Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
BMC Med Imaging ; 24(1): 49, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395772

RESUMO

PURPOSE: Unenhanced abdominal CT constitutes the diagnostic standard of care in suspected urolithiasis. Aiming to identify potential for radiation dose reduction in this frequent imaging task, this experimental study compares the effect of spectral shaping and tube voltage modulation on image quality. METHODS: Using a third-generation dual-source CT, eight cadaveric specimens were scanned with varying tube voltage settings with and without tin filter application (Sn 150, Sn 100, 120, 100, and 80 kVp) at three dose levels (3 mGy: standard; 1 mGy: low; 0.5 mGy: ultralow). Image quality was assessed quantitatively by calculation of signal-to-noise ratios (SNR) for various tissues (spleen, kidney, trabecular bone, fat) and subjectively by three independent radiologists based on a seven-point rating scale (7 = excellent; 1 = very poor). RESULTS: Irrespective of dose level, Sn 100 kVp resulted in the highest SNR of all tube voltage settings. In direct comparison to Sn 150 kVp, superior SNR was ascertained for spleen (p ≤ 0.004) and kidney tissue (p ≤ 0.009). In ultralow-dose scans, subjective image quality of Sn 100 kVp (median score 3; interquartile range 3-3) was higher compared with conventional imaging at 120 kVp (2; 2-2), 100 kVp (1; 1-2), and 80 kVp (1; 1-1) (all p < 0.001). Indicated by an intraclass correlation coefficient of 0.945 (95% confidence interval: 0.927-0.960), interrater reliability was excellent. CONCLUSIONS: In abdominal CT with maximised dose reduction, tin prefiltration at 100 kVp allows for superior image quality over Sn 150 kVp and conventional imaging without spectral shaping.


Assuntos
Estanho , Tomografia Computadorizada por Raios X , Humanos , Reprodutibilidade dos Testes , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Abdome/diagnóstico por imagem
2.
Pediatr Radiol ; 50(9): 1240-1248, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32556576

RESUMO

BACKGROUND: Radiation dose at CT should be as low as possible without compromising diagnostic quality. OBJECTIVE: To assess the potential for maximum dose reduction of pediatric lung dual-source CT with spectral shaping and advanced iterative reconstruction (ADMIRE). MATERIALS AND METHODS: We retrospectively analyzed dual-source CT acquisitions in a full-dose group (FD: 100 kV, 64 reference mAs) and in three groups with spectral shaping and differing reference mAs values (Sn: 100 kV, 96/64/32 reference mAs), each group consisting of 16 patients (age mean 11.5 years, standard deviation 4.8 years, median 12.8 years, range 1.3-18 years). Advanced iterative reconstruction of images was performed with different strengths (FD: ADMIRE Level 2; Sn: ADMIRE Levels 2, 3 and 4). We analyzed dose parameters and measured noise. Diagnostic confidence and detectability of lung lesions as well as anatomical structures were assessed using a Likert scale (from 1 [unacceptable] to 4 [fully acceptable]). RESULTS: Compared to full dose, effective dose was reduced to 16.7% in the Sn 96 group, 11.1% in Sn64, and 5.5% in Sn32 (P<0.001). Noise values of Sn64ADM4 did not statistically differ from those in FDADM2 (45.7 vs. 38.9 Hounsfield units [HU]; P=0.132), whereas noise was significantly higher in Sn32ADM4 compared to Sn64ADM4 (61.5 HU; P<0.001). A Likert score >3 was reached in Sn64ADM4 regarding diagnostic confidence (3.2) and detectability of lung lesions (3.3). For detectability of most anatomical structures, no significant differences were found between FDAM2 and Sn64ADM4 (P≥0.05). CONCLUSION: In pediatric lung dual-source CT, spectral shaping together with ADMIRE 4 enable radiation dose reduction to about 10% of a full-dose protocol while maintaining an acceptable diagnostic quality.


Assuntos
Pneumopatias/diagnóstico por imagem , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador , Tomografia Computadorizada por Raios X/métodos , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Estudos Retrospectivos
3.
Artigo em Inglês | MEDLINE | ID: mdl-39394982

RESUMO

Superwetting/repelling coatings have been utilized to address the issue of oil contamination on lampblack prefiltration metallic foam by both academia and industry. Nevertheless, the widely adopted superamphiphobic coatings are currently costly and suffer from poor wear resistance. In this study, we propose an oil-resistant underoil superhydrophilic (LSH) coating by a dip-coating method. The subsequent heating process at 200 °C for 5 min strengthens the designed coating based on lithium polysilicate cross-linking reinforcement. The LSH coating with a minimal water contact angle up to 3.4° under soybean oil can spontaneously achieve oil desorption within 7 s under water. Moreover, the coating retains its superhydrophilicity after enduring 900 friction cycles under a 500 g load or being immersed in 50 °C soapy water for 48 h. Hence, the LSH coating with great durability on metallic foam for lampblack prefiltration resulted in a 9.3% decrease in the oil absorption weight ratio after a 17-day cooking test. This work underscores the potential application of the LSH coating in lampblack prefiltration components, presenting promising technological advancements in self-cleaning for the catering industry.

4.
Chemosphere ; 359: 142327, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754483

RESUMO

Prefiltration before chromatographic analysis is critical in the monitoring of environmental micropollutants (MPs). However, in an aqueous matrix, such monitoring often leads to out-of-specification results owing to the loss of MPs on syringe filters. Therefore, this study investigated the loss of seventy MPs on eight different syringe filters by employing Random Forest, a machine learning algorithm. The results indicate that the loss of MPs during filtration is filter specific, with glass microfiber and polytetrafluoroethylene filters being the most effective (<20%) compared with nylon (>90%) and others (regenerated-cellulose, polyethersulfone, polyvinylidene difluoride, cellulose acetate, and polypropylene). The Random Forest classifier showed outstanding performance (accuracy range 0.81-0.95) for determining whether the loss of MPs on filters exceeded 20%. Important factors in this classification were analyzed using the SHapley Additive exPlanation value and Kruskal-Wallis test. The results show that the physicochemical properties (LogKow/LogD, pKa, functional groups, and charges) of MPs are more important than the operational parameters (sample volume, filter pore size, diameter, and flow rate) in determining the loss of most MPs on syringe filters. However, other important factors such as the implications of the roles of pH for nylon and pre-rinsing for PTFE syringe filters should not be ignored. Overall, this study provides a systematic framework for understanding the behavior of various MP classes and their potential losses on syringe filters.


Assuntos
Filtração , Aprendizado de Máquina , Seringas , Poluentes Químicos da Água , Filtração/instrumentação , Filtração/métodos , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Algoritmos
5.
Anal Chim Acta ; 1287: 342103, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182346

RESUMO

BACKGROUND: PLS-DA of high-dimensional metabolomics data is frequently employed to capture the most pertinent features to sample classification. But the presence of numerous insignificant input features could distort the PLS-DA model, blow up and scramble the selected differential features. Usually, univariate filtration is subsequently complemented to refine the selected features, but often giving unstable results. Whereas by precluding insignificant features through univariate data prefiltration assessed by FDR adjusted p-value, PLS-DA can generate more stable and reliable differential features. We explored and compared these two data analysis procedures to gain insights into the underlying mechanisms responsible for the disparate results. RESULTS: The effect of univariate data filtration preceding and succeeding PLS-DA analysis on the identified discriminative features/metabolites was investigated using LC-MS data acquired on the samples of human serum and C. elegans extracts, with and without metabolite standards spiked to simulate the treated and control groups of biological samples. It was shown that the univariate data prefiltration before PLS-DA usually gave less but more stable and likely more reliable and meaningful differential features, while PLS-DA applied directly to the original data could be affected by the presence of insignificant features and orthogonal noise. Large number of insignificant variables and orthogonal noise could distort the generated PLS-DA model and affect the p(corr) value, and artificially inflate the calculated VIP values of relevant features due to the increased total number of input features for model construction, thus leading to more false positives selected by the conventional VIP threshold of 1.0. SIGNIFICANCE AND NOVELTY: Univariate data filtration preceding PLS-DA was important for the identification of reliable differential features if using a conventional threshold of VIP of 1.0. Presence of insignificant features could distort the PLS-DA model and inflate VIP values. Appropriate VIP threshold is associated with the numbers of input features and the model components. For PLS-DA without univariate prefiltration, threshold of VIP larger than 1.0 is recommended for the selection of discriminative features to reduce the false positives.


Assuntos
Caenorhabditis elegans , Espectrometria de Massa com Cromatografia Líquida , Humanos , Animais , Cromatografia Líquida , Espectrometria de Massas em Tandem , Análise de Dados
6.
Eur J Radiol ; 170: 111209, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992609

RESUMO

PURPOSE: To investigate the metal artifact suppression potential of combining tin prefiltration and virtual monoenergetic imaging (VMI) for osseous microarchitecture depiction in ultra-high-resolution (UHR) photon-counting CT (PCCT) of the lower extremity. METHOD: Derived from tin-filtered UHR scans at 140 kVp, polychromatic datasets (T3D) and VMI reconstructions at 70, 110, 150, and 190 keV were compared in 117 patients with lower extremity metal implants (53 female; 62.1 ± 18.0 years). Three implant groups were investigated (total arthroplasty [n = 48], osteosynthetic material [n = 43], and external fixation [n = 26]). Image quality was assessed with regions of interest placed in the most pronounced artifacts and adjacent soft tissue, measuring the respective attenuation. Additionally, artifact extent, bone-metal interface interpretability and overall image quality were independently evaluated by three radiologists. RESULTS: Artifact reduction was superior with increasing keV level of VMI. While T3D was superior to VMI70keV (p ≥ 0.117), artifacts were more severe in T3D than in VMI ≥ 110 keV (all p ≤ 0.036). Image noise was highest for VMI70keV (all p < 0.001) and lowest for VMI110keV with comparable results for VMI110keV - VMI190keV. Subjective image quality regarding artifacts was superior for VMI ≥ 110 keV (all p ≤ 0.042) and comparable for VMI110keV - VMI190keV. Bone-metal interface interpretability was superior for VMI110keV (all p ≤ 0.001), while T3D, VMI150keV and VMI190keV were comparable. Overall image quality was deemed best for VMI110keV and VMI150keV. Interreader reliability was good in all cases (ICC ≥ 0.833). CONCLUSIONS: Tin-filtered UHR-PCCT scans of the lower extremity combined with VMI reconstructions allow for efficient artifact reduction in the vicinity of bone-metal interfaces.


Assuntos
Estanho , Tomografia Computadorizada por Raios X , Humanos , Feminino , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos , Próteses e Implantes , Processamento de Imagem Assistida por Computador/métodos , Metais , Artefatos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Razão Sinal-Ruído , Estudos Retrospectivos
7.
Eur J Radiol ; 169: 111157, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871356

RESUMO

PURPOSE: Since organ-based tube current modulation (OBTCM) and tin prefiltration are limited on their own in lowering the dose of lung CT examinations, this experimental study was designed to investigate whether combinations with anterior patient shielding can increase the dose reduction potential. MATERIAL AND METHODS: Three pairs of scan protocols without/with breast shield (P1/P2: standard 120kVp, P3/P4: OBTCM at 100 kVp, P5/P6: Sn 100 kVp) were employed for radiation exposure and image quality comparisons on an anthropomorphic Alderson-Rando phantom. Equivalent doses were measured in eleven sites via thermoluminescent dosimetry and the effective dose was obtained by summation of the weighted organ doses. Dose-weighted contrast-to-noise ratios (CNRD) were calculated and four radiologists independently assessed the quality of images generated with each protocol. RESULTS: While no significant difference was determined between standard and OBTCM protocols regardless of breast shield (p ≥ 0.068), equivalent doses with spectral shaping were substantially lower (p ≤ 0.003). The highest effective dose was ascertained for standard scans (P1/P2: 7.3/6.8 mSv) with a dose reduction of 8.0 % via breast shielding. The use of a bismuth shield was more beneficial in OBTCM (P3/P4: 6.6/5.3 mSv) and spectral shaping (P5/P6: 0.7/0.6 mSv), reducing the effective dose by 19.8 % and 13.9 %, respectively. Subjective assessment favoured standard protocol P1 over tin prefiltration low-dose scans (p ≤ 0.032), however, no scan protocol entailed diagnostically insufficient image quality. CONCLUSIONS: Whereas breast shielding is particularly beneficial in combination with OBTCM, spectral shaping via tin prefiltration facilitates the most pronounced dose reduction in lung CT imaging with acceptable image quality.


Assuntos
Bismuto , Estanho , Humanos , Doses de Radiação , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Pulmão/diagnóstico por imagem
8.
Acad Radiol ; 30(6): 1033-1038, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35963837

RESUMO

OBJECTIVES: For detection of urinary calculi, unenhanced low-dose computed tomography is the method of choice, outperforming radiography and ultrasound. This retrospective monocentric study aims to compare a clinically established, dedicated low-dose imaging protocol for detection of urinary calculi with an ultra-low-dose protocol employing tin prefiltration at a standardized tube voltage of 100 kVp. METHODS: Two study arms included a total of 510 cases. The "low-dose group" was comprised of 290 individuals (96 women; age 49 ± 16 years; BMI 27.23 ± 5.60 kg/m2). The "ultra-low-dose group" with Sn100 kVp consisted of 220 patients (84 women; age 47 ± 17 years; BMI 26.82 ± 5.62 kg/m2). No significant difference was ascertained for comparison of age (p = 0.132) and BMI (p = 0.207) between cohorts. For quantitative assessment of image quality, image noise was assessed. RESULTS: No significant difference regarding frequency of calculi detection was found between groups (p = 0.596). Compared to the low-dose protocol (3.08 mSv; IQR 2.22-4.02 mSv), effective dose was reduced by 62.35% with the ultra-low-dose protocol employing spectral shaping (1.16 mSv; IQR 0.89-1.54 mSv). Image noise was calculated at 18.90 (IQR 17.39-21.20) for the low-dose protocol and at 18.69 (IQR 17.30-21.62) for the ultra-low-dose spectral shaping protocol. No significant difference was ascertained for comparison between groups (p = 0.793). CONCLUSION: For urinary calculi detection, ultra-low-dose scans utilizing spectral shaping by means of tin prefiltration at 100 kVp allow for considerable dose reduction of up to 62% over conventional low-dose CT without compromising image quality.


Assuntos
Cálculos Urinários , Sistema Urinário , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Estanho , Estudos Retrospectivos , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Cálculos Urinários/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
9.
Diagnostics (Basel) ; 13(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36832091

RESUMO

OBJECTIVES: This study investigated the feasibility and image quality of ultra-low-dose unenhanced abdominal CT using photon-counting detector technology and tin prefiltration. MATERIALS AND METHODS: Employing a first-generation photon-counting CT scanner, eight cadaveric specimens were examined both with tin prefiltration (Sn 100 kVp) and polychromatic (120 kVp) scan protocols matched for radiation dose at three different levels: standard-dose (3 mGy), low-dose (1 mGy) and ultra-low-dose (0.5 mGy). Image quality was evaluated quantitatively by means of contrast-to-noise-ratios (CNR) with regions of interest placed in the renal cortex and subcutaneous fat. Additionally, three independent radiologists performed subjective evaluation of image quality. The intraclass correlation coefficient was calculated as a measure of interrater reliability. RESULTS: Irrespective of scan mode, CNR in the renal cortex decreased with lower radiation dose. Despite similar mean energy of the applied x-ray spectrum, CNR was superior for Sn 100 kVp over 120 kVp at standard-dose (17.75 ± 3.51 vs. 14.13 ± 4.02), low-dose (13.99 ± 2.6 vs. 10.68 ± 2.17) and ultra-low-dose levels (8.88 ± 2.01 vs. 11.06 ± 1.74) (all p ≤ 0.05). Subjective image quality was highest for both standard-dose protocols (score 5; interquartile range 5-5). While no difference was ascertained between Sn 100 kVp and 120 kVp examinations at standard and low-dose levels, the subjective image quality of tin-filtered scans was superior to 120 kVp with ultra-low radiation dose (p < 0.05). An intraclass correlation coefficient of 0.844 (95% confidence interval 0.763-0.906; p < 0.001) indicated good interrater reliability. CONCLUSIONS: Photon-counting detector CT permits excellent image quality in unenhanced abdominal CT with very low radiation dose. Employment of tin prefiltration at 100 kVp instead of polychromatic imaging at 120 kVp increases the image quality even further in the ultra-low-dose range of 0.5 mGy.

10.
Radiography (Lond) ; 28(2): 433-439, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34716089

RESUMO

INTRODUCTION: While tin prefiltration is established in various CT applications, its value in extremity cone-beam CT relative to optimized spectra has not been thoroughly assessed thus far. This study aims to investigate the effect of tin filters in extremity cone-beam CT with a twin-robotic X-ray system. METHODS: Wrist, elbow and ankle joints of two cadaveric specimens were examined in a laboratory setup with different combinations of prefiltration (copper, tin), tube voltage and current-time product. Image quality was assessed subjectively by five radiologists with Fleiss' kappa being computed to measure interrater agreement. To provide a semiquantitative criterion for image quality, contrast-to-noise ratios (CNR) were compared for standardized regions of interest. Volume CT dose indices were calculated for a 16 cm polymethylmethacrylate phantom. RESULTS: Radiation dose ranged from 17.4 mGy in the clinical standard protocol without tin filter to as low as 0.7 mGy with tin prefiltration. Image quality ratings and CNR for tin-filtered scans with 100 kV were lower than for 80 kV studies with copper prefiltration despite higher dose (11.2 and 5.6 vs. 4.5 mGy; p < 0.001). No difference was ascertained between 100 kV scans with tin filtration and 60 kV copper-filtered scans with 75% dose reduction (subjective: p = 0.101; CNR: p = 0.706). Fleiss' kappa of 0.597 (95% confidence interval 0.567-0.626; p < 0.001) indicated moderate interrater agreement. CONCLUSION: Considerable dose reduction is feasible with tin prefiltration, however, the twin-robotic X-ray system's low-dose potential for extremity 3D imaging is maximized with a dedicated low-kilovolt scan protocol in situations without extensive beam-hardening artifacts. IMPLICATIONS FOR PRACTICE: Low-kilovolt imaging with copper prefiltration provides a superior trade-off between dose reduction and image quality compared to tin-filtered cone-beam CT scan protocols with higher tube voltage.


Assuntos
Procedimentos Cirúrgicos Robóticos , Estanho , Tomografia Computadorizada de Feixe Cônico/métodos , Cobre , Extremidades , Humanos , Doses de Radiação , Raios X
11.
Bioengineering (Basel) ; 9(4)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35447715

RESUMO

Regulatory authorities place stringent guidelines on the removal of contaminants during the manufacture of biopharmaceutical products. Monoclonal antibodies, Fc-fusion proteins, and other mammalian cell-derived biotherapeutics are heterogeneous molecules that are validated based on the production process and not on molecular homogeneity. Validation of clearance of potential contamination by viruses is a major challenge during the downstream purification of these therapeutics. Virus filtration is a single-use, size-based separation process in which the contaminating virus particles are retained while the therapeutic molecules pass through the membrane pores. Virus filtration is routinely used as part of the overall virus clearance strategy. Compromised performance of virus filters due to membrane fouling, low throughput and reduced viral clearance, is of considerable industrial significance and is frequently a major challenge. This review shows how components generated during cell culture, contaminants, and product variants can affect virus filtration of mammalian cell-derived biologics. Cell culture-derived foulants include host cell proteins, proteases, and endotoxins. We also provide mitigation measures for each potential foulant.

12.
Radiography (Lond) ; 28(3): 690-696, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35728278

RESUMO

INTRODUCTION: The purpose of this study was to determine the potential for metal artefact reduction in low-dose multidetector CT as these pose a frequent challenge in clinical routine. Investigations focused on whether spectral shaping via tin prefiltration, virtual monoenergetic imaging or virtual blend imaging (VBI) offers superior image quality in comparison with conventional CT imaging. METHODS: Using a third-generation dual-source CT scanner, two cadaveric specimens with different metal implants (dental, cervical spine, hip, knee) were examined with acquisition protocols matched for radiation dose with regards to tube voltage and current. In order to allow for precise comparison, and due to the relatively short scan lengths, automatic tube current modulation was disabled. Specifically, the following scan protocals were examined: conventional CT protocols (100/120 kVp), tin prefiltration (Sn 100/Sn 150 kVp), VBI and virtual monoenergetic imaging (VME 100/120/150 keV). Mean attenuation and image noise were measured in hyperdense and hypodense artefacts, in artefact-impaired and artefact-free soft tissue. Subjective image quality was rated independently by three radiologists. RESULTS: Objectively, Sn 150 kVp allowed for the best reduction of hyperdense streak artefacts (p < 0.001), while VME 150 keV and Sn 150 kVp protocols facilitated equally good reduction of hypodense artefacts (p = 0.173). Artefact-impaired soft tissue attenuation was lowest in Sn 150 kVp protocols (p ≤ 0.011), whereas all VME showed significantly less image noise compared to conventional or tin-filtered protocols (p ≤ 0.001). Subjective assessment favoured Sn 150 kVp regarding hyperdense streak artefacts and delineation of cortical bone (p ≤ 0.005). The intraclass correlation coefficient was 0.776 (95% confidence interval: 0.712-0.831; p < 0.001) indicating good interrater reliability. CONCLUSION: In the presence of metal implants in our cadaveric study, tin prefiltration with 150 kVp offers superior artefact reduction for low-dose CT imaging of osseous tissue compared with virtual monoenergetic images of dual-energy datasets. The delineation of cortical boundaries seems to benefit particularly from spectral shaping. IMPLICATIONS FOR PRACTICE: Low-dose CT imaging of osseous tissue in combination with tin prefiltration allows for superior metal artefact reduction when compared to virtual monoenergetic images of dual-energy datasets. Employing this technique ought to be considered in daily routine when metal implants are present within the scan volume as findings suggest it allows for radiation dose reduction and facilitates diagnosis relevant to further treatment.


Assuntos
Estanho , Tomografia Computadorizada por Raios X , Artefatos , Cadáver , Humanos , Metais , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos
13.
Biotechnol Prog ; 37(5): e3180, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34106522

RESUMO

Recent studies have reported very low capacity during sterile filtration of glycoconjugate vaccines due to rapid fouling of the sterile filter. The objective of this study was to explore the potential for significantly increasing the capacity of the sterile filter through the use of an appropriate prefilter. Data were obtained using prefilters with different pore size and chemistry, with the sterile filtration performed at constant filtrate flux using 0.22 µm nominal pore size Durapore® polyvinylidene difluoride membranes. Prefiltration through 5 µm pore size Durapore® or Nylon prefilters nearly eliminated the fouling of the sterile filter, leading to more than a 100-fold reduction in the rate of pressure increase for the sterile filter. This dramatic improvement in sterile filter performance was due to the removal of large components (greater than 1 µm in size) as confirmed by dynamic light scattering. These results demonstrate the potential of using large pore size prefilters to significantly enhance the performance of the sterile filtration process for the production of important glycoconjugate vaccines.


Assuntos
Filtração , Glicoconjugados , Vacinas Conjugadas , Contaminação de Medicamentos/prevenção & controle , Filtração/métodos , Filtração/normas , Glicoconjugados/análise , Glicoconjugados/química , Glicoconjugados/isolamento & purificação , Membranas Artificiais , Porosidade , Vacinas Conjugadas/análise , Vacinas Conjugadas/química , Vacinas Conjugadas/isolamento & purificação
14.
Biotechnol Prog ; 35(4): e2776, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30629862

RESUMO

The downstream process development of novel antibodies (Abs) is often challenged by virus filter fouling making a better understanding of the underlying mechanisms highly desirable. The present study combines the protein characterization of different feedstreams with their virus filtration performance using a novel high throughput filtration screening system. Filtration experiments with Ab concentrations of up to 20 g/L using either low interacting or hydrophobically interacting pre-filters indicate the existence of two different fouling mechanisms, an irreversible and a reversible one. At the molecular level, size exclusion chromatography revealed that the presence of large amount of high molecular weight species-considered as irreversible aggregates-correlates with irreversible fouling that caused reduced Ab throughput. Results using dynamic light scattering show that a concentration dependent increase of the mean hydrodynamic diameter to the range of dimers (17 nm at 20 g/L) together with a negative DLS interaction parameter kD (-18 mL/g) correlate with the propensity to form reversible aggregates and to cause reversible fouling, probably by a decelerated Ab transport velocity within the virus filter. The two fouling mechanisms are further supported by buffer flush experiments. Finally, concepts for reversible and irreversible fouling mechanisms are discussed together with strategies for respective fouling mitigation. © 2019 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2776, 2019.


Assuntos
Anticorpos/isolamento & purificação , Filtração , Ensaios de Triagem em Larga Escala , Vírus/isolamento & purificação , Anticorpos/química , Ensaios de Triagem em Larga Escala/instrumentação , Hidrodinâmica , Soluções
15.
Sci Total Environ ; 648: 636-668, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30340309

RESUMO

Leachates are still an open issue in environmental protection. Many of the applied methods for their treatment present low efficiency and thus need to be used collectively. In practice reverse osmosis is mostly used, as it is the most effective option, regardless of its cost. Magnetic methods to treat effluents have been used for water and wastewater treatment by the use of magnetic particles together with magnetic separation for the removal of contaminants. However, large-scale applications are few or even non-existent when we deal with complex contaminated media such as landfill leachates, for which not even research studies at laboratorial scale with real samples have been done yet. In this work, we apply for the first time magnetic sorption for the treatment of leachates, and close the full cycle by studying the regeneration and re-use of the magnetic particles; we also study the influence of the concentration of magnetic particles, the use of several pre-treatment methodologies and the type of particle used in the process, in real landfill samples from the waste treatment plant of Salamanca (Spain), for the removal of COD, NO3-, NO2-, NH4+, Total-N, PO43-, SO42- and Cl-. Regeneration of the magnetic particles after being used in the sorption stage is also studied, as well as their efficiency regarding their re-use. It is also determined the optimum number of batches for complete desorption and for regeneration of the particles, the effect of successive regeneration and re-use cycles, the use of two different regeneration methods, the efficiency of the desorption, the effect of the quantity of solvent and the influence of the time of sorption. Due to its innovative character and the complexity of the media, this work represents a first preliminary approach and, although some promising results have been obtained, further studies are required to completely understand and evaluate the proposed treatment process.

16.
Mol Ecol Resour ; 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29766663

RESUMO

Environmental DNA (eDNA) is a promising tool for rapid and noninvasive biodiversity monitoring. eDNA density is low in environmental samples, and a capture method, such as filtration, is often required to concentrate eDNA for downstream analyses. In this study, six treatments, with differing filter types and pore sizes for eDNA capture, were compared for their efficiency and accuracy to assess fish community structure with known fish abundance and biomass via eDNA metabarcoding. Our results showed that different filters (with the exception of 20-µm large-pore filters) were broadly consistent in their DNA capture ability. The 0.45-µm filters performed the best in terms of total DNA yield, probability of species detection, repeatability within pond and consistency between ponds. However performance of 0.45-µm filters was only marginally better than for 0.8-µm filters, while filtration time was significantly longer. Given this trade-off, the 0.8-µm filter is the optimal pore size of membrane filter for turbid, eutrophic and high fish density ponds analysed here. The 0.45-µm Sterivex enclosed filters performed reasonably well and are suitable in situations where on-site filtration is required. Finally, prefilters are applied only if absolutely essential for reducing the filtration time or increasing the throughput volume of the capture filters. In summary, we found encouraging similarity in the results obtained from different filtration methods, but the optimal pore size of filter or filter type might strongly depend on the water type under study.

17.
MethodsX ; 2: 458-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26740925

RESUMO

Legionella, an opportunistic human pathogen whose natural environment is water, is transmitted to humans through inhalation of contaminated aerosols. Legionella has been isolated from a high diversity of water types. Due its importance as a pathogen, two ISO protocols have been developed for its monitoring. However, these two protocols are not suitable for analyzing Legionella in greywater (GW). GW is domestic wastewater excluding the inputs from toilets and kitchen. It can serve as an alternative water source, mainly for toilet flushing and garden irrigation; both producing aerosols that can cause a risk for Legionella infection. Hence, before reuse, GW has to be treated and its quality needs to be monitored. The difficulty of Legionella isolation from GW strives in the very high load of contaminant bacteria. Here we describe a modification of the ISO protocol 11731:1998 that enables the isolation and quantification of Legionella from GW samples. The following modifications were made:•To enable isolation of Legionella from greywater, a pre-filtration step that removes coarse matter is recommended.•Legionella can be isolated after a combined acid-thermic treatment that eliminates the high load of contaminant bacteria in the sample.

18.
PDA J Pharm Sci Technol ; 67(6): 601-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24265301

RESUMO

Microbial control during the drug substance and drug product manufacturing process is critical for ensuring product quality and safety. For sterile biological drug products (finished dosage forms) typically manufactured by sterile filtration followed by aseptic processing, control of the microbial load at the sterile filtration step is an important component of the overall microbial control strategy. Both FDA and EMA regulatory guidelines stipulate that a maximum acceptable bioburden level, which is referred to as a pre-filtration bioburden level in this paper, should be stated at the point immediately prior to the sterile filtration step. The EMA guideline further states that a bioburden limit of no more than 10 colony-forming units (CFU) per 100 mL will be considered acceptable in most situations. The EMA guideline also states that a pre-filtration sample volume of less than 100 mL may be tested if justified. This paper introduces a risk-based method to establish pre-filtration bioburden acceptance levels and alternative test volumes. The relationship between bioburden risk, pre-filtration bioburden test limits, and sterile filtration process parameters, such as filtration volume, filter surface area, and microbial retention capacity of the sterilizing filter, was statistically determined. Taking into account the batch filtration volume, it is shown that pre-filtration bioburden test volumes and acceptance limits other than 10 CFU/100 mL may be justified, without compromise to sterility assurance. LAY ABSTRACT: In the manufacturing of sterile medicinal products, good manufacturing practice requires that bioburden be monitored before the final sterilization filtration step. High bioburden increases the challenge to the sterilizing filter and may also lead to other quality issues. Therefore a pre-filtration bioburden limit should be established. This paper introduces a risk-based method to establish such limit which may be different from what is recommended in regulatory guidelines.


Assuntos
Filtração , Esterilização , Produtos Biológicos , Contagem de Colônia Microbiana , Formas de Dosagem , Humanos
19.
Chinese Pharmaceutical Journal ; (24): 623-628, 2015.
Artigo em Chinês | WPRIM | ID: wpr-859406

RESUMO

OBJECTIVE: To carry out standardization research on pre-filtration method for microbial test solutions of drugs and establish a new double-membrane filtration method in microbial tests. METHODS: New filters with double-membranes of different materials or pore-sizes were designed and used as pre-filters for microbial tests. The effects of test solution pre-filtration on several wild-type strains were evaluated and compared with the methods described by Chinese Pharmacopoeia. RESULTS: No statistical difference was found between the double-membrane filtration method and the pharmacopoeia method. However, filter-clogging was significantly reduced by using the double-membrane filtration method, and the double-membrane filtration method could also eliminate the antibacterial activity of the samples, thus reducing the damage or loss of microorganisms in special samples. CONCLUSION: The double-membrane filtration method meets the requirements of the Chinese Pharmacopoeia; the test results are valid and the method can be used for sterility test and microbial limit test for drug products.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa