Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 849
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Genet ; 53: 117-147, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31537104

RESUMO

Mammalian prion diseases are a group of neurodegenerative conditions caused by infection of the central nervous system with proteinaceous agents called prions, including sporadic, variant, and iatrogenic Creutzfeldt-Jakob disease; kuru; inherited prion disease; sheep scrapie; bovine spongiform encephalopathy; and chronic wasting disease. Prions are composed of misfolded and multimeric forms of the normal cellular prion protein (PrP). Prion diseases require host expression of the prion protein gene (PRNP) and a range of other cellular functions to support their propagation and toxicity. Inherited forms of prion disease are caused by mutation of PRNP, whereas acquired and sporadically occurring mammalian prion diseases are controlled by powerful genetic risk and modifying factors. Whereas some PrP amino acid variants cause the disease, others confer protection, dramatically altered incubation times, or changes in the clinical phenotype. Multiple mechanisms, including interference with homotypic protein interactions and the selection of the permissible prion strains in a host, play a role. Several non-PRNP factors have now been uncovered that provide insights into pathways of disease susceptibility or neurotoxicity.


Assuntos
Mamíferos/genética , Doenças Priônicas/genética , Proteínas Priônicas/genética , Animais , Bovinos , Modelos Animais de Doenças , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Cabras/genética , Humanos , Camundongos , Polimorfismo Genético , Doenças Priônicas/etiologia , Proteínas Priônicas/metabolismo , Seleção Genética , Ovinos/genética
2.
Proc Natl Acad Sci U S A ; 120(15): e2221060120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37014866

RESUMO

Prions are proteinaceous infectious particles that replicate by structural conversion of the host-encoded cellular prion protein (PrPC), causing fatal neurodegenerative diseases in mammals. Species-specific amino acid substitutions (AAS) arising from single nucleotide polymorphisms within the prion protein gene (Prnp) modulate prion disease pathogenesis, and, in several instances, reduce susceptibility of homo- or heterozygous AAS carriers to prion infection. However, a mechanistic understanding of their protective effects against clinical disease is missing. We generated gene-targeted mouse infection models of chronic wasting disease (CWD), a highly contagious prion disease of cervids. These mice express wild-type deer or PrPC harboring the S138N substitution homo- or heterozygously, a polymorphism found exclusively in reindeer (Rangifer tarandus spp.) and fallow deer (Dama dama). The wild-type deer PrP-expressing model recapitulated CWD pathogenesis including fecal shedding. Encoding at least one 138N allele prevented clinical CWD, accumulation of protease-resistant PrP (PrPres) and abnormal PrP deposits in the brain tissue. However, prion seeding activity was detected in spleens, brains, and feces of these mice, suggesting subclinical infection accompanied by prion shedding. 138N-PrPC was less efficiently converted to PrPres in vitro than wild-type deer (138SS) PrPC. Heterozygous coexpression of wild-type deer and 138N-PrPC resulted in dominant-negative inhibition and progressively diminished prion conversion over serial rounds of protein misfolding cyclic amplification. Our study indicates that heterozygosity at a polymorphic Prnp codon can confer the highest protection against clinical CWD and highlights the potential role of subclinical carriers in CWD transmission.


Assuntos
Cervos , Doenças Priônicas , Príons , Rena , Doença de Emaciação Crônica , Camundongos , Animais , Príons/metabolismo , Proteínas Priônicas/genética , Cervos/genética , Doença de Emaciação Crônica/genética , Camundongos Transgênicos , Doenças Priônicas/genética
3.
J Biol Chem ; 300(8): 107560, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002681

RESUMO

Lowering expression of prion protein (PrP) is a well-validated therapeutic strategy in prion disease, but additional modalities are urgently needed. In other diseases, small molecules have proven capable of modulating pre-mRNA splicing, sometimes by forcing inclusion of cryptic exons that reduce gene expression. Here, we characterize a cryptic exon located in human PRNP's sole intron and evaluate its potential to reduce PrP expression through incorporation into the 5' untranslated region. This exon is homologous to exon 2 in nonprimate species but contains a start codon that would yield an upstream open reading frame with a stop codon prior to a splice site if included in PRNP mRNA, potentially downregulating PrP expression through translational repression or nonsense-mediated decay. We establish a minigene transfection system and test a panel of splice site alterations, identifying mutants that reduce PrP expression by as much as 78%. Our findings nominate a new therapeutic target for lowering PrP.


Assuntos
Éxons , Proteínas Priônicas , Sítios de Splice de RNA , Humanos , Proteínas Priônicas/metabolismo , Proteínas Priônicas/genética , Splicing de RNA , Íntrons , Regulação da Expressão Gênica , Animais , Príons/metabolismo , Príons/genética , Doenças Priônicas/metabolismo , Doenças Priônicas/genética , Regiões 5' não Traduzidas
4.
J Virol ; 98(9): e0126224, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39194237

RESUMO

Production of the amyloidogenic prion protein, PrPSc, which forms infectious protein aggregates, or prions, is a key pathogenic event in prion diseases. Functional prion-like protein aggregations, such as the mitochondrial adaptor protein MAVS and the inflammasome component protein ASC, have been identified to play a protective role in viral infections in mammalian cells. In this study, to investigate if PrPSc could play a functional role against external stimuli, we infected prion-infected cells with a neurotropic influenza A virus strain, IAV/WSN. We found that prion-infected cells were highly resistant to IAV/WSN infection. In these cells, NF-κB nuclear translocation was disturbed; therefore, mitochondrial superoxide dismutase (mtSOD) expression was suppressed, and mitochondrial reactive oxygen species (mtROS) was increased. The elevated mtROS subsequently activated NLRP3 inflammasomes, leading to the suppression of IAV/WSN-induced necroptosis. We also found that prion-infected cells accumulated a portion of PrP molecules in the cytosol, and that the N-terminal potential nuclear translocation signal of PrP impeded NF-κB nuclear translocation. These results suggest that PrPSc might play a functional role in protection against viral infections by stimulating the NLRP3 inflammasome-dependent antivirus mechanism through the cytosolic PrP-mediated disturbance of NF-κB nuclear translocation, which leads to suppression of mtSOD expression and consequently upregulation of the NLRP3 inflammasome activator mtROS. IMPORTANCE: Cytosolic PrP has been detected in prion-infected cells and suggested to be involved in the neurotoxicity of prions. Here, we also detected cytosolic PrP in prion-infected cells. We further found that the nuclear translocation of NF-κB was disturbed in prion-infected cells and that the N-terminal potential nuclear translocation signal of PrP expressed in the cytosol disturbed the nuclear translocation of NF-κB. Thus, the N-terminal nuclear translocation signal of cytosolic PrP might play a role in prion neurotoxicity. Prion-like protein aggregates in other protein misfolding disorders, including Alzheimer's disease were reported to play a protective role against various environmental stimuli. We here showed that prion-infected cells were partially resistant to IAV/WSN infection due to the cytosolic PrP-mediated disturbance of the nuclear translocation of NF-κB, which consequently activated NLRP3 inflammasomes after IAV/WSN infection. It is thus possible that prions could also play a protective role in viral infections.


Assuntos
Citosol , Inflamassomos , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio , Animais , Citosol/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Humanos , Mitocôndrias/metabolismo , Proteínas PrPSc/metabolismo , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Linhagem Celular , Superóxido Dismutase/metabolismo , Príons/metabolismo , Proteínas Priônicas/metabolismo , Necroptose
5.
J Biol Chem ; 299(7): 104881, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37269948

RESUMO

Prion protein (PrP) misfolding is the key trigger in the devastating prion diseases. Yet the sequence and structural determinants of PrP conformation and toxicity are not known in detail. Here, we describe the impact of replacing Y225 in human PrP with A225 from rabbit PrP, an animal highly resistant to prion diseases. We first examined human PrP-Y225A by molecular dynamics simulations. We next introduced human PrP in Drosophila and compared the toxicity of human PrP-WT and Y225A in the eye and in brain neurons. Y225A stabilizes the ß2-α2 loop into a 310-helix from six different conformations identified in WT and lowers hydrophobic exposure. Transgenic flies expressing PrP-Y225A exhibit less toxicity in the eye and in brain neurons and less accumulation of insoluble PrP. Overall, we determined that Y225A lowers toxicity in Drosophila assays by promoting a structured loop conformation that increases the stability of the globular domain. These findings are significant because they shed light on the key role of distal α-helix 3 on the dynamics of the loop and the entire globular domain.


Assuntos
Doenças Priônicas , Proteínas Priônicas , Animais , Humanos , Coelhos , Animais Geneticamente Modificados , Drosophila , Doenças Priônicas/genética , Proteínas Priônicas/química , Proteínas Priônicas/genética , Estabilidade Proteica , Conformação Proteica em alfa-Hélice
6.
J Biol Chem ; 299(11): 105329, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37805139

RESUMO

Prion diseases are a group of transmissible neurodegenerative diseases primarily caused by the conformational conversion of prion protein (PrP) from α-helix-dominant cellular prion protein (PrPC) to ß-sheet-rich pathological aggregated form of PrPSc in many mammalian species. Dogs exhibit resistance to prion diseases, but the mechanism behind the phenomenon remains poorly understood. Compared with human PrP and mouse PrP, dog PrP has two unique amino acid residues, Arg177 and Asp159. Because PrPC contains a low-complexity and intrinsically disordered region in its N-terminal domain, it undergoes liquid-liquid phase separation (LLPS) in vitro and forms protein condensates. However, little is known about whether these two unique residues modulate the formation of PrPC condensates. Here, using confocal microscopy, fluorescence recovery after photobleaching assays, thioflavin T binding assays, and transmission electron microscopy, we report that Arg177 and Asp159 from the dog PrP slow the LLPS of full-length human PrPC, shifting the equilibrium phase boundary to higher protein concentrations and inhibit amyloid formation of the human protein. In sharp contrast, His177 and Asn159 from the human PrP enhance the LLPS of full-length dog PrPC, shifting the equilibrium phase boundary to lower protein concentrations, and promote fibril formation of the canid protein. Collectively, these results demonstrate how LLPS and amyloid formation of PrP are inhibited by a single residue Arg177 or Asp159 associated with prion disease resistance, and how LLPS and fibril formation of PrP are promoted by a single residue His177 or Asn159. Therefore, Arg177/His177 and Asp159/Asn159 are key residues in modulating PrPC liquid-phase condensation.


Assuntos
Doenças Priônicas , Príons , Camundongos , Cães , Humanos , Animais , Proteínas Priônicas/metabolismo , Príons/metabolismo , Amiloide/química , Proteínas Amiloidogênicas , Mamíferos/metabolismo
7.
J Biol Chem ; 299(9): 105101, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37507020

RESUMO

The C-terminal domain of the cellular prion protein (PrPC) contains two N-linked glycosylation sites, the occupancy of which impacts disease pathology. In this study, we demonstrate that glycans at these sites are required to maintain an intramolecular interaction with the N-terminal domain, mediated through a previously identified copper-histidine tether, which suppresses the neurotoxic activity of PrPC. NMR and electron paramagnetic resonance spectroscopy demonstrate that the glycans refine the structure of the protein's interdomain interaction. Using whole-cell patch-clamp electrophysiology, we further show that cultured cells expressing PrP molecules with mutated glycosylation sites display large, spontaneous inward currents, a correlate of PrP-induced neurotoxicity. Our findings establish a structural basis for the role of N-linked glycans in maintaining a nontoxic, physiological fold of PrPC.

8.
J Biol Chem ; 299(5): 104654, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36990219

RESUMO

Prion-like self-perpetuating conformational conversion of proteins into amyloid aggregates is associated with both transmissible neurodegenerative diseases and non-Mendelian inheritance. The cellular energy currency ATP is known to indirectly regulate the formation, dissolution, or transmission of amyloid-like aggregates by providing energy to the molecular chaperones that maintain protein homeostasis. In this work, we demonstrate that ATP molecules, independent of any chaperones, modulate the formation and dissolution of amyloids from a yeast prion domain (NM domain of Saccharomyces cerevisiae Sup35) and restricts autocatalytic amplification by controlling the amount of fragmentable and seeding-competent aggregates. ATP, at (high) physiological concentrations in the presence of Mg2+, kinetically accelerates NM aggregation. Interestingly, ATP also promotes phase separation-mediated aggregation of a human protein harboring a yeast prion-like domain. We also show that ATP disaggregates preformed NM fibrils in a dose-independent manner. Our results indicate that ATP-mediated disaggregation, unlike the disaggregation by the disaggregase Hsp104, yields no oligomers that are considered one of the critical species for amyloid transmission. Furthermore, high concentrations of ATP delimited the number of seeds by giving rise to compact ATP-bound NM fibrils that exhibited nominal fragmentation by either free ATP or Hsp104 disaggregase to generate lower molecular weight amyloids. In addition, (low) pathologically relevant ATP concentrations restricted autocatalytic amplification by forming structurally distinct amyloids that are found seeding inefficient because of their reduced ß-content. Our results provide key mechanistic underpinnings of concentration-dependent chemical chaperoning by ATP against prion-like transmissions of amyloids.


Assuntos
Trifosfato de Adenosina , Amiloide , Biocatálise , Príons , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Trifosfato de Adenosina/metabolismo , Amiloide/química , Amiloide/metabolismo , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Príons/química , Príons/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Magnésio/metabolismo , Conformação Proteica
9.
J Biol Chem ; 299(8): 104982, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37390992

RESUMO

Endoplasmic reticulum (ER) stress and unfolded protein response are cells' survival strategies to thwart disruption of proteostasis. Tumor cells are continuously being challenged by ER stress. The prion protein, PrP, normally a glycosylphosphatidylinositol (GPI)-anchored protein exists as a pro-PrP retaining its GPI-peptide signal sequence in human pancreatic ductal cell adenocarcinoma (PDAC). Higher abundance of pro-PrP indicates poorer prognosis in PDAC patients. The reason why PDAC cells express pro-PrP is unknown. Here, we report that persistent ER stress causes conversion of GPI-anchored PrP to pro-PrP via a conserved ATF6-miRNA449c-5p-PIGV axis. Mouse neurons and AsPC-1, a PDAC cell line, express GPI-anchored PrP. However, continuous culture of these cells with the ER stress inducers thapsigargin or brefeldin A results in the conversion of a GPI-anchored PrP to pro-PrP. Such a conversion is reversible; removal of the inducers allows the cells to re-express a GPI-anchored PrP. Mechanistically, persistent ER stress increases the abundance of an active ATF6, which increases the level of miRNA449c-5p (miR449c-5p). By binding the mRNA of PIGV at its 3'-UTRs, miR449c-5p suppresses the level of PIGV, a mannosyltransferase pivotal in the synthesis of the GPI anchor. Reduction of PIGV leads to disruption of the GPI anchor assembly, causing pro-PrP accumulation and enhancing cancer cell migration and invasion. The importance of ATF6-miR449c-5p-PIGV axis is recapitulated in PDAC biopsies as the higher levels of ATF6 and miR449c-5p and lower levels of PIGV are markers of poorer outcome for patients with PDAC. Drugs targeting this axis may prevent PDAC progression.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Estresse do Retículo Endoplasmático , Glicosilfosfatidilinositóis , Neoplasias Pancreáticas , Proteínas Priônicas , Animais , Humanos , Camundongos , Fator 6 Ativador da Transcrição/genética , Adenocarcinoma/patologia , Glicosilfosfatidilinositóis/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Neoplasias Pancreáticas
10.
BMC Genomics ; 25(1): 177, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355406

RESUMO

BACKGROUND: Prion diseases, also known as transmissible spongiform encephalopathies (TSEs) remain one of the deleterious disorders, which have affected several animal species. Polymorphism of the prion protein (PRNP) gene majorly determines the susceptibility of animals to TSEs. However, only limited studies have examined the variation in PRNP gene in different Nigerian livestock species. Thus, this study aimed to identify the polymorphism of PRNP gene in Nigerian livestock species (including camel, dog, horse, goat, and sheep). We sequenced the open reading frame (ORF) of 65 camels, 31 village dogs and 12 horses from Nigeria and compared with PRNP sequences of 886 individuals retrieved from public databases. RESULTS: All the 994 individuals were assigned into 162 haplotypes. The sheep had the highest number of haplotypes (n = 54), and the camel had the lowest (n = 7). Phylogenetic tree further confirmed clustering of Nigerian individuals into their various species. We detected five non-synonymous SNPs of PRNP comprising of G9A, G10A, C11G, G12C, and T669C shared by all Nigerian livestock species and were in Hardy-Weinberg Equilibrium (HWE). The amino acid changes in these five non-synonymous SNP were all "benign" via Polyphen-2 program. Three SNPs G34C, T699C, and C738G occurred only in Nigerian dogs while C16G, G502A, G503A, and C681A in Nigerian horse. In addition, C50T was detected only in goats and sheep. CONCLUSION: Our study serves as the first to simultaneously investigate the polymorphism of PRNP gene in Nigerian livestock species and provides relevant information that could be adopted in programs targeted at breeding for prion diseases resistance.


Assuntos
Doenças Priônicas , Príons , Scrapie , Animais , Cavalos/genética , Ovinos/genética , Cães , Príons/genética , Príons/metabolismo , Proteínas Priônicas/genética , Polimorfismo de Nucleotídeo Único , Gado/genética , Fases de Leitura Aberta , Filogenia , Camelus/genética , Doenças Priônicas/genética , Doenças Priônicas/veterinária , Cabras/genética , Cabras/metabolismo , Scrapie/genética
11.
Neurobiol Dis ; 201: 106674, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39299489

RESUMO

Mutations in UBQLN2 cause ALS and frontotemporal dementia (FTD). The pathological signature in UBQLN2 cases is deposition of highly unusual types of inclusions in the brain and spinal cord that stain positive for UBQLN2. However, what role these inclusions play in pathogenesis remains unclear. Here we show cellular prion protein (PrPC) is found in UBQLN2 inclusions in both mouse and human neuronal induced pluripotent (IPSC) models of UBQLN2 mutations, evidenced by the presence of aggregated forms of PrPC with UBQLN2 inclusions. Turnover studies indicated that the P497H UBQLN2 mutation slows PrPC protein degradation and leads to mislocalization of PrPC in the cytoplasm. Immunoprecipitation studies indicated UBQLN2 and PrPC bind together in a complex. The abnormalities in PrPC caused by UBQLN2 mutations may be relevant in disease pathogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Esclerose Lateral Amiotrófica , Proteínas Relacionadas à Autofagia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Humanos , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Mutação , Modelos Animais de Doenças , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Proteínas Priônicas/metabolismo , Proteínas Priônicas/genética , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Neurônios/metabolismo , Neurônios/patologia , Camundongos Transgênicos
12.
Eur J Neurosci ; 60(4): 4437-4452, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38887188

RESUMO

Mouse neuronal CAD 5 cell line effectively propagates various strains of prions. Previously, we have shown that it can also be differentiated into the cells morphologically resembling neurons. Here, we demonstrate that CAD 5 cells chronically infected with prions undergo differentiation under the same conditions. To make our model more realistic, we triggered the differentiation in the 3D culture created by gentle rocking of CAD 5 cell suspension. Spheroids formed within 1 week and were fully developed in less than 3 weeks of culture. The mature spheroids had a median size of ~300 µm and could be cultured for up to 12 weeks. Increased expression of differentiation markers GAP 43, tyrosine hydroxylase, ß-III-tubulin and SNAP 25 supported the differentiated status of the spheroid cells. The majority of them were found in the G0/G1 phase of the cell cycle, which is typical for differentiated cells. Moreover, half of the PrPC on the cell membrane was N-terminally truncated, similarly as in differentiated CAD 5 adherent cells. Finally, we demonstrated that spheroids could be created from prion-infected CAD 5 cells. The presence of prions was verified by immunohistochemistry, western blot and seed amplification assay. We also confirmed that the spheroids can be infected with the prions de novo. Our 3D culture model of differentiated CAD 5 cells is low cost, easy to produce and cultivable for weeks. We foresee its possible use in the testing of anti-prion compounds and future studies of prion formation dynamics.


Assuntos
Diferenciação Celular , Doenças Priônicas , Esferoides Celulares , Esferoides Celulares/metabolismo , Camundongos , Animais , Diferenciação Celular/fisiologia , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Linhagem Celular , Técnicas de Cultura de Células/métodos , Neurônios/metabolismo , Técnicas de Cultura de Células em Três Dimensões/métodos , Príons/metabolismo
13.
Biochem Biophys Res Commun ; 735: 150807, 2024 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-39413610

RESUMO

Cellular prion protein (PrPC) is a glycosylphosphatidylinositol (GPI)-anchored cell-surface protein. The mature cell-surface PrPC is internalized and subsequently degraded by lysosomes. Although, proteasomes are proposed to be involved, the precise mechanism of PrPC degradation remains uncertain. Given that proteins are ubiquitinated primarily on lysine residues, we sought to determine whether lysine residues within PrPC are involved in the ubiquitination and subsequent degradation of PrPC. We generated a plasmid vector expressing a mutant PrPC (called lysine-null PrPC) in which all lysine residues were replaced with arginine residues. Subsequently, we established stably transformed cell lines (designated HpL2-1 PrP-WT and HpL2-1 PrP-K/R, respectively) using the mouse PrPC-deficient neuronal cell line (HpL2-1) and plasmids expressing wild-type (WT) or lysine-null PrPC (PrP-K/R). We found that HpL2-1 PrP-WT and HpL2-1 PrP-K/R cells correctly expressed their respective PrPC which translocated efficiently to the plasma membrane. Subsequently, using immunoblotting and confocal microscopy, we found that treatment with cycloheximide (CHX; a protein synthesis inhibitor) significantly reduced PrPC expression in both these transformed cell lines, indicating that WT and lysine-null PrPC are degraded similarly. Taken together, these results indicate that the lysine residues of PrPC do not regulate its degradation.


Assuntos
Lisina , Complexo de Endopeptidases do Proteassoma , Proteólise , Animais , Camundongos , Lisina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas PrPC/metabolismo , Proteínas PrPC/genética , Linhagem Celular , Ubiquitinação , Membrana Celular/metabolismo
14.
Biochem Biophys Res Commun ; 734: 150793, 2024 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-39378784

RESUMO

Alzheimer's disease (AD) is a tauopathy characterized by the deposition of amyloid aggregates of hyperphosphorylated Tau protein and amyloid-ß peptide (Aß) in the brain. Nevertheless, a soluble, oligomeric forms of Tau and Aß are considered to be the most neurotoxic species responsible for neurodegenerative processes in AD. The mechanism of action of these oligomers remains largely unclear. Previously, we demonstrated the inhibition of the large-conductance calcium-activated potassium channel (BKCa) by Aß. Therefore, in the present study we investigated the effect of Tau protein on the BKCa activity. Furthermore, since prion protein (PrP) interacts with Tau and the N-terminal fragment of PrP, called N1, can be neuroprotective in tauopathies, we checked whether N1 can also act at the level of BKCa channel. In the studies we used monomers, oligomers and amyloid fibrils of aggregation-prone Tau fragment, called K18, carrying tauopathy-associated mutation - deletion of Lys280 (K18Δ280). Additionally, to induce formation of neurotoxic oligomers, K18Δ280 was phosphorylated by protein kinase A (PKA). The activity of the plasma membrane BKCa of hippocampal neurons was recorded using single-channel patch-clamp technique in both inside-out and outside-out modes, exposing the cytosolic or extracellular surface of the membrane, respectively. In the outside-out mode - performing the extracellular application of the neurotoxic oligomers of phosphorylated K18Δ280, we observed a significant and concentration-dependent decrease in the probability of opening (Po) of BKCa. The Po of BKCa was fully recovered after washing the oligomers out. In the case of the inside-out patch-clamp configuration, we found that the Po of BKCa was not affected by the oligomers. In contrast to the oligomers, the monomers and amyloid fibrils of K18Δ280 had no effect on the channel activity, analyzed in inside-out as well as outside-out modes. Noteworthy, upon incubation with N1, the oligomers did not inhibit BKCa channel. The BKCa channel inhibition, dependent on the outside-out membrane orientation, implies specific interaction of the oligomers with the extracellular part of the channel. Moreover, our results suggest that N1 can convert the neurotoxic oligomers of Tau into a form which is not able to inhibit the channel, and indicate novel possible neuroprotective mechanism of PrP action in AD and other tauopathies.


Assuntos
Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/química , Animais , Fosforilação/efeitos dos fármacos , Humanos , Proteínas Priônicas/metabolismo , Proteínas Priônicas/química , Proteínas Priônicas/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Ratos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/química , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia
15.
J Transl Med ; 22(1): 337, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589873

RESUMO

BACKGROUND: The mesenchymal subtype of colorectal cancer (CRC), associated with poor prognosis, is characterized by abundant expression of the cellular prion protein PrPC, which represents a candidate therapeutic target. How PrPC is induced in CRC remains elusive. This study aims to elucidate the signaling pathways governing PrPC expression and to shed light on the gene regulatory networks linked to PrPC. METHODS: We performed in silico analyses on diverse datasets of in vitro, ex vivo and in vivo models of mouse CRC and patient cohorts. We mined ChIPseq studies and performed promoter analysis. CRC cell lines were manipulated through genetic and pharmacological approaches. We created mice combining conditional inactivation of Apc in intestinal epithelial cells and overexpression of the human prion protein gene PRNP. Bio-informatic analyses were carried out in two randomized control trials totalizing over 3000 CRC patients. RESULTS: In silico analyses combined with cell-based assays identified the Wnt-ß-catenin and glucocorticoid pathways as upstream regulators of PRNP expression, with subtle differences between mouse and human. We uncover multiple feedback loops between PrPC and these two pathways, which translate into an aggravation of CRC pathogenesis in mouse. In stage III CRC patients, the signature defined by PRNP-CTNNB1-NR3C1, encoding PrPC, ß-catenin and the glucocorticoid receptor respectively, is overrepresented in the poor-prognosis, mesenchymal subtype and associates with reduced time to recurrence. CONCLUSIONS: An unleashed PrPC-dependent vicious circle is pathognomonic of poor prognosis, mesenchymal CRC. Patients from this aggressive subtype of CRC may benefit from therapies targeting the PRNP-CTNNB1-NR3C1 axis.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Camundongos , Animais , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , beta Catenina/metabolismo , Glucocorticoides , Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Fenótipo , Prognóstico , Via de Sinalização Wnt , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
16.
J Neurovirol ; 30(3): 215-228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38922550

RESUMO

The cellular prion protein (PrPC) is an extracellular cell membrane protein. Due to its diversified roles, a definite role of PrPC has been difficult to establish. During viral infection, PrPC has been reported to play a pleiotropic role. Here, we have attempted to envision the function of PrPC in the neurotropic m-CoV-MHV-RSA59-induced model of neuroinflammation in C57BL/6 mice. A significant upregulation of PrPC at protein and mRNA levels was evident in infected mouse brains during the acute phase of neuroinflammation. Furthermore, investigation of the effect of MHV-RSA59 infection on PrPC expression in specific neuronal, microglial, and astrocytoma cell lines, revealed a differential expression of prion protein during neuroinflammation. Additionally, siRNA-mediated downregulation of prnp transcripts reduced the expression of viral antigen and viral infectivity in these cell lines. Cumulatively, our results suggest that PrPC expression significantly increases during acute MHV-RSA59 infection and that PrPC also assists in viral infectivity and viral replication.


Assuntos
Camundongos Endogâmicos C57BL , Microglia , Vírus da Hepatite Murina , Doenças Neuroinflamatórias , Proteínas PrPC , Animais , Vírus da Hepatite Murina/patogenicidade , Camundongos , Proteínas PrPC/metabolismo , Proteínas PrPC/genética , Doenças Neuroinflamatórias/virologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/patologia , Microglia/metabolismo , Microglia/virologia , Microglia/patologia , Encéfalo/virologia , Encéfalo/metabolismo , Encéfalo/patologia , Neurônios/virologia , Neurônios/metabolismo , Neurônios/patologia , Replicação Viral , Linhagem Celular Tumoral , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Regulação para Cima , Linhagem Celular , Humanos , Modelos Animais de Doenças , Proteínas Priônicas
17.
Acta Neuropathol ; 147(1): 32, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319380

RESUMO

Synapse loss correlates with cognitive decline in Alzheimer's disease, and soluble oligomeric amyloid beta (Aß) is implicated in synaptic dysfunction and loss. An important knowledge gap is the lack of understanding of how Aß leads to synapse degeneration. In particular, there has been difficulty in determining whether there is a synaptic receptor that binds Aß and mediates toxicity. While many candidates have been observed in model systems, their relevance to human AD brain remains unknown. This is in part due to methodological limitations preventing visualization of Aß binding at individual synapses. To overcome this limitation, we combined two high resolution microscopy techniques: array tomography and Förster resonance energy transfer (FRET) to image over 1 million individual synaptic terminals in temporal cortex from AD (n = 11) and control cases (n = 9). Within presynapses and post-synaptic densities, oligomeric Aß generates a FRET signal with transmembrane protein 97. Further, Aß generates a FRET signal with cellular prion protein, and post-synaptic density 95 within post synapses. Transmembrane protein 97 is also present in a higher proportion of post synapses in Alzheimer's brain compared to controls. We inhibited Aß/transmembrane protein 97 interaction in a mouse model of amyloidopathy by treating with the allosteric modulator CT1812. CT1812 drug concentration correlated negatively with synaptic FRET signal between transmembrane protein 97 and Aß. In human-induced pluripotent stem cell derived neurons, transmembrane protein 97 is present in synapses and colocalizes with Aß when neurons are challenged with human Alzheimer's brain homogenate. Transcriptional changes are induced by Aß including changes in genes involved in neurodegeneration and neuroinflammation. CT1812 treatment of these neurons caused changes in gene sets involved in synaptic function. These data support a role for transmembrane protein 97 in the synaptic binding of Aß in human Alzheimer's disease brain where it may mediate synaptotoxicity.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Proteínas de Membrana , Animais , Humanos , Camundongos , Peptídeos beta-Amiloides , Encéfalo , Sinapses , Proteínas de Membrana/metabolismo
18.
Arch Biochem Biophys ; 758: 110087, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977154

RESUMO

Protein aggregation in the form of amyloid fibrils has long been associated with the onset and development of various amyloidoses, including Alzheimer's, Parkinson's or prion diseases. Recent studies of their fibril formation process have revealed that amyloidogenic protein cross-interactions may impact aggregation pathways and kinetic parameters, as well as the structure of the resulting aggregates. Despite a growing number of reports exploring this type of interaction, they only cover just a small number of possible amyloidogenic protein pairings. One such pair is between two neurodegeneration-associated proteins: the pro-inflammatory S100A9 and prion protein, which are known to co-localize in vivo. In this study, we examined their cross-interaction in vitro and discovered that the fibrillar form of S100A9 modulated the aggregation pathway of mouse prion protein 89-230 fragment, while non-aggregated S100A9 also significantly inhibited its primary nucleation process. These results complement previous observations of the pro-inflammatory protein's role in amyloid aggregation and highlight its potential role against neurodegenerative disorders.


Assuntos
Amiloide , Calgranulina B , Proteínas Priônicas , Agregados Proteicos , Calgranulina B/metabolismo , Calgranulina B/química , Animais , Camundongos , Proteínas Priônicas/química , Proteínas Priônicas/metabolismo , Amiloide/metabolismo , Amiloide/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/química , Cinética
19.
BMC Cancer ; 24(1): 199, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347462

RESUMO

BACKGROUND: Glioblastoma (GBM) is an aggressive brain tumor that exhibits resistance to current treatment, making the identification of novel therapeutic targets essential. In this context, cellular prion protein (PrPC) stands out as a potential candidate for new therapies. Encoded by the PRNP gene, PrPC can present increased expression levels in GBM, impacting cell proliferation, growth, migration, invasion and stemness. Nevertheless, the exact molecular mechanisms through which PRNP/PrPC modulates key aspects of GBM biology remain elusive. METHODS: To elucidate the implications of PRNP/PrPC in the biology of this cancer, we analyzed publicly available RNA sequencing (RNA-seq) data of patient-derived GBMs from four independent studies. First, we ranked samples profiled by bulk RNA-seq as PRNPhigh and PRNPlow and compared their transcriptomic landscape. Then, we analyzed PRNP+ and PRNP- GBM cells profiled by single-cell RNA-seq to further understand the molecular context within which PRNP/PrPC might function in this tumor. We explored an additional proteomics dataset, applying similar comparative approaches, to corroborate our findings. RESULTS: Functional profiling revealed that vesicular dynamics signatures are strongly correlated with PRNP/PrPC levels in GBM. We found a panel of 73 genes, enriched in vesicle-related pathways, whose expression levels are increased in PRNPhigh/PRNP+ cells across all RNA-seq datasets. Vesicle-associated genes, ANXA1, RAB31, DSTN and SYPL1, were found to be upregulated in vitro in an in-house collection of patient-derived GBM. Moreover, proteome analysis of patient-derived samples reinforces the findings of enhanced vesicle biogenesis, processing and trafficking in PRNPhigh/PRNP+ GBM cells. CONCLUSIONS: Together, our findings shed light on a novel role for PrPC as a potential modulator of vesicle biology in GBM, which is pivotal for intercellular communication and cancer maintenance. We also introduce GBMdiscovery, a novel user-friendly tool that allows the investigation of specific genes in GBM biology.


Assuntos
Glioblastoma , Príons , Humanos , Expressão Gênica , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/genética , Príons/metabolismo , Proteínas rab de Ligação ao GTP/genética , Sinaptofisina/metabolismo
20.
BMC Neurol ; 24(1): 92, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468258

RESUMO

BACKGROUND: Human prion diseases (HPDs) are fatal neurodegenerative disorders characterized by abnormal prion proteins (PrPSc). However, the detection of prion seeding activity in patients with high sensitivity remains challenging. Even though real-time quaking-induced conversion (RT-QuIC) assay is suitable for detecting prion seeding activity in a variety of specimens, it shows lower accuracy when whole blood, blood plasma, and blood-contaminated tissue samples are used. In this study, we developed a novel technology for the in vitro amplification of abnormal prion proteins in HPD to the end of enabling their detection with high sensitivity known as the enhanced quaking-induced conversion (eQuIC) assay. METHODS: Three antibodies were used to develop the novel eQUIC method. Thereafter, SD50 seed activity was analyzed using brain tissue samples from patients with prion disease using the conventional RT-QUIC assay and the novel eQUIC assay. In addition, blood samples from six patients with solitary prion disease were analyzed using the novel eQuIC assay. RESULTS: The eQuIC assay, involving the use of three types of human monoclonal antibodies, showed approximately 1000-fold higher sensitivity than the original RT-QuIC assay. However, when this assay was used to analyze blood samples from six patients with sporadic human prion disease, no prion activity was detected. CONCLUSION: The detection of prion seeding activity in blood samples from patients with sporadic prion disease remains challenging. Thus, the development of alternative methods other than RT-QuIC and eQuIC will be necessary for future research.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Humanos , Príons/metabolismo , Proteínas Priônicas , Doenças Priônicas/diagnóstico , Doenças Priônicas/metabolismo , Encéfalo/metabolismo , Plasma/metabolismo , Síndrome de Creutzfeldt-Jakob/diagnóstico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa