Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445360

RESUMO

Multi-factorial mitochondrial damage exhibits a "vicious circle" that leads to a progression of mitochondrial dysfunction and multi-organ adverse effects. Mitochondrial impairments (mitochondriopathies) are associated with severe pathologies including but not restricted to cancers, cardiovascular diseases, and neurodegeneration. However, the type and level of cascading pathologies are highly individual. Consequently, patient stratification, risk assessment, and mitigating measures are instrumental for cost-effective individualized protection. Therefore, the paradigm shift from reactive to predictive, preventive, and personalized medicine (3PM) is unavoidable in advanced healthcare. Flavonoids demonstrate evident antioxidant and scavenging activity are of great therapeutic utility against mitochondrial damage and cascading pathologies. In the context of 3PM, this review focuses on preclinical and clinical research data evaluating the efficacy of flavonoids as a potent protector against mitochondriopathies and associated pathologies.


Assuntos
Flavonoides/uso terapêutico , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/prevenção & controle , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Citoproteção/efeitos dos fármacos , Flavonoides/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Medicina de Precisão/métodos , Prognóstico
2.
EPMA J ; 15(2): 321-343, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38841626

RESUMO

Background: Cancer cell growth, metastasis, and drug resistance are major challenges in treating liver hepatocellular carcinoma (LIHC). However, the lack of comprehensive and reliable models hamper the effectiveness of the predictive, preventive, and personalized medicine (PPPM/3PM) strategy in managing LIHC. Methods: Leveraging seven distinct patterns of mitochondrial cell death (MCD), we conducted a multi-omic screening of MCD-related genes. A novel machine learning framework was developed, integrating 10 machine learning algorithms with 67 different combinations to establish a consensus mitochondrial cell death index (MCDI). This index underwent rigorous evaluation across training, validation, and in-house clinical cohorts. A comprehensive multi-omics analysis encompassing bulk, single-cell, and spatial transcriptomics was employed to achieve a deeper insight into the constructed signature. The response of risk subgroups to immunotherapy and targeted therapy was evaluated and validated. RT-qPCR, western blotting, and immunohistochemical staining were utilized for findings validation. Results: Nine critical differentially expressed MCD-related genes were identified in LIHC. A consensus MCDI was constructed based on a 67-combination machine learning computational framework, demonstrating outstanding performance in predicting prognosis and clinical translation. MCDI correlated with immune infiltration, Tumor Immune Dysfunction and Exclusion (TIDE) score and sorafenib sensitivity. Findings were validated experimentally. Moreover, we identified PAK1IP1 as the most important gene for predicting LIHC prognosis and validated its potential as an indicator of prognosis and sorafenib response in our in-house clinical cohorts. Conclusion: This study developed a novel predictive model for LIHC, namely MCDI. Incorporating MCDI into the PPPM framework will enhance clinical decision-making processes and optimize individualized treatment strategies for LIHC patients. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-024-00362-8.

3.
EPMA J ; 15(1): 135-148, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38463621

RESUMO

Multidisciplinary team from three universities based in the "Centro" Region of Portugal developed diverse approaches as parts of a project dedicated to enhancing and expanding Predictive, Preventive, and Personalized Medicine (3PM) in the Region. In a sense, outcomes acted as a proof-of-concept, in that they demonstrated the feasibility, but also the relevance of the approaches. The accomplishments comprise defining a new regional strategy for implementing 3PM within the Region, training of human resources in genomic sequencing, and generating good practices handbooks dedicated to diagnostic testing via next-generation sequencing, to legal and ethical concerns, and to knowledge transfer and entrepreneurship, aimed at increasing literacy on 3PM approaches. Further approaches also included support for entrepreneurship development and start-ups, and diverse and relevant initiatives aimed at increasing literacy relevant to 3PM. Efforts to enhance literacy encompassed citizens across the board, from patients and high school students to health professionals and health students. This focus on empowerment through literacy involved a variety of initiatives, including the creation of an illustrated book on genomics and the production of two theater plays centered on genetics. Additionally, authors stressed that genomic tools are relevant, but they are not the only resources 3PM is based on. Thus, they defend that other initiatives intended to enable citizens to take 3PM should include multi-omics and, having in mind the socio-economic burden of chronic diseases, suboptimal health status approaches in the 3PM framework should also be considered, in order to anticipate medical intervention in the subclinical phase. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-024-00353-9.

4.
EPMA J ; 15(1): 53-66, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38463627

RESUMO

Background/aims: The reciprocal promotion of cancer and stroke occurs due to changes in shared risk factors, such as metabolic pathways and molecular targets, creating a "vicious cycle." Cancer plays a direct or indirect role in the pathogenesis of ischemic stroke (IS), along with the reactive medical approach used in the treatment and clinical management of IS patients, resulting in clinical challenges associated with occult cancer in these patients. The lack of reliable and simple tools hinders the effectiveness of the predictive, preventive, and personalized medicine (PPPM/3PM) approach. Therefore, we conducted a multicenter study that focused on multiparametric analysis to facilitate early diagnosis of occult cancer and personalized treatment for stroke associated with cancer. Methods: Admission routine clinical examination indicators of IS patients were retrospectively collated from the electronic medical records. The training dataset comprised 136 IS patients with concurrent cancer, matched at a 1:1 ratio with a control group. The risk of occult cancer in IS patients was assessed through logistic regression and five alternative machine-learning models. Subsequently, select the model with the highest predictive efficacy to create a nomogram, which is a quantitative tool for predicting diagnosis in clinical practice. Internal validation employed a ten-fold cross-validation, while external validation involved 239 IS patients from six centers. Validation encompassed receiver operating characteristic (ROC) curves, calibration curves, decision curve analysis (DCA), and comparison with models from prior research. Results: The ultimate prediction model was based on logistic regression and incorporated the following variables: regions of ischemic lesions, multiple vascular territories, hypertension, D-dimer, fibrinogen (FIB), and hemoglobin (Hb). The area under the ROC curve (AUC) for the nomogram was 0.871 in the training dataset and 0.834 in the external test dataset. Both calibration curves and DCA underscored the nomogram's strong performance. Conclusions: The nomogram enables early occult cancer diagnosis in hospitalized IS patients and helps to accurately identify the cause of IS, while the promotion of IS stratification makes personalized treatment feasible. The online nomogram based on routine clinical examination indicators of IS patients offered a cost-effective platform for secondary care in the framework of PPPM. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-024-00354-8.

5.
EPMA J ; 15(2): 405-413, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38841618

RESUMO

In times where sudden-onset disasters (SODs) present challenges to global health systems, the integration of predictive, preventive, and personalized medicine (PPPM / 3PM) into emergency medical responses has manifested as a critical necessity. We introduce a modern electronic patient record system designed specifically for emergency medical teams (EMTs), which will serve as a novel approach in how digital healthcare management can be optimized in crisis situations. This research is based on the principle that advanced information technology (IT) systems are key to transforming humanitarian aid by offering predictive insights, preventive strategies, and personalized care in disaster scenarios. We aim to address the critical gaps in current emergency medical response strategies, particularly in the context of SODs. Building upon a collaborative effort with European emergency medical teams, we have developed a comprehensive and scalable electronic patient record system. It not only enhances patient management during emergencies but also enables predictive analytics to anticipate patient needs, preventive guidelines to reduce the impact of potential health threats, and personalized treatment plans for the individual needs of patients. Furthermore, our study examines the possibilities of adopting PPPM-oriented IT solutions in disaster relief. By integrating predictive models for patient triage, preventive measures to mitigate health risks, and personalized care protocols, potential improvements to patient health or work efficiency could be established. This system was evaluated with clinical experts and shall be used to establish digital solutions and new forms of assistance for humanitarian aid in the future. In conclusion, to really achieve PPPM-related efforts more investment will need to be put into research and development of electronic patient records as the foundation as well as into the clinical processes along all pathways of stakeholders in disaster medicine.

6.
EPMA J ; 15(2): 375-404, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38841623

RESUMO

Background: DNA methylation is an important mechanism in epigenetics, which can change the transcription ability of genes and is closely related to the pathogenesis of ovarian cancer (OC). We hypothesize that DNA methylation is significantly different in OCs compared to controls. Specific DNA methylation status can be used as a biomarker of OC, and targeted drugs targeting these methylation patterns and DNA methyltransferase may have better therapeutic effects. Studying the key DNA methylation sites of immune-related genes (IRGs) in OC patients and studying the effects of these methylation sites on the immune microenvironment may provide a new method for further exploring the pathogenesis of OC, realizing early detection and effective monitoring of OC, identifying effective biomarkers of DNA methylation subtypes and drug targets, improving the efficacy of targeted drugs or overcoming drug resistance, and better applying it to predictive diagnosis, prevention, and personalized medicine (PPPM; 3PM) of OC. Method: Hypermethylated subtypes (cluster 1) and hypomethylated subtypes (cluster 2) were established in OCs based on the abundance of different methylation sites in IRGs. The differences in immune score, immune checkpoints, immune cells, and overall survival were analyzed between different methylation subtypes in OC samples. The significant pathways, gene ontology (GO), and protein-protein interaction (PPI) network of the identified methylation sites in IRGs were enriched. In addition, the immune-related methylation signature was constructed with multiple regression analysis. A methylation site model based on IRGs was constructed and verified. Results: A total of 120 IRGs with 142 differentially methylated sites (DMSs) were identified. The DMSs were clustered into a high-level methylation group (cluster 1) and a low-level methylation group (cluster 2). The significant pathways and GO analysis showed many immune-related and cancer-associated enrichments. A methylation site signature based on IRGs was constructed, including RORC|cg25112191, S100A13|cg14467840, TNF|cg04425624, RLN2|cg03679581, and IL1RL2|cg22797169. The methylation sites of all five genes showed hypomethylation in OC, and there were statistically significant differences among RORC|cg25112191, S100A13|cg14467840, and TNF|cg04425624 (p < 0.05). This prognostic model based on low-level methylation and high-level methylation groups was significantly linked to the immune microenvironment as well as overall survival in OC. Conclusions: This study provided different methylation subtypes for OC patients according to the methylation sites of IRGs. In addition, it helps establish a relationship between methylation and the immune microenvironment, which showed specific differences in biological signaling pathways, genomic changes, and immune mechanisms within the two subgroups. These data provide ones to deeply understand the mechanism of immune-related methylation genes on the occurrence and development of OC. The methylation-site signature is also to establish new possibilities for OC therapy. These data are a precious resource for stratification and targeted treatment of OC patients toward an advanced 3PM approach. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-024-00359-3.

7.
EPMA J ; 15(2): 221-232, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38841621

RESUMO

Background: Suboptimal health is identified as a reversible phase occurring before chronic diseases manifest, emphasizing the significance of early detection and intervention in predictive, preventive, and personalized medicine (PPPM/3PM). While the biological and genetic factors associated with suboptimal health have received considerable attention, the influence of social determinants of health (SDH) remains relatively understudied. By comprehensively understanding the SDH influencing suboptimal health, healthcare providers can tailor interventions to address individual needs, improving health outcomes and facilitating the transition to optimal well-being. This study aimed to identify distinct profiles within SDH indicators and examine their association with suboptimal health status. Method: This cross-sectional study was conducted from June 16 to September 23, 2023, in five regions of China. Various SDH indicators, such as family health, economic status, eHealth literacy, mental disorder, social support, health behavior, and sleep quality, were examined in this study. Latent profile analysis was employed to identify distinct profiles based on these SDH indicators. Logistic regression analysis by profile was used to investigate the association between these profiles and suboptimal health status. Results: The analysis included 4918 individuals. Latent profile analysis revealed three distinct profiles (prevalence): the Adversely Burdened Vulnerability Group (37.6%), the Adversity-Driven Struggle Group (11.7%), and the Advantaged Resilience Group (50.7%). These profiles exhibited significant differences in suboptimal health status (p < 0.001). The Adversely Burdened Vulnerability Group had the highest risk of suboptimal health, followed by the Adversity-Driven Struggle Group, while the Advantaged Resilience Group had the lowest risk. Conclusions and relevance: Distinct profiles based on SDH indicators are associated with suboptimal health status. Healthcare providers should integrate SDH assessment into routine clinical practice to customize interventions and address specific needs. This study reveals that the group with the highest risk of suboptimal health stands out as the youngest among all the groups, underscoring the critical importance of early intervention and targeted prevention strategies within the framework of 3PM. Tailored interventions for the Adversely Burdened Vulnerability Group should focus on economic opportunities, healthcare access, healthy food options, and social support. Leveraging their higher eHealth literacy and resourcefulness, interventions empower the Adversity-Driven Struggle Group. By addressing healthcare utilization, substance use, and social support, targeted interventions effectively reduce suboptimal health risks and improve well-being in vulnerable populations. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-024-00365-5.

8.
EPMA J ; 15(2): 345-373, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38841624

RESUMO

Background: Alternative splicing (AS) occurs in the process of gene post-transcriptional process, which is very important for the correct synthesis and function of protein. The change of AS pattern may lead to the change of expression level or function of lung cancer-related genes, and then affect the occurrence and development of lung cancers. The specific AS pattern might be used as a biomarker for early warning and prognostic assessment of a cancer in the framework of predictive, preventive, and personalized medicine (PPPM; 3PM). AS events of immune-related genes (IRGs) were closely associated with tumor progression and immunotherapy. We hypothesize that IRG-AS events are significantly different in lung adenocarcinomas (LUADs) vs. controls or in lung squamous cell carcinomas (LUSCs) vs. controls. IRG-AS alteration profiling was identified to construct IRG-differentially expressed AS (IRG-DEAS) signature models. Study on the selective AS events of specific IRGs in lung cancer patients might be of great significance for further exploring the pathogenesis of lung cancer, realizing early detection and effective monitoring of lung cancer, finding new therapeutic targets, overcoming drug resistance, and developing more effective therapeutic strategies, and better used for the prediction, diagnosis, prevention, and personalized medicine of lung cancer. Methods: The transcriptomic, clinical, and AS data of LUADs and LUSCs were downloaded from TCGA and its SpliceSeq databases. IRG-DEAS events were identified in LUAD and LUSC, followed by their functional characteristics, and overall survival (OS) analyses. OS-related IRG-DEAS prognostic models were constructed for LUAD and LUSC with Lasso regression, which were used to classify LUADs and LUSCs into low- and high-risk score groups. Furthermore, the immune cell distribution, immune-related scores, drug sensitivity, mutation status, and GSEA/GSVA status were analyzed between low- and high-risk score groups. Also, low- and high-immunity clusters and AS factor (SF)-OS-related-AS co-expression network and verification of cell function of CELF6 were analyzed in LUAD and LUSC. Results: Comprehensive analysis of transcriptomic, clinical, and AS data of LUADs and LUSCs identified IRG-AS events in LUAD (n = 1607) and LUSC (n = 1656), including OS-related IRG-AS events in LUAD (n = 127) and LUSC (n = 105). A total of 66 IRG-DEAS events in LUAD and 89 IRG-DEAS events in LUSC were identified compared to controls. The overlapping analysis between IRG-DEASs and OS-related IRG-AS events revealed 14 OS-related IRG-DEAS events for LUAD and 16 OS-related IRG-DEAS events for LUSC, which were used to identify and optimize a 12-OS-related-IRG-DEAS signature prognostic model for LUAD and an 11-OS-related-IRG-DEAS signature prognostic model for LUSC. These two prognostic models effectively divided LUAD or LUSC samples into low- and high-risk score groups that were closely associated with OS, clinical characteristics, and tumor immune microenvironment, with significant gene sets and pathways enriched in the two groups. Moreover, weighted gene co-expression network (WGCNA) and nonnegative matrix factorization method (NMF) analyses identified four OS-relevant subtypes of LUAD and six OS-relevant subtypes of LUSC, and ssGSEA identified five immunity-relevant subtypes of LUAD and five immunity-relevant subtypes of LUSC. Interestingly, splicing factors-OS-related-AS network revealed hub molecule CELF6 was significantly related to the malignant phenotype in lung cancer cells. Conclusions: This study established two reliable IRG-DEAS signature prognostic models and constructed interesting splicing factor-splicing event networks in LUAD and LUSC, which can be used to construct clinically relevant immune subtypes, patient stratification, prognostic prediction, and personalized medical services in the PPPM practice. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-024-00366-4.

9.
EPMA J ; 15(2): 289-319, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38841622

RESUMO

Energy metabolism is a hub of governing all processes at cellular and organismal levels such as, on one hand, reparable vs. irreparable cell damage, cell fate (proliferation, survival, apoptosis, malignant transformation etc.), and, on the other hand, carcinogenesis, tumor development, progression and metastazing versus anti-cancer protection and cure. The orchestrator is the mitochondria who produce, store and invest energy, conduct intracellular and systemically relevant signals decisive for internal and environmental stress adaptation, and coordinate corresponding processes at cellular and organismal levels. Consequently, the quality of mitochondrial health and homeostasis is a reliable target for health risk assessment at the stage of reversible damage to the health followed by cost-effective personalized protection against health-to-disease transition as well as for targeted protection against the disease progression (secondary care of cancer patients against growing primary tumors and metastatic disease). The energy reprogramming of non-small cell lung cancer (NSCLC) attracts particular attention as clinically relevant and instrumental for the paradigm change from reactive medical services to predictive, preventive and personalized medicine (3PM). This article provides a detailed overview towards mechanisms and biological pathways involving metabolic reprogramming (MR) with respect to inhibiting the synthesis of biomolecules and blocking common NSCLC metabolic pathways as anti-NSCLC therapeutic strategies. For instance, mitophagy recycles macromolecules to yield mitochondrial substrates for energy homeostasis and nucleotide synthesis. Histone modification and DNA methylation can predict the onset of diseases, and plasma C7 analysis is an efficient medical service potentially resulting in an optimized healthcare economy in corresponding areas. The MEMP scoring provides the guidance for immunotherapy, prognostic assessment, and anti-cancer drug development. Metabolite sensing mechanisms of nutrients and their derivatives are potential MR-related therapy in NSCLC. Moreover, miR-495-3p reprogramming of sphingolipid rheostat by targeting Sphk1, 22/FOXM1 axis regulation, and A2 receptor antagonist are highly promising therapy strategies. TFEB as a biomarker in predicting immune checkpoint blockade and redox-related lncRNA prognostic signature (redox-LPS) are considered reliable predictive approaches. Finally, exemplified in this article metabolic phenotyping is instrumental for innovative population screening, health risk assessment, predictive multi-level diagnostics, targeted prevention, and treatment algorithms tailored to personalized patient profiles-all are essential pillars in the paradigm change from reactive medical services to 3PM approach in overall management of lung cancers. This article highlights the 3PM relevant innovation focused on energy metabolism as the hub to advance NSCLC management benefiting vulnerable subpopulations, affected patients, and healthcare at large. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-024-00357-5.

10.
EPMA J ; 15(2): 163-205, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38841620

RESUMO

Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.

11.
EPMA J ; 14(2): 185-199, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37275553

RESUMO

Objectives: Whether cardiovascular health (CVH) metrics impact longevity with and without cardiovascular diseases (CVDs) has not been well established. This study aimed to investigate the association between CVH metrics and life expectancy in participants free of CVD events. We hypothesized that ideal CVH status was associated with increased life expectancy and assessed the effect of CVH status as a prevention target of longevity in the framework of predictive, preventive, and personalized medicine (PPPM/3PM). Methods: A total of 92,795 participants in the Kailuan study were examined and thereafter followed up until 2020. We considered three transitions (from non-CVD events to incident CVD events, from non-CVD events to mortality, and from CVD events to mortality). The multistate lifetable method was applied to estimate the life expectancy. Results: During a median follow-up of 13 years, 12,541 (13.51%) deaths occurred. Compared with poor CVH, ideal CVH attenuated the risk of incident CVD events and mortality without CVD events by approximately 58% and 27%, respectively. Women with ideal CVH at age 35 had a 5.00 (3.23-6.77) year longer life expectancy free of CVD events than did women with poor CVH metrics. Among men, ideal CVH was associated with a 6.74 (5.55-7.93) year longer life expectancy free of CVD events. Conclusion: An ideal CVH status is associated with a lower risk of premature mortality and a longer life expectancy, either in the general population or in CVD patients, which are cost-effective ways for personalized medicine of potential CVD patients. Our findings suggest that the promotion of a higher CVH score or ideal CVH status would result in reduced burdens of CVD events and extended disease-free life expectancy, which offered an accurate prediction for primary care following the concept of PPPM/3PM. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-023-00322-8.

12.
EPMA J ; 14(3): 405-416, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37605651

RESUMO

Objective: Several studies have reported the association between gut microbiota and infertility; however, the causal association between them remains unclear. This study aimed to explore the causal relationship between gut microbiota and infertility and evaluate how specific gut microbiota can support early monitoring and prevention of infertility in the context of predictive, preventive, and personalized medicine (PPPM/3PM). Methods: The gut microbiota GWAS data included 18,340 individuals. Female infertility (6481 cases and 68,969 controls) and male infertility data (680 cases and 72,799 controls) were obtained from the FinnGen consortium. The inverse variance weighting (IVW), MR-Egger, weighted median (WM), Cochran Q tests, MR-PRESSO, and leave-one-out were used as a supplement to Mendelian randomization (MR) results and sensitivity analysis. Results: The results of MR analysis indicated a significant causal association between Eubacterium oxidoreducens (OR = 2.048, P = 0.008), Lactococcus (OR = 1.445, P = 0.042), Eubacterium ventriosum (OR = 0.436, P = 0.018), Eubacterium rectale (OR = 0.306, P = 0.002), and Ruminococcaceae NK4A214 (OR = 0.537, P = 0.045) and male infertility. Genetically predicted Eubacterium ventriosum (OR = 0.809, P = 0.018), Holdemania (OR = 0.836, P = 0.037), Lactococcus (OR = 0.867, P = 0.020), Ruminococcaceae NK4A214 (OR = 0.830, P < 0.050), Ruminococcus torques (OR = 0.739, P = 0.022), and Faecalibacterium (OR = 1.311, P = 0.007) were associated with female infertility. Sensitivity analysis did not detect heterogeneity and pleiotropy (P > 0.05). Conclusions: Our results provided evidence for the causal relationship between some gut microbiota and male and female infertility. These findings might be valuable in providing personalized treatment options for preventing infertility and improving reproductive function by monitoring and regulating the gut microbiota of infertility patients in the context of PPPM. Moreover, detecting the abundance of microbiota in feces can support preventive and personalized strategies, which may benefit more infertility patients. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-023-00332-6.

13.
EPMA J ; 14(3): 539-552, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37605653

RESUMO

Background: Glaucoma is the leading cause of irreversible blindness worldwide. Emerged evidence has shown that glaucoma is considered an immune system related disorder. The gut is the largest immune organ in the human body and the gut microbiota (GM) plays an irreversible role in maintaining immune homeostasis. But, how the GM influences glaucoma remains unrevealed. This study aimed at investigating the key molecules/pathways mediating the GM and the glaucoma to provide new biomarkers for future predictive, preventive, and personalized medicine. Methods: Datasets from the primary open-angle glaucoma (POAG) patients (GSE138125) and datasets for target genes of GM/GM metabolites were downloaded from a public database. For GSE138125, the differentially expressed genes (DEGs) between healthy and POAG samples were identified. And the online Venn diagram tool was used to obtain the DEGs from POAG related to GM. After which GM-related DEGs were analyzed by correlation analysis, pathway enrichment analysis, and protein-protein interaction (PPI) network analysis. Human trabecular meshwork cells were used for validation, and the mRNA level of hub genes was verified by quantitative real-time polymerase chain reaction (RT-qPCR) in the in vitro glaucoma model. Results: A total of 16 GM-related DEGs in POAG were identified from the above 2 datasets (9 upregulated genes and 7 downregulated genes). Pathway enrichment analysis indicated that these genes are mostly enriched in immune regulation especially macrophages-related pathways. Then 6 hub genes were identified by PPI network analysis and construction of key modules. Finally, RT-qPCR confirmed that the expression of the hub genes in the in vitro glaucoma model was consistent with the results of bioinformatics analysis of the mRNA chip. Conclusion: This bioinformatic study elucidates NFKB1, IL18, KITLG, TLR9, FKBP2, and HDAC4 as hub genes for POAG and GM regulation. Immune response modulated by macrophages plays an important role in POAG and may be potential targets for future predictive, preventive, and personalized diagnosis and treatment. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-023-00336-2.

14.
EPMA J ; 14(1): 131-142, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36684850

RESUMO

Purpose: This study assessed sleep quality in patients with burn scars and investigated risk factors of sleep disorders to guide clinical therapy. From the strategy of predictive, preventive, and personalized medicine (PPPM/3PM), we proposed that risk assessment based on clinical indicators could prompt primary prediction, targeted prevention, and personalized interventions to improve the management of sleep disorders present in patients with burn scars. Methods: This retrospective study recruited patients with burn scars and healthy volunteers from the Shanghai Burn Treatment Center between 2017 and 2022. Relevant information and data, including demographic characteristics, scar evaluation, and sleep quality, were obtained through the hospital information system, classical scar scale, and self-report questionnaires. Sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI) and monitored using a cardiopulmonary-coupled electrocardiograph. Pain and pruritus were assessed using the visual analog scale (VAS). Scar appearance was assessed using the modified Vancouver scar scale (mVSS). Results: The sample was comprised of 128 hypertrophic scar (HS) patients, with 61.7% males, a mean age of 41.1 ± 11.6 years, and burn area of 46.2 ± 27.9% total body surface area (TBSA). Patients with PSQI ≥ 7 accounted for 76.6%, and the global PSQI score was 9.4 ± 4.1. Objective sleep data showed that initial enter deep sleep time, light sleep time, awakening time, light sleep efficiency, and sleep apnea index were higher but deep sleep time, sleep efficiency, and deep sleep efficiency were lower in HS patients than that in healthy controls. Preliminary univariate analysis showed that age, hyperplasia time of scar, narrow airway, microstomia, VAS for pain and pruritus, and mVSS total (comprised of pigmentation, vascularity, height and pliability) were associated with the PSQI score (p < 0.1). Multivariable linear regression showed narrow airway, VAS for pain and pruritus, and mVSS specifically height, were the risk factors for PSQI score (p < 0.1). Conclusions: This study model identified that narrow airway, pain, pruritus and scar appearance specifically height may provide excellent predictors for sleep disorders in HS patients. Our results provided a basis for the predictive diagnostics, targeted prevention, and individualized therapy of somnipathy predisposition and progression of HS patients in the setting of PPPM/3PM health care system, which contributed to a paradigm shift from reactive cure to advanced therapy.

15.
EPMA J ; 14(1): 101-117, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36845281

RESUMO

Background: Intensive care unit admission (ICUA) triage has been urgent need for solving the shortage of ICU beds, during the coronavirus disease 2019 (COVID-19) surge. In silico analysis and integrated machine learning (ML) approach, based on multi-omics and immune cells (ICs) profiling, might provide solutions for this issue in the framework of predictive, preventive, and personalized medicine (PPPM). Methods: Multi-omics was used to screen the synchronous differentially expressed protein-coding genes (SDEpcGs), and an integrated ML approach to develop and validate a nomogram for prediction of ICUA. Finally, the independent risk factor (IRF) with ICs profiling of the ICUA was identified. Results: Colony-stimulating factor 1 receptor (CSF1R) and peptidase inhibitor 16 (PI16) were identified as SDEpcGs, and each fold change (FCij) of CSF1R and PI16 was selected to develop and validate a nomogram to predict ICUA. The area under curve (AUC) of the nomogram was 0.872 (95% confidence interval (CI): 0.707 to 0.950) on the training set, and 0.822 (95% CI: 0.659 to 0.917) on the testing set. CSF1R was identified as an IRF of ICUA, expressed in and positively correlated with monocytes which had a lower fraction in COVID-19 ICU patients. Conclusion: The nomogram and monocytes could provide added value to ICUA prediction and targeted prevention, which are cost-effective platform for personalized medicine of COVID-19 patients. The log2fold change (log2FC) of the fraction of monocytes could be monitored simply and economically in primary care, and the nomogram offered an accurate prediction for secondary care in the framework of PPPM. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-023-00317-5.

16.
EPMA J ; 14(2): 219-233, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37275550

RESUMO

Background/aims: Timely detection and treatment of retinal detachment (RD) could effectively save vision and reduce the risk of progressing visual field defects. High myopia (HM) is known to be associated with an increased risk of RD. Evidently, it should be clearly discriminated the individuals with high or low risk of RD in patients with HM. By using multi-parametric analysis, risk assessment, and other techniques, it is crucial to create cutting-edge screening programs that may be utilized to improve population eye health and develop person-specific, cost-effective preventative, and targeted therapeutic measures. Therefore, we propose a novel, routine blood parameters-based prediction model as a screening program to help distinguish who should offer detailed ophthalmic examinations for RD diagnosis, prevent visual field defect progression, and provide personalized, serial monitoring in the context of predictive, preventive, and personalized medicine (PPPM/3 PM). Methods: This population-based study included 20,870 subjects (HM = 19,284, HMRD = 1586) who underwent detailed routine blood tests and ophthalmic evaluations. HMRD cases and HM controls were matched using a nested case-control design. Then, the HMRD cases and HM controls were randomly assigned to the discovery cohort, validation cohort 1, and validation cohort 2 maintaining a 6:2:2 ratio, and other subjects were assigned to the HM validation cohort. Receiver operating characteristic curve analysis was performed to select feature indexes. Feature indexes were integrated into seven algorithm models, and an optimal model was selected based on the highest area under the curve (AUC) and accuracy. Results: Six feature indexes were selected: lymphocyte, basophil, mean platelet volume, platelet distribution width, neutrophil-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio. Among the algorithm models, the algorithm of conditional probability (ACP) showed the best performance achieving an AUC of 0.79, a diagnostic accuracy of 0.72, a sensitivity of 0.71, and a specificity of 0.74 in the discovery cohort. A good performance of the ACP model was also observed in the validation cohort 1 (AUC = 0.81, accuracy = 0.72, sensitivity = 0.71, specificity = 0.73) and validation cohort 2 (AUC = 0.77, accuracy = 0.71, sensitivity = 0.70, specificity = 0.72). In addition, ACP model calibration was found to be good across three cohorts. In the HM validation cohort, the ACP model achieved a diagnostic accuracy of 0.81 for negative classification. Conclusion: We have developed a routine blood parameters-based model with an ACP algorithm that could potentially be applied in the clinic with a PPPM approach for serial monitoring and predicting the occurrence of RD in HM and can facilitate the prevention of HM progression to RD. According to the current study, routine blood measures are essential in patient risk classification, predictive diagnosis, and targeted therapy. Therefore, for high-risk RD persons, novel screening programs and prompt treatment plans are essential to enhance individual outcomes and healthcare offered to the community with HM. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-023-00319-3.

17.
EPMA J ; 14(4): 613-629, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094583

RESUMO

Background: Intravenous leiomyomatosis (IVL) is a rare endocrine-associated tumor with unique characteristics of intravascular invasion. This study aimed to identify reliable biomarkers to supervise the development or recurrence of IVL in the context of predictive, preventive, and personalized medicine (PPPM/3PM). Methods: A total of 60 cases were recruited to detect differentially expressed proteins (DEPs) in serum samples from IVL patients. These cases included those with recurrent IVL, non-recurrent IVL, uterine myoma, and healthy individuals without uterine myoma, with 15 cases in each category. Then, weighted gene co-expression network analysis (WGCNA), lasso-penalized Cox regression analysis (Lasso), trend clustering, and a generalized linear regression model (GLM) were utilized to screen the hub proteins involved in IVL progression. Results: First, 93 differentially expressed proteins (DEPs) were determined from 2582 recognizable proteins, with 54 proteins augmented in the IVL group, and the remaining proteins declined. These proteins were enriched in the modulation of the immune environment, mainly by activating the function of B cells. After the integrated analyses mentioned above, a model based on four proteins (A0A5C2FUE5, A0A5C2GPQ1, A0A5C2GNC7, and A0A5C2GBR3) was developed to efficiently determine the potential of IVL lesions to progress. Among these featured proteins, our results demonstrated that the risk factor A0A5C2FUE5 was associated with IVL progression (OR = 2.64). Conversely, A0A5C2GPQ1, A0A5C2GNC7, and A0A5C2GBR3 might act in a protective manner and prevent disease development (OR = 0.32, 0.60, 0.53, respectively), which was further supported by the multi-class receiver operator characteristic curve analysis. Conclusion: Four hub proteins were eventually identified based on the integrated bioinformatics analyses. This study potentiates the promising application of these novel biomarkers to predict the prognosis or progression of IVL by a 3PM approach. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-023-00338-0.

18.
EPMA J ; 14(1): 119-129, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36540610

RESUMO

Background: To date, most countries worldwide have declared that the pandemic of COVID-19 is over, while the WHO has not officially ended the COVID-19 pandemic, and China still insists on the personalized dynamic COVID-free policy. Large-scale nucleic acid testing in Chinese communities and the manual interpretation for SARS-CoV-2 nucleic acid detection results pose a huge challenge for labour, quality and turnaround time (TAT) requirements. To solve this specific issue while increase the efficiency and accuracy of interpretation, we created an autoverification and guidance system (AGS) that can automatically interpret and report the COVID-19 reverse transcriptase-polymerase chain reaction (RT-PCR) results relaying on computer-based autoverification procedure and then validated its performance in real-world environments. This would be conductive to transmission risk prediction, COVID-19 prevention and control and timely medical treatment for positive patients in the context of the predictive, preventive and personalized medicine (PPPM). Methods: A diagnostic accuracy test was conducted with 380,693 participants from two COVID-19 test sites in China, the Hong Kong Hybribio Medical Laboratory (n = 266,035) and the mobile medical shelter at a Shanghai airport (n = 114,658). These participants underwent SARS-CoV-2 RT-PCR from March 28 to April 10, 2022. All RT-PCR results were interpreted by laboratorians and by using AGS simultaneously. Considering the manual interpretation as gold standard, the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy were applied to evaluate the diagnostic value of the AGS on the interpretation of RT-PCR results. Results: Among the 266,035 samples in Hong Kong, there were 16,356 (6.15%) positive, 231,073 (86.86%) negative, 18,606 (6.99%) indefinite, 231,073 (86.86%, negative) no retest required and 34,962 (13.14%, positive and indefinite) retest required; the 114,658 samples in Shanghai consisted of 76 (0.07%) positive, 109,956 (95.90%) negative, 4626 (4.03%) indefinite, 109,956 (95.90%, negative) no retest required and 4702 (4.10%, positive and indefinite) retest required. Compared to the fashioned manual interpretation, the AGS is a procedure of high accuracy [99.96% (95%CI, 99.95-99.97%) in Hong Kong and 100% (95%CI, 100-100%) in Shanghai] with perfect sensitivity [99.98% (95%CI, 99.97-99.98%) in Hong Kong and 100% (95%CI, 100-100%) in Shanghai], specificity [99.87% (95%CI, 99.82-99.90%) in Hong Kong and 100% (95%CI, 99.92-100%) in Shanghai], PPV [99.98% (95%CI, 99.97-99.99%) in Hong Kong and 100% (95%CI, 99.99-100%) in Shanghai] and NPV [99.85% (95%CI, 99.80-99.88%) in Hong Kong and 100% (95%CI, 99.90-100%) in Shanghai]. The need for manual interpretation of total samples was dramatically reduced from 100% to 13.1% and the interpretation time fell from 53 h to 26 min in Hong Kong; while the manual interpretation of total samples was decreased from 100% to 4.1% and the interpretation time dropped from 20 h to 16 min at Shanghai. Conclusions: The AGS is a procedure of high accuracy and significantly relieves both labour and time from the challenge of large-scale screening of SARS-CoV-2 using RT-PCR. It should be recommended as a powerful screening, diagnostic and predictive system for SARS-CoV-2 to contribute timely the ending of the COVID-19 pandemic following the concept of PPPM.

19.
EPMA J ; 14(1): 1-20, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36866157

RESUMO

Objectives: Type 2 diabetes mellitus (T2DM), a major metabolic disorder, is expanding at a rapidly rising worldwide prevalence and has emerged as one of the most common chronic diseases. Suboptimal health status (SHS) is considered a reversible intermediate state between health and diagnosable disease. We hypothesized that the time frame between the onset of SHS and the clinical manifestation of T2DM is the operational area for the application of reliable risk assessment tools, such as immunoglobulin G (IgG) N-glycans. From the viewpoint of predictive, preventive, and personalized medicine (PPPM/3PM), the early detection of SHS and dynamic monitoring by glycan biomarkers could provide a window of opportunity for targeted prevention and personalized treatment of T2DM. Methods: Case-control and nested case-control studies were performed and consisted of 138 and 308 participants, respectively. The IgG N-glycan profiles of all plasma samples were detected by an ultra-performance liquid chromatography instrument. Results: After adjustment for confounders, 22, five, and three IgG N-glycan traits were significantly associated with T2DM in the case-control setting, baseline SHS, and baseline optimal health participants from the nested case-control setting, respectively. Adding the IgG N-glycans to the clinical trait models, the average area under the receiver operating characteristic curves (AUCs) of the combined models based on repeated 400 times fivefold cross-validation differentiating T2DM from healthy individuals were 0.807 in the case-control setting and 0.563, 0.645, and 0.604 in the pooled samples, baseline SHS, and baseline optimal health samples of nested case-control setting, respectively, which presented moderate discriminative ability and were generally better than models with either glycans or clinical features alone. Conclusions: This study comprehensively illustrated that the observed altered IgG N-glycosylation, i.e., decreased galactosylation and fucosylation/sialylation without bisecting GlcNAc, as well as increased galactosylation and fucosylation/sialylation with bisecting GlcNAc, reflects a pro-inflammatory state of T2DM. SHS is an important window period of early intervention for individuals at risk for T2DM; glycomic biosignatures as dynamic biomarkers have the ability to identify populations at risk for T2DM early, and the combination of evidence could provide suggestive ideas and valuable insight for the PPPM of T2DM. Supplementary information: The online version contains supplementary material available at 10.1007/s13167-022-00311-3.

20.
EPMA J ; 14(2): 275-305, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37275552

RESUMO

Background: Clear cell renal cell carcinoma (ccRCC) is a prevalent urological malignancy associated with a high mortality rate. The lack of a reliable prognostic biomarker undermines the efficacy of its predictive, preventive, and personalized medicine (PPPM/3PM) approach. Immunogenic cell death (ICD) is a specific type of programmed cell death that is tightly associated with anti-cancer immunity. However, the role of ICD in ccRCC remains unclear. Methods: Based on AddModuleScore, single-sample gene set enrichment analysis (ssGSEA), and weighted gene co-expression network (WGCNA) analyses, ICD-related genes were screened at both the single-cell and bulk transcriptome levels. We developed a novel machine learning framework that incorporated 10 machine learning algorithms and their 101 combinations to construct a consensus immunogenic cell death-related signature (ICDRS). ICDRS was evaluated in the training, internal validation, and external validation sets. An ICDRS-integrated nomogram was constructed to provide a quantitative tool for predicting prognosis in clinical practice. Multi-omics analysis was performed, including genome, single-cell transcriptome, and bulk transcriptome, to gain a more comprehensive understanding of the prognosis signature. We evaluated the response of risk subgroups to immunotherapy and screened drugs that target specific risk subgroups for personalized medicine. Finally, the expression of ICD-related genes was validated by qRT-PCR. Results: We identified 131 ICD-related genes at both the single-cell and bulk transcriptome levels, of which 39 were associated with overall survival (OS). A consensus ICDRS was constructed based on a 101-combination machine learning computational framework, demonstrating outstanding performance in predicting prognosis and clinical translation. ICDRS can also be used to predict the occurrence, development, and metastasis of ccRCC. Multivariate analysis verified it as an independent prognostic factor for OS, progression-free survival (PFS), and disease-specific survival (DSS) of ccRCC. The ICDRS-integrated nomogram provided a quantitative tool in clinical practice. Moreover, we observed distinct biological functions, mutation landscapes, and immune cell infiltration in the tumor microenvironment between the high- and low-risk groups. Notably, the immunophenoscore (IPS) score showed a significant difference between risk subgroups, suggesting a better response to immunotherapy in the high-risk group. Potential drugs targeting specific risk subgroups were also identified. Conclusion: Our study constructed an immunogenic cell death-related signature that can serve as a promising tool for prognosis prediction, targeted prevention, and personalized medicine in ccRCC. Incorporating ICD into the PPPM framework will provide a unique opportunity for clinical intelligence and new management approaches. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-023-00327-3.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa