Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 380
Filtrar
1.
Cell ; 182(4): 960-975.e15, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32763155

RESUMO

Parental behavior is pervasive throughout the animal kingdom and essential for species survival. However, the relative contribution of the father to offspring care differs markedly across animals, even between related species. The mechanisms that organize and control paternal behavior remain poorly understood. Using Sprague-Dawley rats and C57BL/6 mice, two species at opposite ends of the paternal spectrum, we identified that distinct electrical oscillation patterns in neuroendocrine dopamine neurons link to a chain of low dopamine release, high circulating prolactin, prolactin receptor-dependent activation of medial preoptic area galanin neurons, and paternal care behavior in male mice. In rats, the same parameters exhibit inverse profiles. Optogenetic manipulation of these rhythms in mice dramatically shifted serum prolactin and paternal behavior, whereas injecting prolactin into non-paternal rat sires triggered expression of parental care. These findings identify a frequency-tuned brain-endocrine-brain circuit that can act as a gain control system determining a species' parental strategy.


Assuntos
Dopamina/metabolismo , Hipotálamo/fisiologia , Neurônios/fisiologia , Comportamento Paterno/fisiologia , Animais , Encéfalo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Optogenética , Técnicas de Patch-Clamp , Prolactina/sangue , Ratos , Ratos Sprague-Dawley , Receptores da Prolactina/deficiência , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(10): e2212646120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848562

RESUMO

The sexually dimorphic nucleus of the preoptic area (SDN-POA) is the oldest and most robust sex difference reported in mammalian brain and is singular for its presence across a wide range of species from rodents to ungulates to man. This small collection of Nissl-dense neurons is reliably larger in volume in males. Despite its notoriety and intense interrogation, both the mechanism establishing the sex difference and the functional role of the SDN have remained elusive. Convergent evidence from rodent studies led to the conclusion that testicular androgens aromatized to estrogens are neuroprotective in males and that higher apoptosis (naturally occurring cell death) in females determines their smaller SDN. In several species, including humans, a smaller SDN correlates with a preference for mating with males. We report here that this volume difference is dependent upon a participatory role of phagocytic microglia which engulf more neurons in the female SDN and assure their destruction. Selectively blocking microglia phagocytosis temporarily spared neurons from apoptotic death and increased SDN volume in females without hormone treatment. Increasing the number of neurons in the SDN in neonatal females resulted in loss of preference for male odors in adulthood, an effect paralleled by dampened excitation of SDN neurons as evidenced by reduced immediate early gene (IEG) expression when exposed to male urine. Thus, the mechanism establishing a sex difference in SDN volume includes an essential role for microglia, and SDN function as a regulator of sexual partner preference is confirmed.


Assuntos
Microglia , Área Pré-Óptica , Humanos , Ratos , Feminino , Masculino , Animais , Comportamento Sexual , Reprodução , Fagocitose , Mamíferos
3.
J Neurosci ; 44(23)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38658166

RESUMO

Aggression is a crucial behavior that impacts access to limited resources in different environmental contexts. Androgens synthesized by the gonads promote aggression during the breeding season. However, aggression can be expressed during the non-breeding season, despite low androgen synthesis by the gonads. The brain can also synthesize steroids ("neurosteroids"), including androgens, which might promote aggression during the non-breeding season. Male song sparrows, Melospiza melodia, are territorial year-round and allow the study of seasonal changes in the steroid modulation of aggression. Here, we quantified steroids following a simulated territorial intrusion (STI) for 10 min in wild adult male song sparrows during the breeding and non-breeding seasons. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we examined 11 steroids: pregnenolone, progesterone, corticosterone, dehydroepiandrosterone, androstenedione, testosterone, 5α-dihydrotestosterone, 17ß-estradiol, 17α-estradiol, estriol, and estrone. Steroids were measured in blood and 10 microdissected brain regions that regulate social behavior. In both seasons, STI increased corticosterone in the blood and brain. In the breeding season, STI had no rapid effects on androgens or estrogens. Intriguingly, in the non-breeding season, STI increased testosterone and androstenedione in several behaviorally relevant regions, but not in the blood, where androgens remained non-detectable. Also in the non-breeding season, STI increased progesterone in the blood and specific brain regions. Overall, rapid socially modulated changes in brain steroid levels are more prominent during the non-breeding season. Brain steroid levels vary with season and social context in a region-specific manner and suggest a role for neuroandrogens in aggression during the non-breeding season.


Assuntos
Agressão , Androgênios , Encéfalo , Estações do Ano , Pardais , Territorialidade , Animais , Masculino , Agressão/fisiologia , Androgênios/metabolismo , Encéfalo/metabolismo , Pardais/fisiologia , Pardais/metabolismo , Aves Canoras/metabolismo
4.
J Neurosci ; 44(8)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38238074

RESUMO

The suprachiasmatic nucleus (SCN) is the central clock for circadian rhythms. Animal studies have revealed daily rhythms in the neuronal activity in the SCN. However, the circadian activity of the human SCN has remained elusive. In this study, to reveal the diurnal variation of the SCN activity in humans, we localized the SCN by employing an areal boundary mapping technique to resting-state functional images and investigated the SCN activity using perfusion imaging. In the first experiment (n = 27, including both sexes), we scanned each participant four times a day, every 6 h. Higher activity was observed at noon, while lower activity was recorded in the early morning. In the second experiment (n = 20, including both sexes), the SCN activity was measured every 30 min for 6 h from midnight to dawn. The results showed that the SCN activity gradually decreased and was not associated with the electroencephalography. Furthermore, the SCN activity was compatible with the rodent SCN activity after switching off the lights. These results suggest that the diurnal variation of the human SCN follows the zeitgeber cycles of nocturnal and diurnal mammals and is modulated by physical lights rather than the local time.


Assuntos
Ritmo Circadiano , Núcleo Supraquiasmático , Masculino , Animais , Feminino , Humanos , Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/fisiologia , Roedores , Mamíferos , Neurônios
5.
Front Neuroendocrinol ; : 101155, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39222798

RESUMO

This manuscript proposes that melanin-concentrating hormone (MCH) in the medial preoptic area (MPOA) is an neurochemical signal evolved to trigger the declining process of maternal care. MCH in the MPOA appears only after parturition and is progressively increased with the progression of lactation, while maternal behavior declines progressively. Intra-MPOA injection of MCH decreases active maternal responses. MCH is also highly responsive to infant characteristics and maternal condition. Behavioral changes induced by MCH in late postpartum period are conducive to the decline of infant-directed maternal behavior. The MPOA MCH system may mediate the maternal behavior decline by suppressing the maternal approach motivation and/or to increase maternal withdrawal via its inhibitory action onto the mesolimbic dopamine D1/D2 receptors and its stimulating action on serotonin 5-HT2C receptors in the ventral tegmental area. Research into the MCH maternal effects will enhance our understanding of the neurochemical mechanisms underlying the maternal behavior decline.

6.
J Neurosci ; 43(22): 4075-4092, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37117013

RESUMO

To understand how sleep-wakefulness cycles are regulated, it is essential to disentangle structural and functional relationships between the preoptic area (POA) and lateral hypothalamic area (LHA), since these regions play important yet opposing roles in the sleep-wakefulness regulation. GABA- and galanin (GAL)-producing neurons in the ventrolateral preoptic nucleus (VLPO) of the POA (VLPOGABA and VLPOGAL neurons) are responsible for the maintenance of sleep, while the LHA contains orexin-producing neurons (orexin neurons) that are crucial for maintenance of wakefulness. Through the use of rabies virus-mediated neural tracing combined with in situ hybridization (ISH) in male and female orexin-iCre mice, we revealed that the vesicular GABA transporter (Vgat, Slc32a1)- and galanin (Gal)-expressing neurons in the VLPO directly synapse with orexin neurons in the LHA. A majority (56.3 ± 8.1%) of all VLPO input neurons connecting to orexin neurons were double-positive for Vgat and Gal Using projection-specific rabies virus-mediated tracing in male and female Vgat-ires-Cre and Gal-Cre mice, we discovered that VLPOGABA and VLPOGAL neurons that send projections to the LHA received innervations from similarly distributed input neurons in many brain regions, with the POA and LHA being among the main upstream areas. Additionally, we found that acute optogenetic excitation of axons of VLPOGABA neurons, but not VLPOGAL neurons, in the LHA of male Vgat-ires-Cre mice induced wakefulness. This study deciphers the connectivity between the VLPO and LHA, provides a large-scale map of upstream neuronal populations of VLPO→LHA neurons, and reveals a previously uncovered function of the VLPOGABA→LHA pathway in the regulation of sleep and wakefulness.SIGNIFICANCE STATEMENT We identified neurons in the ventrolateral preoptic nucleus (VLPO) that are positive for vesicular GABA transporter (Vgat) and/or galanin (Gal) and serve as presynaptic partners of orexin-producing neurons in the lateral hypothalamic area (LHA). We depicted monosynaptic input neurons of GABA- and galanin-producing neurons in the VLPO that send projections to the LHA throughout the entire brain. Their input neurons largely overlap, suggesting that they comprise a common neuronal population. However, acute excitatory optogenetic manipulation of the VLPOGABA→LHA pathway, but not the VLPOGAL→LHA pathway, evoked wakefulness. This study shows the connectivity of major components of the sleep/wake circuitry in the hypothalamus and unveils a previously unrecognized function of the VLPOGABA→LHA pathway in sleep-wakefulness regulation. Furthermore, we suggest the existence of subpopulations of VLPOGABA neurons that innervate LHA.


Assuntos
Região Hipotalâmica Lateral , Área Pré-Óptica , Camundongos , Masculino , Feminino , Animais , Área Pré-Óptica/fisiologia , Região Hipotalâmica Lateral/fisiologia , Orexinas/metabolismo , Galanina/metabolismo , Neurônios/fisiologia , Vigília/fisiologia , Sono/fisiologia , Ácido gama-Aminobutírico/metabolismo
7.
J Neurosci ; 43(28): 5221-5240, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37339876

RESUMO

Thermoregulatory behavior in homeothermic animals is an innate behavior to defend body core temperature from environmental thermal challenges in coordination with autonomous thermoregulatory responses. In contrast to the progress in understanding the central mechanisms of autonomous thermoregulation, those of behavioral thermoregulation remain poorly understood. We have previously shown that the lateral parabrachial nucleus (LPB) mediates cutaneous thermosensory afferent signaling for thermoregulation. To understand the thermosensory neural network for behavioral thermoregulation, in the present study, we investigated the roles of ascending thermosensory pathways from the LPB in avoidance behavior from innocuous heat and cold in male rats. Neuronal tracing revealed two segregated groups of LPB neurons projecting to the median preoptic nucleus (MnPO), a thermoregulatory center (LPB→MnPO neurons), and those projecting to the central amygdaloid nucleus (CeA), a limbic emotion center (LPB→CeA neurons). While LPB→MnPO neurons include separate subgroups activated by heat or cold exposure of rats, LPB→CeA neurons were only activated by cold exposure. By selectively inhibiting LPB→MnPO or LPB→CeA neurons using tetanus toxin light chain or chemogenetic or optogenetic techniques, we found that LPB→MnPO transmission mediates heat avoidance, whereas LPB→CeA transmission contributes to cold avoidance. In vivo electrophysiological experiments showed that skin cooling-evoked thermogenesis in brown adipose tissue requires not only LPB→MnPO neurons but also LPB→CeA neurons, providing a novel insight into the central mechanism of autonomous thermoregulation. Our findings reveal an important framework of central thermosensory afferent pathways to coordinate behavioral and autonomous thermoregulation and to generate the emotions of thermal comfort and discomfort that drive thermoregulatory behavior.SIGNIFICANCE STATEMENT Coordination of behavioral and autonomous thermoregulation is important for maintaining thermal homeostasis in homeothermic animals. However, the central mechanism of thermoregulatory behaviors remains poorly understood. We have previously shown that the lateral parabrachial nucleus (LPB) mediates ascending thermosensory signaling that drives thermoregulatory behavior. In this study, we found that one pathway from the LPB to the median preoptic nucleus mediates heat avoidance, whereas the other pathway from the LPB to the central amygdaloid nucleus is required for cold avoidance. Surprisingly, both pathways are required for skin cooling-evoked thermogenesis in brown adipose tissue, an autonomous thermoregulatory response. This study provides a central thermosensory network that coordinates behavioral and autonomous thermoregulation and generates thermal comfort and discomfort that drive thermoregulatory behavior.


Assuntos
Núcleos Parabraquiais , Masculino , Ratos , Animais , Núcleos Parabraquiais/fisiologia , Regulação da Temperatura Corporal/fisiologia , Pele , Temperatura Baixa , Vias Aferentes , Vias Neurais/fisiologia
8.
J Neurosci ; 43(44): 7322-7336, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722849

RESUMO

The medial preoptic area (MPOA) is a sexually dimorphic region of the brain that regulates social behaviors. The sexually dimorphic nucleus (SDN) of the MPOA has been studied to understand sexual dimorphism, although the anatomy and physiology of the SDN is not fully understood. Here, we characterized SDN neurons that contribute to sexual dimorphism and investigated the mechanisms underlying the emergence of such neurons and their roles in social behaviors. A target-specific neuroanatomical study using transgenic mice expressing Cre recombinase under the control of Calb1, a gene expressed abundantly in the SDN, revealed that SDN neurons are divided into two subpopulations, GABA neurons projecting to the ventral tegmental area (VTA), where they link to the dopamine system (CalbVTA neurons), and GABA neurons that extend axons in the MPOA or project to neighboring regions (CalbnonVTA neurons). CalbVTA neurons were abundant in males, but were scarce or absent in females. There was no difference in the number of CalbnonVTA neurons between sexes. Additionally, we found that emergence of CalbVTA neurons requires two testicular androgen actions that occur first in the postnatal period and second in the peripubertal period. Chemogenetic analyses of CalbVTA neurons indicated a role in modulating sexual motivation in males. Knockdown of Calb1 in the MPOA reduced the intromission required for males to complete copulation. These findings provide strong evidence that a male-specific neural pathway from the MPOA to the VTA is organized by the two-step actions of testicular androgens for the modulation of sexually motivated behavior.SIGNIFICANCE STATEMENT The MPOA is a sexually dimorphic region of the brain that regulates social behaviors, although its sexual dimorphism is not fully understood. Here, we describe a population of MPOA neurons that contribute to the sexual dimorphism. These neurons only exist in masculinized brains, and they project their axons to the ventral tegmental area, where they link to the dopamine system. Emergence of such neurons requires two testicular androgen actions that occur first in the postnatal period and second in the peripubertal period. These MPOA neurons endow masculinized brains with a neural pathway from the MPOA to the ventral tegmental area and modulate sexually motivated behavior in males.


Assuntos
Androgênios , Área Pré-Óptica , Animais , Camundongos , Feminino , Masculino , Área Pré-Óptica/fisiologia , Androgênios/metabolismo , Área Tegmentar Ventral , Dopamina/metabolismo , Vias Neurais , Camundongos Transgênicos
9.
Acta Pharmacol Sin ; 45(9): 1832-1847, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38702500

RESUMO

It has been shown that prostaglandin (PG) E2 synthesized in the lateral parabrachial nucleus (LPBN) is involved in lipopolysaccharide-induced fever. But the neural mechanisms of how intra-LPBN PGE2 induces fever remain unclear. In this study, we investigated whether the LPBN-preoptic area (POA) pathway, the thermoafferent pathway for feed-forward thermoregulatory responses, mediates fever induced by intra-LPBN PGE2 in male rats. The core temperature (Tcore) was monitored using a temperature radiotelemetry transponder implanted in rat abdomen. We showed that microinjection of PGE2 (0.28 nmol) into the LPBN significantly enhanced the density of c-Fos-positive neurons in the median preoptic area (MnPO). The chemical lesioning of MnPO with ibotenate or selective genetic lesioning or inhibition of the LPBN-MnPO pathway significantly attenuated fever induced by intra-LPBN injection of PGE2. We demonstrated that EP3 receptor was a pivotal receptor for PGE2-induced fever, since microinjection of EP3 receptor agonist sulprostone (0.2 nmol) or EP3 receptor antagonist L-798106 (2 nmol) into the LPBN mimicked or weakened the pyrogenic action of LPBN PGE2, respectively, but this was not the case for EP4 and EP1 receptors. Whole-cell recording from acute LPBN slices revealed that the majority of MnPO-projecting neurons originating from the external lateral (el) and dorsal (d) LPBN were excited and inhibited, respectively, by PGE2 perfusion, initiating heat-gain and heat-loss mechanisms. The amplitude but not the frequency of spontaneous and miniature glutamatergic excitatory postsynaptic currents (sEPSCs and mEPSCs) in MnPO-projecting LPBel neurons increased after perfusion with PGE2; whereas the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) and the A-type potassium (IA) current density did not change. In MnPO-projecting LPBd neurons, neither sEPSCs nor sIPSCs responded to PGE2; however, the IA current density was significantly increased by PGE2 perfusion. These electrophysiological responses and the thermoeffector reactions to intra-LPBN PGE2 injection, including increased brown adipose tissue thermogenesis, shivering, and decreased heat dissipation, were all abolished by L-798106, and mimicked by sulprostone. These results suggest that the pyrogenic effects of intra-LPBN PGE2 are mediated by both the inhibition of the LPBd-POA pathway through the EP3 receptor-mediated activation of IA currents and the activation of the LPBel-POA pathway through the selective enhancement of glutamatergic synaptic transmission via EP3 receptors.


Assuntos
Regulação da Temperatura Corporal , Dinoprostona , Febre , Núcleos Parabraquiais , Área Pré-Óptica , Receptores de Prostaglandina E Subtipo EP3 , Animais , Masculino , Ratos , Regulação da Temperatura Corporal/efeitos dos fármacos , Dinoprostona/farmacologia , Febre/induzido quimicamente , Febre/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleos Parabraquiais/efeitos dos fármacos , Núcleos Parabraquiais/fisiologia , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/metabolismo , Ratos Sprague-Dawley , Receptores de Prostaglandina E Subtipo EP3/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972431

RESUMO

Febrile seizures (FSs) are the most common convulsion in infancy and childhood. Considering the limitations of current treatments, it is important to examine the mechanistic cause of FSs. Prompted by a genome-wide association study identifying TMEM16C (also known as ANO3) as a risk factor of FSs, we showed previously that loss of TMEM16C function causes hippocampal neuronal hyperexcitability [Feenstra et al., Nat. Genet. 46, 1274-1282 (2014)]. Our previous study further revealed a reduction in the number of warm-sensitive neurons that increase their action potential firing rate with rising temperature of the brain region harboring these hypothalamic neurons. Whereas central neuronal hyperexcitability has been implicated in FSs, it is unclear whether the maximal temperature reached during fever or the rate of body temperature rise affects FSs. Here we report that mutant rodent pups with TMEM16C eliminated from all or a subset of their central neurons serve as FS models with deficient thermoregulation. Tmem16c knockout (KO) rat pups at postnatal day 10 (P10) are more susceptible to hyperthermia-induced seizures. Moreover, they display a more rapid rise of body temperature upon heat exposure. In addition, conditional knockout (cKO) mouse pups (P11) with TMEM16C deletion from the brain display greater susceptibility of hyperthermia-induced seizures as well as deficiency in thermoregulation. We also found similar phenotypes in P11 cKO mouse pups with TMEM16C deletion from Ptgds-expressing cells, including temperature-sensitive neurons in the preoptic area (POA) of the anterior hypothalamus, the brain region that controls body temperature. These findings suggest that homeostatic thermoregulation plays an important role in FSs.


Assuntos
Regulação da Temperatura Corporal/genética , Canais de Cloreto/genética , Febre/genética , Hipertermia/genética , Área Pré-Óptica/metabolismo , Convulsões Febris/genética , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/fisiologia , Canais de Cloreto/deficiência , Feminino , Febre/induzido quimicamente , Febre/metabolismo , Febre/fisiopatologia , Expressão Gênica , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Hipertermia/metabolismo , Hipertermia/fisiopatologia , Ácido Caínico/administração & dosagem , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Área Pré-Óptica/fisiopatologia , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Ratos , Convulsões Febris/induzido quimicamente , Convulsões Febris/metabolismo , Convulsões Febris/fisiopatologia
11.
J Headache Pain ; 25(1): 7, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212704

RESUMO

BACKGROUND: Despite hypothalamus has long being considered to be involved in the pathophysiology of cluster headache, the inconsistencies of previous neuroimaging studies and a limited understanding of the hypothalamic areas involved, impede a comprehensive interpretation of its involvement in this condition. METHODS: We used an automated algorithm to extract hypothalamic subunit volumes from 105 cluster headache patients (57 chronic and 48 episodic) and 59 healthy individuals; after correcting the measures for the respective intracranial volumes, we performed the relevant comparisons employing logist regression models. Only for subunits that emerged as abnormal, we calculated their correlation with the years of illness and the number of headache attacks per day, and the effects of lithium treatment. As a post-hoc approach, using the 7 T resting-state fMRI dataset from the Human Connectome Project, we investigated whether the observed abnormal subunit, comprising the paraventricular nucleus and preoptic area, shows robust functional connectivity with the mesocorticolimbic system, which is known to be modulated by oxytocin neurons in the paraventricular nucleus and that is is abnormal in chronic cluster headache patients. RESULTS: Patients with chronic (but not episodic) cluster headache, compared to control participants, present an increased volume of the anterior-superior hypothalamic subunit ipsilateral to the pain, which, remarkably, also correlates significantly with the number of daily attacks. The post-hoc approach showed that this hypothalamic area presents robust functional connectivity with the mesocorticolimbic system under physiological conditions. No evidence of the effects of lithium treatment on this abnormal subunit was found. CONCLUSIONS: We identified the ipsilateral-to-the-pain antero-superior subunit, where the paraventricular nucleus and preoptic area are located, as the key hypothalamic region of the pathophysiology of chronic cluster headache. The significant correlation between the volume of this area and the number of daily attacks crucially reinforces this interpretation. The well-known roles of the paraventricular nucleus in coordinating autonomic and neuroendocrine flow in stress adaptation and modulation of trigeminovascular mechanisms offer important insights into the understanding of the pathophysiology of cluster headache.


Assuntos
Cefaleia Histamínica , Humanos , Cefaleia Histamínica/terapia , Dor , Cefaleia , Hipotálamo/diagnóstico por imagem , Compostos de Lítio
12.
BMC Neurosci ; 24(1): 41, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537543

RESUMO

BACKGROUND: Song performed in flocks by European starlings (Sturnus vulgaris), referred to here as gregarious song, is a non-sexual, social behavior performed by adult birds. Gregarious song is thought to be an intrinsically reinforced behavior facilitated by a low-stress, positive affective state that increases social cohesion within a flock. The medial preoptic area (mPOA) is a region known to have a role in the production of gregarious song. However, the neurochemical systems that potentially act within this region to regulate song remain largely unexplored. In this study, we used RNA sequencing to characterize patterns of gene expression in the mPOA of male and female starlings singing gregarious song to identify possibly novel neurotransmitter, neuromodulator, and hormonal pathways that may be involved in the production of gregarious song. RESULTS: Differential gene expression analysis and rank rank hypergeometric analysis indicated that dopaminergic, cholinergic, and GABAergic systems were associated with the production of gregarious song, with multiple receptor genes (e.g., DRD2, DRD5, CHRM4, GABRD) upregulated in the mPOA of starlings who sang at high rates. Additionally, co-expression network analyses identified co-expressing gene clusters of glutamate signaling-related genes associated with song. One of these clusters contained five glutamate receptor genes and two glutamate scaffolding genes and was significantly enriched for genetic pathways involved in neurodevelopmental disorders associated with social deficits in humans. Two of these genes, GRIN1 and SHANK2, were positively correlated with performance of gregarious song. CONCLUSIONS: This work provides new insights into the role of the mPOA in non-sexual, gregarious song in starlings and highlights candidate genes that may play a role in gregarious social interactions across vertebrates. The provided data will also allow other researchers to compare across species to identify conserved systems that regulate social behavior.


Assuntos
Canto , Estorninhos , Animais , Humanos , Masculino , Feminino , Estorninhos/metabolismo , Vocalização Animal/fisiologia , Área Pré-Óptica/metabolismo , Expressão Gênica
13.
Horm Behav ; 148: 105296, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36528006

RESUMO

The medial preoptic area (mPOA) in the hypothalamus is an important integrator of neuroendocrine signaling and a key regulator of both natural and drug-induced reward. Although the mPOA modulates sex differences in other behaviors, whether it also modulates sex differences in cocaine response remains unclear. To help us better understand the mPOA's role in sex differences associated with cocaine response, we examined cocaine-induced changes in locomotion and neural activity in the mPOA of male and female rats. In addition, neural activity in the striatum, a brain area known to be involved in cocaine response, was examined for comparison purposes. Fos, the protein product of the immediate early gene c-fos, was used as the marker of neural activity. Locomotion chambers were used to measure behavior, radioimmunoassays and vaginal lavages were used to determine hormonal status, and immunohistochemical assays were used to quantify Fos. To account for the effects of gonadal hormones, rats were left gonadally intact and categorized as either 'low-estradiol' or 'high-estradiol' based on their hormonal status on test day. Results indicate that high-estradiol females experienced greater cocaine-induced mPOA Fos-immunoreactivity (Fos-ir) and displayed greater cocaine-induced locomotion than low estradiol females. Conversely, high-estradiol males experienced less cocaine-induced mPOA Fos-ir and displayed less cocaine-induced locomotion than low-estradiol males. Cocaine-induced Fos-ir in the mPOA also correlated with cocaine-induced Fos-ir in areas of the striatum already associated with cocaine response. These findings further support the mPOA's role in the endocrine-mediated response to cocaine. It also identifies the mPOA as a contributor to sex differences in cocaine response and potential differences in vulnerability to developing cocaine use disorders.


Assuntos
Cocaína , Estradiol , Ratos , Feminino , Masculino , Animais , Estradiol/farmacologia , Estradiol/metabolismo , Área Pré-Óptica/metabolismo , Cocaína/farmacologia , Hipotálamo/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
14.
Neuroendocrinology ; 113(11): 1154-1166, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37429264

RESUMO

INTRODUCTION: The medial preoptic area (mPOA) is an important regulator of natural and drug-induced reward. However, despite the mPOA being implicated in sexually dimorphic reward responses, sex differences in medial preoptic efferents to the ventral tegmental area (VTA) have not been fully investigated. METHODS: Two cohorts of male and female rats received unilateral injections of the tract-tracer Fluoro-Gold (FLG) into the VTA. Immunohistochemical staining was used to quantify co-labeled FLG-positive neurons with γ-aminobutyric acid (GABA), estrogen receptor α (ERα), and androgen receptors (AR). RESULTS: Results revealed a pattern of VTA innervation that was comparable between males and females; more efferents emerged from the rostrocentral portions of the mPOA than caudal portions. Results also indicated that males and females had the same percentage of GABAergic mPOA-VTA projections. Differences emerged when investigating the hormone receptor profile of projections to the VTA, where females had a greater percentage of efferents expressing ERα and males had a greater percentage of efferents expressing AR, in the central portion of the mPOA. Lastly, FLG-positive cells were colocalized with GABA and ERα in cohort 1 and GABA and AR in cohort 2. The majority of AR-expressing cells colocalized with GABAergic efferents to the VTA, but only a portion of ERα-expressing cells colocalized with GABAergic efferents to the VTA. CONCLUSION: Results indicate that sex differences are present in the sex-steroid hormone receptor content of mPOA-VTA projections, particularly among efferents arising from the central region of the mPOA. These sexually dimorphic connections may influence a wide range of sex differences in reward responses.


Assuntos
Receptor alfa de Estrogênio , Área Tegmentar Ventral , Humanos , Ratos , Feminino , Masculino , Animais , Área Tegmentar Ventral/fisiologia , Caracteres Sexuais , Área Pré-Óptica/fisiologia , Ácido gama-Aminobutírico , Hormônios Esteroides Gonadais , Recompensa , Hormônios
15.
Gen Comp Endocrinol ; 333: 114185, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509136

RESUMO

Sex differences in cell number in the preoptic area of the hypothalamus (POA) are documented across all major vertebrate lineages and contribute to differential regulation of the hypothalamic-pituitary-gonad axis and reproductive behavior between the sexes. Sex-changing fishes provide a unique opportunity to study mechanisms underlying sexual differentiation of the POA. In anemonefish (clownfish), which change sex from male to female, females have approximately twice the number of medium-sized cells in the anterior POA compared to males. This sex difference transitions from male-like to female-like during sex change. However, it is not known how this sex difference in POA cell number is established. This study tests the hypothesis that new cell addition plays a role. We initiated adult male-to-female sex change in 30 anemonefish (Amphiprion ocellaris) and administered BrdU to label new cells added to the POA at regular intervals throughout sex change. Sex-changing fish added more new cells to the anterior POA than non-changing fish, supporting the hypothesis. The observed effects could be accounted for by differences in POA volume, but they are also consistent with a steady trickle of new cells being gradually accumulated in the anterior POA before vitellogenic oocytes develop in the gonads. These results provide insight into the unique characteristics of protandrous sex change in anemonefish relative to other modes of sex change, and support the potential for future research in sex-changing fishes to provide a richer understanding of the mechanisms for sexual differentiation of the brain.


Assuntos
Perciformes , Área Pré-Óptica , Animais , Feminino , Masculino , Perciformes/fisiologia , Peixes/fisiologia , Gônadas , Diferenciação Sexual/fisiologia , Caracteres Sexuais
16.
J Therm Biol ; 113: 103529, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37055134

RESUMO

Agmatine is an endogenous biogenic amine that exerts various effects on the central nervous system. The hypothalamic preoptic area (POA, thermoregulatory command center) has high agmatine immunoreactivity. In this study, in conscious and anesthetized male rats, agmatine microinjection into the POA induced hyperthermic responses associated with increased heat production and locomotor activity. Intra-POA administration of agmatine increased the locomotor activity, the brown adipose tissue temperature and rectum temperature, and induced shivering as demonstrated by increased neck muscle electromyographic activity. However, intra-POA administration of agmatine almost had no impact on the tail temperature of anesthetized rats. Furthermore, there were regional differences in the response to agmatine in the POA. The most effective sites for the microinjection of agmatine to elicit hyperthermic responses were localized in the medial preoptic area (MPA). Agmatine microinjection into the median preoptic nucleus (MnPO) and lateral preoptic nucleus (LPO) had a minimal effect on the mean core temperature. Analysis of the in vitro discharge activity of POA neurons in brain slices when perfused with agmatine showed that agmatine inhibited most warm-sensitive but not temperature-insensitive neurons in the MPA. However, regardless of thermosensitivity, the majority of MnPO and LPO neurons were not responsive to agmatine. The results demonstrated that agmatine injection into the POA of male rats, especially the MPA, induced hyperthermic responses, which may be associated with increased BAT thermogenesis, shivering and locomotor activity by inhibiting warm-sensitive neurons.


Assuntos
Agmatina , Área Pré-Óptica , Ratos , Masculino , Animais , Área Pré-Óptica/fisiologia , Agmatina/farmacologia , Regulação da Temperatura Corporal/fisiologia , Hipotálamo , Estremecimento
17.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176016

RESUMO

The ventrolateral preoptic area (VLPO) contains GABAergic sleep-active neurons. However, the extent to which these neurons are involved in expressing spontaneous sleep and homeostatic sleep regulatory demands is not fully understood. We used calcium (Ca2+) imaging to characterize the activity dynamics of VLPO neurons, especially those expressing the vesicular GABA transporter (VGAT) across spontaneous sleep-waking and in response to homeostatic sleep demands. The VLPOs of wild-type and VGAT-Cre mice were transfected with GCaMP6, and the Ca2+ fluorescence of unidentified (UNID) and VGAT cells was recorded during spontaneous sleep-waking and 3 h of sleep deprivation (SD) followed by 1 h of recovery sleep. Although both VGAT and UNID neurons exhibited heterogeneous Ca2+ fluorescence across sleep-waking, the majority of VLPO neurons displayed increased activity during nonREM/REM (VGAT, 120/303; UNID, 39/106) and REM sleep (VGAT, 32/303; UNID, 19/106). Compared to the baseline waking, VLPO sleep-active neurons (n = 91) exhibited higher activity with increasing SD that remained elevated during the recovery period. These neurons also exhibited increased Ca2+ fluorescence during nonREM sleep, marked by increased slow-wave activity and REM sleep during recovery after SD. These findings support the notion that VLPO sleep-active neurons, including GABAergic neurons, are components of neuronal circuitry that mediate spontaneous sleep and homeostatic responses to sustained wakefulness.


Assuntos
Cálcio , Sono , Camundongos , Animais , Sono/fisiologia , Neurônios GABAérgicos/fisiologia , Privação do Sono , Sono REM , Área Pré-Óptica , Cálcio da Dieta
18.
J Neurosci ; 41(16): 3610-3621, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33687961

RESUMO

Local interneurons of the olfactory bulb (OB) are densely innervated by long-range GABAergic neurons from the basal forebrain (BF), suggesting that this top-down inhibition regulates early processing in the olfactory system. However, how GABAergic inputs modulate the OB output neurons, the mitral/tufted cells, is unknown. Here, in male and female mice acute brain slices, we show that optogenetic activation of BF GABAergic inputs produced distinct local circuit effects that can influence the activity of mitral/tufted cells in the spatiotemporal domains. Activation of the GABAergic axons produced a fast disinhibition of mitral/tufted cells consistent with a rapid and synchronous release of GABA onto local interneurons in the glomerular and inframitral circuits of the OB, which also reduced the spike precision of mitral/tufted cells in response to simulated stimuli. In addition, BF GABAergic inhibition modulated local oscillations in a layer-specific manner. The intensity of locally evoked θ oscillations was decreased on activation of top-down inhibition in the glomerular circuit, while evoked γ oscillations were reduced by inhibition of granule cells. Furthermore, BF GABAergic input reduced dendrodendritic inhibition in mitral/tufted cells. Together, these results suggest that long-range GABAergic neurons from the BF are well suited to influence temporal and spatial aspects of processing by OB circuits.SIGNIFICANCE STATEMENT Disruption of GABAergic inhibition from the basal forebrain (BF) to the olfactory bulb (OB) impairs the discrimination of similar odors, yet how this centrifugal inhibition influences neuronal circuits in the OB remains unclear. Here, we show that the BF GABAergic neurons exclusively target local inhibitory neurons in the OB, having a functional disinhibitory effect on the output neurons, the mitral cells. Phasic inhibition by BF GABAergic neurons reduces spike precision of mitral cells and lowers the intensity of oscillatory activity in the OB, while directly modulating the extent of dendrodendritic inhibition. These circuit-level effects of this centrifugal inhibition can influence the temporal and spatial dynamics of odor coding in the OB.


Assuntos
Antagonistas GABAérgicos/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Bulbo Olfatório/citologia , Bulbo Olfatório/efeitos dos fármacos , Animais , Dendritos/fisiologia , Potenciais Evocados/fisiologia , Feminino , Neurônios GABAérgicos/ultraestrutura , Ritmo Gama/fisiologia , Interneurônios/fisiologia , Interneurônios/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural , Optogenética , Técnicas de Patch-Clamp , Área Pré-Óptica/fisiologia , Prosencéfalo/citologia , Prosencéfalo/fisiologia , Ritmo Teta
19.
BMC Genomics ; 23(1): 679, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183097

RESUMO

BACKGROUND: The importance of fathers' engagement in care and its critical role in the offspring's cognitive and emotional development is now well established. Yet, little is known on the underlying neurobiology due to the lack of appropriate animal models. In the socially monogamous and bi-parental prairie vole (Microtus ochrogaster), while 60-80% of virgin males show spontaneous paternal behaviors (Paternal), others display pup-directed aggression (Attackers). Here we took advantage of this phenotypic dichotomy and used RNA-sequencing in three important brain areas to characterize gene expression associated with paternal behaviors of Paternal males and compare it to experienced Fathers and Mothers. RESULTS: While Paternal males displayed the same range and extent of paternal behaviors as experienced Fathers, we observed structure-specific transcriptomic differences between parental behaviors phenotypes. Using differential expression, gene set expression, as well as co-expression network analyses, we found that phenotypic differences between Paternal males and Attackers were mainly reflected by the lateral septum (LS), and to a lower extent, the nucleus accumbens (NAc), transcriptomes. In the medial preoptic area (MPOA), the profiles of gene expression mainly reflected differences between females and males regardless of their parental behaviors phenotype. Functional enrichment analyses of those gene sets associated with Paternal males or Attackers in the LS and the NAc revealed the involvement of processes related to the mitochondria, RNA translation, protein degradation processes, as well as epigenetic regulation of gene expression. CONCLUSIONS: By leveraging the natural phenotypic differences in parental behaviors in virgin male prairie voles alongside fathers and mothers, we identified a marked structure- and phenotype-specific pattern of gene expression associated with spontaneous paternal behaviors independently from fatherhood and pair-bonding. The LS transcriptome related to the mitochondria, RNA translation, and protein degradation processes was thus highlighted as a primary candidate associated with the spontaneous display of paternal behaviors. Altogether, our observations further characterize the behavioral and transcriptomic signature of parental behaviors in the socially monogamous prairie vole and lay the groundwork to further our understanding of the molecular underpinnings of paternal behavior.


Assuntos
Comportamento Paterno , Transcriptoma , Animais , Arvicolinae/genética , Epigênese Genética , Feminino , Pradaria , Masculino , Comportamento Paterno/fisiologia , RNA/metabolismo
20.
Front Neuroendocrinol ; 63: 100949, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34687674

RESUMO

Male sexual behavior is subject to learning, resulting in increased efficiency of experienced males compared to naive ones. The improvement in behavioral parameters is underpinned by cellular and molecular changes in the neural circuit controlling sexual behavior, particularly in the hypothalamic medial preoptic area. This review provides an update on the mechanisms related to the sexual experience in male rodents, emphasizing the differences between rats and mice.


Assuntos
Área Pré-Óptica , Comportamento Sexual Animal , Animais , Hipotálamo , Masculino , Camundongos , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa