from a few dozen to a few hundred potentially high-functional impact somatic variants, along with a much larger number of potentially high-functional impact germline variants. It is likely that it is the combined effect of all genomic variations that drives the clinical behavior of a given cancer. Furthermore, entirely new classes of oncogenic events are being discovered in the noncoding areas of the genome and in noncoding RNA species driven by errors in RNA editing. In light of this complexity, it is not unexpected that, with the exception of HER2 amplification, no robust molecular predictors of benefit from targeted therapies have been identified. In this review, we summarize the current genomic portrait of breast cancer, focusing on genetic aberrations that are actively being targeted with investigational drugs. IMPLICATIONS FOR PRACTICE: Next-generation sequencing is now widely available in the clinic, but interpretation of the results is challenging, and its impact on treatment selection is often limited. This work provides an overview of frequently encountered molecular abnormalities in breast cancer and discusses their potential therapeutic implications. This review emphasizes the importance of administering investigational targeted therapies, or off-label use of approved targeted drugs, in the context of a formal clinical trial or registry programs to facilitate learning about the clinical utility of tumor target profiling.
Assuntos
Biomarcadores Tumorais/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias de Mama Triplo Negativas/genética , Variações do Número de Cópias de DNA/genética , Feminino , Predisposição Genética para Doença , Humanos , Terapia de Alvo Molecular , Mutação , Receptor ErbB-2/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia , Proteína Supressora de Tumor p53/genéticaRESUMO
Ischemic stroke is a significant cause of morbidity and mortality worldwide. Autophagy, a process of intracellular degradation, has been shown to play a crucial role in the pathogenesis of ischemic stroke. Long non-coding RNAs (lncRNAs) have emerged as essential regulators of autophagy in various diseases, including ischemic stroke. Recent studies have identified several lncRNAs that modulate autophagy in ischemic stroke, including MALAT1, MIAT, SNHG12, H19, AC136007. 2, C2dat2, MEG3, KCNQ1OT1, SNHG3, and RMRP. These lncRNAs regulate autophagy by interacting with key proteins involved in the autophagic process, such as Beclin-1, ATG7, and LC3. Understanding the role of lncRNAs in regulating autophagy in ischemic stroke may provide new insights into the pathogenesis of this disease and identify potential therapeutic targets for its treatment.
Assuntos
Autofagia , AVC Isquêmico , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Autofagia/fisiologia , Humanos , AVC Isquêmico/genética , AVC Isquêmico/metabolismo , AnimaisRESUMO
The Golgi apparatus plays a crucial role in mediating the modification, transport, and sorting of intracellular proteins and lipids. The morphological changes occurring in the Golgi apparatus are exceptionally important for maintaining its function. When exposed to external pressure or environmental stimulation, the Golgi apparatus undergoes adaptive changes in both structure and function, which are known as Golgi stress. Although certain signal pathway responses or post-translational modifications have been observed following Golgi stress, further research is needed to comprehensively summarize and understand the related mechanisms. Currently, there is evidence linking Golgi stress to neurodegenerative diseases; however, the role of Golgi stress in the progression of neurodegenerative diseases such as Alzheimer's disease remains largely unexplored. This review focuses on the structural and functional alterations of the Golgi apparatus during stress, elucidating potential mechanisms underlying the involvement of Golgi stress in regulating immunity, autophagy, and metabolic processes. Additionally, it highlights the pivotal role of Golgi stress as an early signaling event implicated in the pathogenesis and progression of neurodegenerative diseases. Furthermore, this study summarizes prospective targets that can be therapeutically exploited to mitigate neurodegenerative diseases by targeting Golgi stress. These findings provide a theoretical foundation for identifying novel breakthroughs in preventing and treating neurodegenerative diseases.
Assuntos
Complexo de Golgi , Doenças Neurodegenerativas , Humanos , Complexo de Golgi/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Animais , Transdução de Sinais , Autofagia/fisiologia , Estresse Fisiológico/fisiologiaRESUMO
Alopecia has emerged as a global concern, extending beyond the middle-aged and elderly population and increasingly affecting younger individuals. Despite its growing prevalence, the treatment options and effective drugs for alopecia remain limited due to the incomplete understanding of its underlying mechanisms. Therefore, it is urgent to explore the pathogenesis of alopecia and discover novel and safer therapeutic agents. This review provided an overview of the prevailing clinical disorders of alopecia, and the key pathways and targets involved in hair growth process. Additionally, it discusses FDA-approved drugs and clinical candidates for the treatment of alopecia, and explores small molecule compounds with anti-alopecia potential in the drug discovery phase. These endeavors are expected to provide researchers with valuable scientific insights and practical information for anti-alopecia drug discovery.
Assuntos
Alopecia , Bibliotecas de Moléculas Pequenas , Alopecia/tratamento farmacológico , Humanos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Descoberta de Drogas , Estrutura MolecularRESUMO
Our research aimed to identify new therapeutic targets for Lung adenocarcinoma (LUAD), a major subtype of non-small cell lung cancer known for its low 5-year survival rate of 22%. By employing a comprehensive methodological approach, we analyzed bulk RNA sequencing data from 513 LUAD and 59 non-tumorous tissues, identifying 2,688 differentially expressed genes. Using Mendelian randomization (MR), we identified 74 genes with strong evidence for a causal effect on risk of LUAD. Survival analysis on these genes revealed significant differences in survival rates for 13 of them. Our pathway enrichment analysis highlighted their roles in immune response and cell communication, deepening our understanding. We also utilized single-cell RNA sequencing (scRNA-seq) to uncover cell type-specific gene expression patterns within LUAD, emphasizing the tumor microenvironment's heterogeneity. Pseudotime analysis further assisted in assessing the heterogeneity of tumor cell populations. Additionally, protein-protein interaction (PPI) network analysis was conducted to evaluate the potential druggability of these identified genes. The culmination of our efforts led to the identification of five genes (tier 1) with the most compelling evidence, including SECISBP2L, PRCD, SMAD9, C2orf91, and HSD17B13, and eight genes (tier 2) with convincing evidence for their potential as therapeutic targets.
RESUMO
Long non-coding RNA has attracted the interest of researchers as a relevant factor that can influence human cancers. As an oncogene and suppressor gene, it has numerous pathways and is closely related to the pathophysiology of human diseases. Meanwhile, it may become a novel treatment option and target for tumor treatment. CRNDE is the gene symbol for Colorectal Neoplasia Differentially Expressed (non-protein-coding) since it was found to be considerably higher in colorectal cancer when it was first discovered. It's transcribed from human chromosome 16. Many studies have shown that it is intimately linked to the etiology of many tumors and malignancies. According to the paper, the biological function and pathophysiological mechanism of CRNDE in tumors have been studied extensively in recent years. PubMed served as an essential platform for conducting literature searches and related analyses. CRNDE, a long non-coding RNA closely related to tumors, was highly expressed in many tumor cells. There were various underlying mechanisms affecting the progression of CRNDE-regulated tumorigenesis, including hepatocellular carcinoma, gastric cancer, prostate carcinoma, oral squamous cell carcinoma, breast cancer, thyroid cancer, myeloma, leukemia, melanoma, colorectal cancer, glioblastoma, osteosarcoma, cervical cancer, intrahepatic cholangiocarcinoma, nonsmall cell lung cancer, hepatoblastoma cell tumor, abdominal aortic aneurysm, nasopharyngeal carcinoma, bladder cancer, Wilms tumor, medulloblastoma, pancreatic cancer, gallbladder cancer, ovarian cancer, and renal cell carcinoma. CRNDE is involved in the processes of proliferation, migration, invasion, and inhibition of apoptosis of various cancer cells.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Colorretais , Neoplasias Hepáticas , Neoplasias Pulmonares , MicroRNAs , Neoplasias Bucais , RNA Longo não Codificante , Masculino , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , RNA Longo não Codificante/genética , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Neoplasias Pulmonares/patologia , Neoplasias Bucais/genética , Neoplasias Hepáticas/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismoRESUMO
Objective: To explore the effective components and mechanism of Polygonati Rhizoma (PR) in the treatment of osteoporosis (OP) based on network pharmacology and molecular docking methods. Methods: The effective components and predicted targets of PR were obtained through the Traditional Chinese Medicine Systems Pharmacology and Analysis Platform (TCMSP) database. The disease database was used to screen the disease targets of OP. The obtained key targets were uploaded to the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database for protein-protein interaction (PPI) network analysis. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of key targets. Analysis and docking verification of chemical effective drug components and key targets were performed with IGEMDOCK software. Results: A total of 12 chemically active components, 84 drug target proteins and 84 common targets related to drugs and OP were obtained. Key targets such as JUN, TP53, AKT1, ESR1, MAPK14, AR and CASP3 were identified through PPI network analysis. The results of enrichment analysis showed that the potential core drug components regulate the HIF-1 signaling pathway, PI3K-Akt signaling pathway, estrogen signaling pathway and other pathways by intervening in biological processes such as cell proliferation and apoptosis and estrogen response regulation, with an anti-OP pharmacological role. The results of molecular docking showed that the key targets in the regulatory network have high binding activity to related active components. Conclusions: PR may regulate OP by regulating core target genes, such as JUN, TP53, AKT1, ESR1, AR and CASP3, and acting on multiple key pathways, such as the HIF-1 signaling pathway, PI3K-Akt signaling pathway, and estrogen signaling pathway.
Assuntos
Medicamentos de Ervas Chinesas , Osteoporose , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Osteoporose/tratamento farmacológico , Osteoporose/genética , Fosfatidilinositol 3-QuinasesRESUMO
Background: Diminished ovarian reserve (DOR) significantly increases the risk of female infertility and contributes to reproductive technology failure. Recently, the role of melatonin in improving ovarian reserve (OR) has attracted widespread attention. However, details on the pharmacological targets and mechanisms of melatonin-improved OR remain unclear. Objective: A systems pharmacology strategy was proposed to elucidate the potential therapeutic mechanism of melatonin on DOR at the molecular, pathway, and network levels. Methods: The systems pharmacological approach consisted of target identification, data integration, network construction, bioinformatics analysis, and molecular docking. Results: From the molecular perspective, 26 potential therapeutic targets were identified. They participate in biological processes related to DOR development, such as reproductive structure development, epithelial cell proliferation, extrinsic apoptotic signaling pathway, PI3K signaling, among others. Eight hub targets (MAPK1, AKT1, EGFR, HRAS, SRC, ESR1, AR, and ALB) were identified. From the pathway level, 17 significant pathways, including the PI3K-Akt signaling pathway and the estrogen signaling pathway, were identified. In addition, the 17 signaling pathways interacted with the 26 potential therapeutic targets to form 4 functional modules. From the network point of view, by regulating five target subnetworks (aging, cell growth and death, development and regeneration, endocrine and immune systems), melatonin could exhibit anti-aging, anti-apoptosis, endocrine, and immune system regulation effects. The molecular docking results showed that melatonin bound well to all hub targets. Conclusion: This study systematically and intuitively illustrated the possible pharmacological mechanisms of OR improvement by melatonin through anti-aging, anti-apoptosis, endocrine, and immune system regulation effects.
Assuntos
Regulação da Expressão Gênica , Infertilidade Feminina/tratamento farmacológico , Melatonina/metabolismo , Reserva Ovariana/efeitos dos fármacos , Apoptose , Proliferação de Células , Biologia Computacional , Bases de Dados de Proteínas , Sistema Endócrino , Feminino , Humanos , Sistema Imunitário , Ligantes , Melatonina/farmacologia , Simulação de Acoplamento Molecular , Farmacologia em Rede , Reserva Ovariana/fisiologia , Fosfatidilinositol 3-Quinases/farmacologia , Mapeamento de Interação de Proteínas , Transdução de SinaisRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerging respiratory virus with high morbidity, which was named coronavirus disease 2019 (COVID-19) by World Health Organization (WHO). COVID-19 has triggered a series of threats to global public health. Even worse, new cases of COVID-19 infection are still increasing rapidly. Therefore, it is imperative that various effective vaccines and drugs should be developed to prevent and treat COVID-19 and reduce the serious impact on human beings. For this purpose, detailed information about the pathogenesis of COVID-19 at the cellular and molecular levels is urgently needed. In this review, we summarized the current understanding on gene structure, protein function, and pathogenic mechanisms of SARS-CoV-2. Based on the above, we refined the correlations among gene structure, protein function, and pathogenic mechanisms of SARS-CoV-2. Importantly, we further discussed potential therapeutic targets, aiming to accelerate the advanced design and development of vaccines and therapeutic drugs against COVID-19.
RESUMO
Ovarian carcinomas have the poorest prognosis and the highest mortality among gynecological malignancies. Neoadjuvant chemotherapy (NACT) is considered as a novel therapeutic strategy and an alternative treatment for advanced epithelial ovarian cancer (AEOC). The aim of the present study was to identify the core genes related to platinumbased NACT resistance in AEOC and to allow screening at the molecular level for the most appropriate ovarian cancer patients for NACT. We obtained three drugresistant microarrays GSE114206, GSE41499 and GSE33482 from the Gene Expression Omnibus (GEO) database as well as a microarray representing NACT, GSE109934. Bioinformatics analysis revealed the nature of the four potential candidate genes for using in functional enrichment analyses and interaction network construction. The potential associations and possible genetic alterations among the DEGs were summarized using the STRING database in Cytoscape and the cBioPortal visualization tool, respectively. A total of 63 genes were identified as DEGs from GSE109934 representing NACT. From the drugresistant GSE114206 and GSE41499 datasets, 106 DEGs containing 36 upregulated genes and 70 downregulated genes were selected, and from the drugresistant GSE114206 and GSE33482 datasets, 406 DEGs with 157 upregulated genes and 249 downregulated genes were selected. The 36 upregulated DEGs and the 70 downregulated genes were notably abundant in the different categories. In KEGG pathway analysis, the 157 upregulated genes and the 249 downregulated genes were concentrated in distinctive signaling pathways. Four potential genes associated with NACT and platinumbased chemoresistance were screened, including nuclear factor of activated Tcells, cytoplasmic 1 (NAFTc1), Kruppellike factor 4 (KLF4), nuclear receptor subfamily 4 group A member 3 (NR4A3) and hepatocyte growth factor (HGF). Our study showed that the mRNA expression levels of NAFTc1, NR4A3 and HGF were increased in drugresistant OC cell lines (all P<0.01), whereas the mRNA expression levels of KLF4 were notably lower in the SKOV3CDDP and HeyA8CDDP cell line (all P<0.01) but higher in the A2780CBP cell line. The NAFTc1, KLF4, NR4A3 and HGF genes may be potential therapeutic targets for NACT and platinumbased chemoresistance factors as well as candidate biomarkers in AEOC. Determination of the expression levels of these four genes in tumor tissues before planning NACT treatment or initial surgery would be beneficial for AEOC patients.
Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Carcinoma Epitelial do Ovário/terapia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Ovarianas/terapia , Idoso , Antineoplásicos/uso terapêutico , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/mortalidade , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Quimioterapia Adjuvante/métodos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Biologia Computacional , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Fator 4 Semelhante a Kruppel , Pessoa de Meia-Idade , Terapia Neoadjuvante/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Intervalo Livre de Progressão , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas/genéticaRESUMO
The heavy impact of obesity on both the population general health and the economy makes clarifying the underlying mechanisms, identifying pharmacological targets, and developing efficient therapies for obesity of high importance. The main struggle facing obesity research is that the underlying mechanistic pathways are yet to be fully revealed. This limits both our understanding of pathogenesis and therapeutic progress toward treating the obesity epidemic. The current anti-obesity approaches are mainly a controlled diet and exercise which could have limitations. For instance, the "classical" anti-obesity approach of exercise might not be practical for patients suffering from disabilities that prevent them from routine exercise. Therefore, therapeutic alternatives are urgently required. Within this context, pharmacological agents could be relatively efficient in association to an adequate diet that remains the most efficient approach in such situation. Herein, we put a spotlight on potential therapeutic targets for obesity identified following differential genes expression-based studies aiming to find genes that are differentially expressed under diverse conditions depending on physical activity and diet (mainly high-fat), two key factors influencing obesity development and prognosis. Such functional genomics approaches contribute to elucidate the molecular mechanisms that both control obesity development and switch the genetic, biochemical, and metabolic pathways toward a specific energy balance phenotype. It is important to clarify that by "gene-related pathways", we refer to genes, the corresponding proteins and their potential receptors, the enzymes and molecules within both the cells in the intercellular space, that are related to the activation, the regulation, or the inactivation of the gene or its corresponding protein or pathways. We believe that this emerging area of functional genomics-related exploration will not only lead to novel mechanisms but also new applications and implications along with a new generation of treatments for obesity and the related metabolic disorders especially with the modern advances in pharmacological drug targeting and functional genomics techniques.
Assuntos
Dieta Hiperlipídica , Metabolismo Energético/genética , Exercício Físico , Obesidade/genética , Animais , Homeostase , Humanos , Obesidade/metabolismo , Obesidade/prevenção & controleRESUMO
BACKGROUND: Chinese medicine Toujie Quwen granule (TJQW) has proven to be effective in the treatment of mild coronavirus disease 2019 (COVID-19) cases by relieving symptoms, slowing the progression of the disease, and boosting the recovery of patients. But the bioactive compounds and potential mechanisms of TJQW for COVID-19 prevention and treatment are unclear. This study aimed to explore the potential therapeutic mechanism of TJQW in coronavirus disease 2019 (COVID-19) based on an integrated network pharmacology approach. METHODS: TCMSP were used to search and screen the active ingredients in TJQW. The Swiss TargetPrediction was used to predict the potential targets of active ingredients. Genes co-expressed with ACE2 were considered potential therapeutic targets on COVID-19. Venn diagram was created to show correlative targets of TJQW against COVID-19. Cytoscape was used to construct a "drug-active ingredient-potential target" network, STRING were used to construct protein-protein interaction network, and cytoHubba performed network topology analysis. Enrichment of biological functions and signaling pathways of core targets was performed by using the clusterProfiler package in R software and ClueGO with CluePedia plugins in Cytoscape. RESULTS: A total of 156 active ingredients were obtained through oral bioavailability and drug-likeness screenings. Two hundred twenty-seven potential targets of TJQW were related to COVID-19. The top ten core targets are EGFR, CASP3, STAT3, ESR1, FPR2, F2, BCL2L1, BDKRB2, MPO, and ACE. Based on that, we obtained 19 key active ingredients: umbelliprenin, quercetin, kaempferol, luteolin, praeruptorin E, stigmasterol, and oroxylin A. And the enrichment analysis obtained multiple related gene ontology functions and signaling pathways. Lastly, we constructed a key network of "drug-component-target-biological process-signaling pathway". Our findings suggested that TJQW treatment for COVID-19 was associated with elevation of immunity and suppression of inflammatory stress, including regulation of inflammatory response, viral process, neutrophil mediated immunity, PI3K-Akt signaling pathway, MAPK signaling pathway, Jak-STAT signaling pathway, Complement and coagulation cascades, and HIF-1 signaling pathway. CONCLUSIONS: Our study uncovered the pharmacological mechanism underlying TJQW treatment for COVID-19. These results should benefit efforts for people around the world to gain more knowledge about Chinese medicine TJQW in the treatment of this vicious epidemic COVID-19, and help to address this pressing problem currently facing the world.
RESUMO
Pancreatic cancer is one of the most aggressive malignancies, accounting for more than 45,750 deaths annually in the U.S. alone. The aggressive nature and late diagnosis of pancreatic cancer, coupled with the limitations of existing chemotherapy, present the pressing need for the development of novel therapeutic strategies. Recent reports have demonstrated a critical role of microRNAs (miRNAs) in the initiation, progression, and metastasis of cancer. Furthermore, aberrant expressions of miRNAs have often been associated with the cause and consequence of pancreatic cancer, emphasizing the possible use of miRNAs in the effective management of pancreatic cancer patients. In this review, we provide a brief overview of miRNA biogenesis and its role in fundamental cellular process and miRNA studies in pancreatic cancer patients and animal models. Subsequent sections narrate the role of miRNA in, (i) cell cycle and proliferation; (ii) apoptosis; (iii) invasions and metastasis; and (iv) various cellular signaling pathways. We also describe the role of miRNA's in pancreatic cancer; (i) diagnosis; (ii) prognosis and (iii) therapeutic intervention. Conclusion section describes the gist of review with future directions.
Assuntos
MicroRNAs/genética , Neoplasias Pancreáticas/genética , Terapêutica com RNAi/métodos , Animais , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/terapiaRESUMO
: Obesity is one of the main risk factors for type 2 diabetes mellitus (T2DM). It is closely related to metabolic disturbances in the adipose tissue that primarily functions as a fat reservoir. For this reason, adipose tissue is considered as the primary site for initiation and aggravation of obesity and T2DM. As a key endocrine organ, the adipose tissue communicates with other organs, such as the brain, liver, muscle, and pancreas, for the maintenance of energy homeostasis. Two different types of adipose tissues-the white adipose tissue (WAT) and brown adipose tissue (BAT)-secrete bioactive peptides and proteins, known as "adipokines" and "batokines," respectively. Some of them have beneficial anti-inflammatory effects, while others have harmful inflammatory effects. Recently, "exosomal microRNAs (miRNAs)" were identified as novel adipokines, as adipose tissue-derived exosomal miRNAs can affect other organs. In the present review, we discuss the role of adipose-derived secretory factors-adipokines, batokines, and exosomal miRNA-in obesity and T2DM. It will provide new insights into the pathophysiological mechanisms involved in disturbances of adipose-derived factors and will support the development of adipose-derived factors as potential therapeutic targets for obesity and T2DM.