RESUMO
Ecological differentiation among diverging species is an important component of the evolutionary process and can be investigated in rapid and recent radiations. Here, we use whole genome sequences of five species from the genus Leopardus, a recently diversified Neotropical lineage with species bearing distinctive morphological, ecological, and behavioral features, to investigate genome-wide diversity, comparative demographic history and signatures of positive selection. Our results show that divergent ecological strategies are reflected in genomic features, for example a generalist species shows historically larger effective population size and higher heterozygosity than habitat specialists. The demographic history of these cats seems to have been jointly driven by climate fluctuations and habitat specialization, with different ecological adaptations leading to distinct trajectories. Finally, a gene involved in vertebrate retinal neurogenesis (POU4F2) was found to be under positive selection in the margay, a cat with notoriously large eyes that are likely associated with its nocturnal and arboreal specializations.
Assuntos
Ecossistema , Genoma , Evolução Biológica , Genômica , Filogenia , Densidade DemográficaRESUMO
Visual evoked potential (VEP) is commonly used to evaluate visual acuity in both clinical and basic studies. Subdermal needle electrodes or skull pre-implanted screw electrodes are usually used to record VEP in rodents. However, the VEP amplitudes recorded by the former are small while the latter may damage the brain. In this study, we established a new invasive procedure for VEP recording, and made a series of comparisons of VEP parameters recorded from different electrode locations, different times of day (day and night) and bilateral eyes, to evaluate the influence of these factors on VEP in mice. Our data reveal that our invasive method is reliable and can record VEP with good waveforms and large amplitudes. The comparison data show that VEP is greatly influenced by active electrode locations and difference between day and night. In C57 or CD1 ONC (optic nerve crush) models and Brn3bAP/AP mice, which are featured by loss of retinal ganglion cells (RGCs), amplitudes of VEP N1 and P1 waves are drastically reduced. The newly established VEP procedure is very reliable and stable, and is particularly useful for detecting losses of RGC quantities, functions or connections to the brain. Our analyses of various recording conditions also provide useful references for future studies.
Assuntos
Potenciais Evocados Visuais , Oftalmopatias , Animais , Camundongos , Nervo Óptico , Células Ganglionares da Retina , Acuidade VisualRESUMO
As a POU homeodomain transcription factor, POU4F2 has been implicated in regulating tumorigenic processes in various cancers. However, the role of POU4F2 in colorectal cancer (CRC) remains unclear. Here, we revealed that POU4F2 functions as a tumor promotor in CRC. Bioinformatics analysis in specimens from CRC patients and expression analysis in CRC cell lines showed that POU4F2 was upregulated at the mRNA and protein levels in CRC. Depletion of POU4F2 suppressed the metastatic phenotypes of CRC cells, including cell migration, invasion, and the expression of epithelial-mesenchymal transition (EMT) markers. Moreover, depletion of POU4F2 decreased the number of lung metastatic nodes in nude mice. Mechanistically, POU4F2 positively regulated the Hedgehog signaling pathway, as inferred from the downregulation of the expression of sonic Hedgehog homolog, patched 1, Smoothened, and GLI family zinc finger 1 in vitro and vivo following silencing of POU4F2. Furthermore, the SMO agonist SAG reversed the effects of POU4F2 knockdown in CRC. Functionally, POU4F2 contributed to the Hedgehog signaling-regulated activation of the EMT process and promotion of CRC cell migration and invasion. Collectively, these findings elucidated the role of POU4F2 as a tumor promotor in CRC through the regulation of Hedgehog signaling-mediated EMT and suggested that POU4F2 suppression might be a promising therapeutic target in inhibiting CRC metastasis.
Assuntos
Movimento Celular , Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Proteínas Hedgehog/metabolismo , Invasividade Neoplásica , Fator de Transcrição Brn-3B/fisiologia , Animais , Linhagem Celular Tumoral , Colo/metabolismo , Colo/patologia , Neoplasias Colorretais/patologia , Cicloexilaminas/farmacologia , Regulação para Baixo , Inativação Gênica , Humanos , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia de Alvo Molecular , Receptor Patched-1/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Receptor Smoothened/agonistas , Receptor Smoothened/metabolismo , Tiofenos/farmacologia , Fator de Transcrição Brn-3B/antagonistas & inibidores , Fator de Transcrição Brn-3B/genética , Fator de Transcrição Brn-3B/metabolismo , Regulação para Cima , Dedos de ZincoRESUMO
A variety of visual cues can trigger defensive reactions in mice and other species. In mice, looming stimuli that mimic an approaching aerial predator elicit flight or freezing reactions, while sweeping stimuli that mimic an aerial predator flying parallel to the ground typically elicit freezing. The retinal ganglion cell (RGC) types involved in these circuits are largely unknown. We previously discovered that loss of RGC subpopulations in Brn3b knockout mice results in distinct visual response deficits. Here, we report that retinal or global loss of Brn3b selectively ablates the fleeing response to looming stimuli while leaving the freeze response intact. In contrast, freezing responses to sweeping stimuli are significantly affected. Genetic manipulations removing three RGC subpopulations (Brn3a+ betta RGCs, Opn4+Brn3b+, and Brn3c+Brn3b+ RGCs) result in milder phenocopies of Brn3b knockout response deficits. These findings show that flight and freezing responses to distinct visual cues are mediated by circuits that can already be separated at the level of the retina, potentially by enlisting dedicated RGC types.NEW & NOTEWORTHY Flight and freezing response choices evoked by visual stimuli are controlled by brain stem and thalamic circuits. Genetically modified mice with loss of specific retinal ganglion cell (RGC) subpopulations have altered flight versus freezing choices in response to some but not other visual stimuli. This finding suggests that "threatening" visual stimuli may be computed already at the level of the retina and communicated via dedicated pathways (RGCs) to the brain.
Assuntos
Aprendizagem da Esquiva/fisiologia , Células Ganglionares da Retina/fisiologia , Percepção Visual/fisiologia , Animais , Comportamento Animal , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição Brn-3B/genética , Fator de Transcrição Brn-3B/fisiologiaRESUMO
Visual information is conveyed from the eye to the brain by distinct types of retinal ganglion cells (RGCs). It is largely unknown how RGCs acquire their defining morphological and physiological features and connect to upstream and downstream synaptic partners. The three Brn3/Pou4f transcription factors (TFs) participate in a combinatorial code for RGC type specification, but their exact molecular roles are still unclear. We use deep sequencing to define (i) transcriptomes of Brn3a- and/or Brn3b-positive RGCs, (ii) Brn3a- and/or Brn3b-dependent RGC transcripts, and (iii) transcriptomes of retinorecipient areas of the brain at developmental stages relevant for axon guidance, dendrite formation, and synaptogenesis. We reveal a combinatorial code of TFs, cell surface molecules, and determinants of neuronal morphology that is differentially expressed in specific RGC populations and selectively regulated by Brn3a and/or Brn3b. This comprehensive molecular code provides a basis for understanding neuronal cell type specification in RGCs.
Assuntos
Encéfalo/metabolismo , Proteínas de Membrana/metabolismo , Células Ganglionares da Retina/metabolismo , Fator de Transcrição Brn-3/metabolismo , Animais , Orientação de Axônios , Encéfalo/embriologia , Comunicação Celular , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos , Células Ganglionares da Retina/citologia , TranscriptomaRESUMO
During animal locomotion or position adjustments, the visual system uses image stabilization reflexes to compensate for global shifts in the visual scene. These reflexes elicit compensatory head movements (optomotor response, OMR) in unrestrained animals or compensatory eye movements (optokinetic response, OKR) in head-fixed or unrestrained animals exposed to globally rotating striped patterns. In mice, OMR are relatively easy to observe and find broad use in the rapid evaluation of visual function. OKR determinations are more involved experimentally but yield more stereotypical, easily quantifiable results. The relative contributions of head and eye movements to image stabilization in mice have not been investigated. We are using newly developed software and apparatus to accurately quantitate mouse head movements during OMR, quantitate eye movements during OKR, and determine eye movements in freely behaving mice. We provide the first direct comparison of OMR and OKR gains (head or eye velocity/stimulus velocity) and find that the two reflexes have comparable dependencies on stimulus luminance, contrast, spatial frequency, and velocity. OMR and OKR are similarly affected in genetically modified mice with defects in retinal ganglion cells (RGC) compared with wild-type, suggesting they are driven by the same sensory input (RGC type). OKR eye movements have much higher gains than the OMR head movements, but neither can fully compensate global visual shifts. However, combined eye and head movements can be detected in unrestrained mice performing OMR, suggesting they can cooperate to achieve image stabilization, as previously described for other species.NEW & NOTEWORTHY We provide the first quantitation of head gain during optomotor response in mice and show that optomotor and optokinetic responses have similar psychometric curves. Head gains are far smaller than eye gains. Unrestrained mice combine head and eye movements to respond to visual stimuli, and both monocular and binocular fields are used during optokinetic responses. Mouse OMR and OKR movements are heterogeneous under optimal and suboptimal stimulation and are affected in mice lacking ON direction-selective retinal ganglion cells.
Assuntos
Movimentos Oculares , Movimentos da Cabeça , Reflexo , Percepção Visual , Animais , Feminino , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Células Ganglionares da Retina/fisiologia , SoftwareRESUMO
Pou4f2 acts as a key node in the comprehensive and step-wise gene regulatory network (GRN) and regulates the development of retinal ganglion cells (RGCs). Accordingly, deletion of Pou4f2 results in RGC axon defects and apoptosis. To investigate the GRN involved in RGC regeneration, we generated a mouse line with a POU4F2-green fluorescent protein (GFP) fusion protein expressed in RGCs. Co-localization of POU4F2 and GFP in the retina and brain of Pou4f2-GFP/+ heterozygote mice was confirmed using immunofluorescence analysis. Compared with those in wild-type mice, the expression patterns of POU4F2 and POU4F1 and the co-expression patterns of ISL1 and POU4F2 were unaffected in Pou4f2-GFP/GFP homozygote mice. Moreover, the quantification of RGCs showed no significant difference between Pou4f2-GFP/GFP homozygote and wild-type mice. These results demonstrated that the development of RGCs in Pou4f2-GFP/GFP homozygote mice was the same as in wild-type mice. Thus, the present Pou4f2-GFP knock-in mouse line is a useful tool for further studies on the differentiation and regeneration of RGCs.
Assuntos
Redes Reguladoras de Genes/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Homeodomínio/genética , Células Ganglionares da Retina/metabolismo , Fator de Transcrição Brn-3B/genética , Animais , Axônios/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Introdução de Genes , Proteínas de Homeodomínio/biossíntese , Camundongos , Retina/crescimento & desenvolvimento , Retina/metabolismo , Fator de Transcrição Brn-3B/biossínteseRESUMO
The POU4F2/Brn-3b transcription factor has been identified as a potentially novel regulator of key metabolic processes. Loss of this protein in Brn-3b knockout (KO) mice causes profound hyperglycemia and insulin resistance (IR), normally associated with type 2 diabetes (T2D), whereas Brn-3b is reduced in tissues taken from obese mice fed on high-fat diets (HFD), which also develop hyperglycemia and IR. Furthermore, studies in C2C12 myocytes show that Brn-3b mRNA and proteins are induced by glucose but inhibited by insulin, suggesting that this protein is itself highly regulated in responsive cells. Analysis of differential gene expression in skeletal muscle from Brn-3b KO mice showed changes in genes that are implicated in T2D such as increased glycogen synthase kinase-3ß and reduced GLUT4 glucose transporter. The GLUT4 gene promoter contains multiple Brn-3b binding sites and is directly transactivated by this transcription factor in cotransfection assays, whereas chromatin immunoprecipitation assays confirm that Brn-3b binds to this promoter in vivo. In addition, correlation between GLUT4 and Brn-3b in KO tissues or in C2C12 cells strongly supports a close association between Brn-3b levels and GLUT4 expression. Since Brn-3b is regulated by metabolites and insulin, this may provide a mechanism for controlling key genes that are required for normal metabolic processes in insulin-responsive tissues and its loss may contribute to abnormal glucose uptake.
Assuntos
Diabetes Mellitus Tipo 2/genética , Proteínas de Homeodomínio/genética , Hiperglicemia/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , RNA Mensageiro/metabolismo , Fator de Transcrição Brn-3B/genética , Animais , Peso Corporal/genética , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ácido Glucárico/farmacologia , Intolerância à Glucose/genética , Teste de Tolerância a Glucose , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Proteínas de Homeodomínio/efeitos dos fármacos , Proteínas de Homeodomínio/metabolismo , Immunoblotting , Insulina/farmacologia , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/efeitos dos fármacos , Mutação , RNA Mensageiro/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição Brn-3B/efeitos dos fármacos , Fator de Transcrição Brn-3B/metabolismoRESUMO
Pou domain transcription factor Pou4f2 is essential for the development of retinal ganglion cells (RGCs) in the vertebrate retina. A distant orthologue of Pou4f2 exists in the genome of the sea urchin (class Echinoidea) Strongylocentrotus purpuratus (SpPou4f1/2), yet the photosensory structure of sea urchins is strikingly different from that of the mammalian retina. Sea urchins have no obvious eyes, but have photoreceptors clustered around their tube feet disc. The mechanisms that are associated with the development and function of photoreception in sea urchins are largely unexplored. As an initial approach to better understand the sea urchin photosensory structure and relate it to the mammalian retina, we asked whether SpPou4f1/2 could support RGC development in the absence of Pou4f2. To answer this question, we replaced genomic Pou4f2 with an SpPou4f1/2 cDNA. In Pou4f2-null mice, retinas expressing SpPou4f1/2 were outwardly identical to those of wild-type mice. SpPou4f1/2 retinas exhibited dark-adapted electroretinogram scotopic threshold responses, indicating functionally active RGCs. During retinal development, SpPou4f1/2 activated RGC-specific genes and in S. purpuratus, SpPou4f2 was expressed in photoreceptor cells of tube feet in a pattern distinct from Opsin4 and Pax6. Our results suggest that SpPou4f1/2 and Pou4f2 share conserved components of a gene network for photosensory development and they maintain their conserved intrinsic functions despite vast morphological differences in mouse and sea urchin photosensory structures.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Camundongos/genética , Células Ganglionares da Retina/metabolismo , Strongylocentrotus purpuratus/genética , Fator de Transcrição Brn-3B/genética , Animais , Embrião de Mamíferos/embriologia , Embrião não Mamífero/embriologia , Proteínas de Homeodomínio/metabolismo , Camundongos/crescimento & desenvolvimento , Camundongos/metabolismo , Células Ganglionares da Retina/citologia , Strongylocentrotus purpuratus/metabolismo , Fator de Transcrição Brn-3B/metabolismoRESUMO
BACKGROUND: Despite the disease relevance, understanding of human retinal development lags behind that of other species. We compared the kinetics of gene silencing or induction during ganglion cell development in human and murine retina. RESULTS: Induction of POU4F2 (BRN3B) marks ganglion cell commitment, and we detected this factor in S-phase progenitors that had already silenced Cyclin D1 and VSX2 (CHX10). This feature was conserved in human and mouse retina, and the fraction of Pou4f2+ murine progenitors labeled with a 30 min pulse of BrdU matched the fraction of ganglion cells predicted to be born in a half-hour period. Additional analysis of 18 markers revealed many with conserved kinetics, such as the POU4F2 pattern above, as well as the surprising maintenance of "cell cycle" proteins KI67, PCNA, and MCM6 well after terminal mitosis. However, four proteins (TUBB3, MTAP1B, UCHL1, and RBFOX3) showed considerably delayed induction in human relative to mouse retina, and two proteins (ISL1, CALB2) showed opposite kinetics, appearing on either side of terminal mitosis depending on the species. CONCLUSION: With some notable exceptions, human and murine ganglion cell differentiation show similar kinetics, and the data add weight to prior studies supporting the existence of biased ganglion cell progenitors.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Proteínas do Olho/metabolismo , Células Ganglionares da Retina/metabolismo , Células-Tronco/metabolismo , Animais , Humanos , Camundongos , Células Ganglionares da Retina/citologia , Células-Tronco/citologiaRESUMO
AIMS: Colon cancer poses a major threat to human health and a heavy burden on the national economy. As a member of the SOX transcription factor family, SRY-box transcription factor 21 (SOX21) is associated with various cancers, but its mechanism of action in colon cancer remains unclear. This study focused on the molecular mechanisms of transcription factor SOX21 in proliferation and metastasis of colon cancer cells. MAIN METHODS: We analyzed SOX21 expression level and its impact on survival in colon cancer patients by bioinformatics analysis. We used public databases for gene correlation, GSEA enrichment analysis. Cell function experiments (colony formation assay, wound healing assay, Transwell migration and invasion assay) were utilized to determine the impact of SOX21 silencing and over-expression on cell proliferation and metastasis. The luciferase reporter assay, CUT&RUN-qPCR assay and Methylation Specific PCR were used to explore SOX21-POU class 4 homeobox 2 (POU4F2) molecular interactions. The molecular mechanisms were verified by Quantitative real-time PCR and Western blot analysis. KEY FINDINGS: SOX21 is highly expressed and affects the overall survival of colon cancer patients. SOX21 can attenuates POU4F2 methylation state by binding with it. In addition, this interaction facilitate its transcriptional activation of Hedgehog pathway, mediates epithelial-mesenchymal transition (EMT), consequently promoting the proliferation and metastasis of colon cancer cells. SIGNIFICANCE: Our study reveals that SOX21 is an oncogenic molecule and suggests its regulatory role in colon carcinogenesis and progression, providing new insights into the treatment of this disease.
Assuntos
Proliferação de Células , Neoplasias do Colo , Transição Epitelial-Mesenquimal , Proteínas Hedgehog , Transdução de Sinais , Humanos , Transição Epitelial-Mesenquimal/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Metástase Neoplásica , Movimento Celular , Fatores de Transcrição SOXB2/metabolismo , Fatores de Transcrição SOXB2/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/genéticaRESUMO
Human pluripotent stem cells (PSCs) represent a powerful tool to investigate human eye development and disease. When grown in 3D, they can self-assemble into laminar organized retinas; however, variation in the size, shape and composition of individual organoids exists. Neither the microenvironment nor the timing of critical growth factors driving retinogenesis are fully understood. To explore early retinal development, we developed a SIX6-GFP reporter that enabled the systematic optimization of conditions that promote optic vesicle formation. We demonstrated that early hypoxic growth conditions enhanced SIX6 expression and promoted eye formation. SIX6 expression was further enhanced by sequential inhibition of Wnt and activation of sonic hedgehog signaling. SIX6 + optic vesicles showed RNA expression profiles that were consistent with a retinal identity; however, ventral diencephalic markers were also present. To demonstrate that optic vesicles lead to bona fide "retina-like" structures we generated a SIX6-GFP/POU4F2-tdTomato dual reporter line that labeled the entire developing retina and retinal ganglion cells, respectively. Additional brain regions, including the hypothalamus and midbrain-hindbrain (MBHB) territories were identified by harvesting SIX6 + /POU4F2- and SIX6- organoids, respectively. Using RNAseq to study transcriptional profiles we demonstrated that SIX6-GFP and POU4F2-tdTomato reporters provided a reliable readout for developing human retina, hypothalamus, and midbrain/hindbrain organoids.
RESUMO
BACKGROUND: Normal-tension glaucoma (NTG) that occurs despite normal intraocular pressure has genetic predisposition. Since retinal ganglion cells (RGCs) are a key node in pathogenesis of glaucoma, neurodegeneration of RGCs is thought to be the main cause increasing the risk of NTG development. Here, we aimed to investigate the association of polymorphisms in RGC development genes with NTG development. MATERIALS AND METHODS: We performed a case-control association study of 435 patients with NTG and 419 normal controls. We genotyped four single nucleotide polymorphisms (SNPs) in genes responsible for RGC development, namely POU4F2 (rs13152799 and rs1504360), POU4F1 (rs9601092), and ISL1 (rs2288468), by either real-time PCR or PCR-RFLP, and evaluated its association with the risk of NTG development. RESULTS: No significant association was observed between the candidate SNPs and NTG development. CONCLUSIONS: To the best of our knowledge, this is the first report exploring the association between genes regulating RGC development and NTG susceptibility. Our data could provide a reference for further researches that focus on finding additional potential SNPs of POU4F2, POU4F1, ISL1 or other RGC development genes for NTG.
Assuntos
Predisposição Genética para Doença , Proteínas com Homeodomínio LIM/genética , Glaucoma de Baixa Tensão/patologia , Polimorfismo de Nucleotídeo Único , Fator de Transcrição Brn-3A/genética , Fator de Transcrição Brn-3B/genética , Fatores de Transcrição/genética , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Glaucoma de Baixa Tensão/epidemiologia , Glaucoma de Baixa Tensão/genética , Masculino , Pessoa de Meia-Idade , República da Coreia/epidemiologia , Fatores de RiscoRESUMO
Mutation of FOXC1 causes Axenfeld-Rieger Syndrome (ARS) with early onset or congenital glaucoma. We assessed retinal ganglion cell (RGC) number in zebrafish due to CRISPR-mediated mutation and antisense inhibition of two-forkhead box transcription factors, foxc1a and foxc1b. These genes represent duplicated homologues of human FOXC1. Using a CRISPR induced null mutation in foxc1b, in combination with antisense inhibition of foxc1a, we demonstrate reduced cell number in the retinal ganglion cell layer of developing zebrafish eyes. As early as 5â¯days post fertilization (dpf), fewer RGCs are found in foxc1b homozygous mutants injected with foxc1a morpholinos, and a thinner optic nerve results. Our data illustrates that foxc1 is required for the expression of atonal homolog 7 (atoh7), a gene that is necessary for RGC differentiation. As markers of differentiated RGCs (pou4f2) are downregulated in foxc1b-/- mutants injected with foxc1a morpholinos and no cell death is observed, our results are consistent with defects in the differentiation of RGCs leading to reduced cell number, as opposed to increased cell death of RGCs or off targets effects of morpholino injection. Our zebrafish model demonstrates that aberrant regulation of RGC number could act in concert with other known glaucoma risk factors to influence the development of congenital and early onset glaucoma due to FOXC1 mutation.
Assuntos
Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Mutação , Nervo Óptico/embriologia , Células Ganglionares da Retina/patologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Axônios/patologia , Contagem de Células , Morte Celular , Diferenciação Celular , Proteínas de Ligação a DNA/genética , Embrião não Mamífero , Inativação Gênica/efeitos dos fármacos , Glaucoma/embriologia , Glaucoma/genética , Hibridização In Situ , Morfolinos/farmacologia , Reação em Cadeia da Polimerase , TransfecçãoRESUMO
The development of drug resistance following treatment with chemotherapeutic agents such as cisplatin (cis) and paclitaxel (pax) contributes to high morbidity and mortality in ovarian cancers. However, the molecular mechanisms underlying such changes are not well understood. In this study, we demonstrate that the Brn-3b transcription factor was increased in different ovarian cancer cells including SKOV3 and A2780 following treatment with cis and pax. Furthermore, sustained increases in Brn-3b were associated with survival in drug resistant cells and correlated with elevated HSP27 expression. In contrast, targeting Brn-3b for reduction using short interfering RNA (siRNA) also resulted in attenuated HSP27 expression. Importantly, blocking Brn-3b expression with siRNA in SKOV3 cells was associated with reduced cell numbers at baseline but also increased cell death after further treatment, indicating sensitization of cells. Similar results were obtained in the metastatic IP1 cell line derived from ascites of mice bearing SKOV3 tumours. These findings suggest that increased Brn-3b may confer resistance to chemotherapeutic drugs in ovarian cancer cells by regulating key target genes such as HSP27 and that targeting Brn-3b may provide a novel mechanism for treatment of drug resistant ovarian cancers.