Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Curr Issues Mol Biol ; 46(8): 8015-8030, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39194691

RESUMO

Sweet cherry (Prunus avium) is one of the economically valuable horticultural fruit trees and it is widely cultivated throughout the world. Whirly (WHY) genes are a unique gene family with few members and have important biological functions in plant growth, development, and response to abiotic stress. This study utilized whole-genome identification to conduct a comprehensive analysis of the WHY genes in sweet cherry and examined their transcription levels in different tissues and under abiotic stress to explore their functions. Two WHY genes were identified in the sweet cherry genome and named PavWHY1 and PavWHY2, respectively, based on their homology with those in Arabidopsis thaliana. Both genes have theoretical isoelectric points greater than seven and are hydrophilic proteins, suggesting that they may be localized in plastids. The two genes are evolutionarily classified into two categories, with large differences in gene structure, and highly similar protein tertiary structures, and both have conserved domains of WHY. PavWHY1 and PavWHY2 are collinear with AtWHY1 and AtWHY2, respectively. The promoter sequence contains cis-acting elements related to hormones and abiotic stress, which are differentially expressed during flower bud differentiation, fruit development, and cold accumulation. qRT-PCR showed that PavWHY1 and PavWHY2 were differentially expressed in flower and fruit development and responded to low temperature and exogenous ABA treatment. The recombinant plasmid pGreenII-0800-Luc with the promoters of these two genes can activate luciferase expression in tobacco. Protein interaction predictions indicate that these gene products may interact with other proteins. This study reveals the molecular features, evolutionary relationships, and expression patterns of sweet cherry WHY genes, and investigates the activities of their promoters, which lays the foundation for further exploration of their biological functions and provides new insights into the WHY gene family in Rosaceae.

2.
Genomics ; 115(3): 110618, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019418

RESUMO

Maize Iranian mosaic virus (MIMV, family Rhabdoviridae) is one of the factors limiting cereal production in Iran. In the present study, we sought to find critical genes and key pathways involved in MIMV infection and analyzed gene networks, pathways and promoters using transcriptome data. We determined the hub genes involved in pathways related to the proteasome and ubiquitin. The results showed the important role of the cellular endoplasmic reticulum in MIMV infection. Network cluster analysis confirmed the result of GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The discovered miRNAs belonged to miR166, miR167, miR169, miR395, miR399, miR408 and miR482 families, which are involved in various pathogenicity or resistance processes against MIMV or other viruses. The results of this study provide a list of hub genes, important pathways and new insights for the future development of virus-resistant transgenic crops and clarify the basic mechanism of plant response.


Assuntos
Vírus do Mosaico , Rhabdoviridae , Humanos , Transcriptoma , Irã (Geográfico) , Zea mays/genética , Redes Reguladoras de Genes , Rhabdoviridae/genética , Perfilação da Expressão Gênica
3.
Funct Integr Genomics ; 23(3): 249, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474674

RESUMO

In plants, pathogen resistance is brought about by the binding of certain transcription factor (TF) proteins to the cis-elements of certain target genes. These cis-elements are present upstream in the motif of the promoters of each gene. This ensures the binding of a specific TF to a specific promoter, therefore regulating the expression of that gene. Therefore, the study of each promoter sequence of all the rice genes would help identify the target genes of a specific TF. Rice 1 kb upstream promoter sequences of 55,986 annotated genes were analyzed using the Perl program algorithm to detect WRKY13 binding motifs (bm). The resulting genes were grouped using Gene Ontology and gene set enrichment analysis. A gene with more than 4 TF bm in their promoter was selected. Ten genes reported to have a role in rice disease resistance were selected for further analysis. Cis-acting regulatory element analysis was carried out to find the cis-elements and confirm the presence of the corresponding motifs in the promoter sequences of these genes. The 3D structure of WRKY13 TF and the corresponding ten genes were built, and the interacting residues were determined. The binding capacity of WRKY13 to the promoter of these selected genes was analyzed using docking studies. WRKY13 was considered for docking analysis based on the prior reports of autoregulation. Molecular dynamic simulations provided more details regarding the interactions. Expression data revealed the expression of the genes that helped provide the mechanism of interaction. Further co-expression network helped to characterize the interaction of these selected disease resistance-related genes with the WRKY13 TF protein. This study suggests downstream target genes that are regulated by the WRKY13 TF. The molecular mechanism involving the gene network regulated by WRKY13 TF in disease resistance against rice fungal pathogens is explored.


Assuntos
Oryza , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Oryza/metabolismo , Resistência à Doença/genética , Regiões Promotoras Genéticas , Redes Reguladoras de Genes
4.
Transgenic Res ; 32(5): 437-449, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37351728

RESUMO

Transgene expression and genome editing can help improve cucumber varieties to better respond to climate change. This study aimed to evaluate the applicability of the CsUBL5 promoter in transgene expression and genome editing in cucumber. The CsUBL5 promoter was cloned and analyzed to identify cis-elements that respond to abiotic signals, hormones, signal molecules, and nutrient treatments. 5' deletion constructs of the promoter were tested for their ability to drive GUS reporter expression in cucumber cotyledons, Arabidopsis seedlings, and tobacco leaves, and their response to various treatments including SA, light, drought, IAA, and GA was determined. The results showed that the CsUBL5 promoter effectively drove transgene expression in these plants, and their expressions under treatments were consistent with the predicted cis-elements, with some exceptions. Furthermore, the pCsUBL5-749 deletion construct can improve genome editing efficiency in cucumber when driving Cas9 expression. The editing efficiency of two sgRNAs targeting the ATG6 gene in cucumber was up to 4.6-fold higher using pCsUBL5-749 compared to a rice UBI promoter, although the effects of changing promoter on the editing efficiency is sgRNA specific. These findings highlight the potential utility of the CsUBL5 promoter for improving cucumber varieties through genetic engineering and genome editing. It also demonstrates the importance of modulating Cas9 expression to increase genome editing efficiency in cucumbers.


Assuntos
Arabidopsis , Cucumis sativus , Edição de Genes/métodos , Cucumis sativus/genética , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Plantas/genética , Transgenes , Arabidopsis/genética
5.
BMC Gastroenterol ; 23(1): 248, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37482618

RESUMO

BACKGROUND: Gastric cancer (GC) ranks among the most common malignancies worldwide. This study aimed to find critical genes/pathways in GC pathogenesis. METHODS: Gene interactions were analyzed, and the protein-protein interaction network was drawn. Then enrichment analysis of the hub genes was performed and network cluster analysis and promoter analysis of the hub genes were done. Age/sex analysis was done on the identified genes. RESULTS: Eleven hub genes in GC were identified in the current study (ATP5A1, ATP5B, ATP5D, MT-ATP8, COX7A2, COX6C, ND4, ND6, NDUFS3, RPL8, and RPS16), mostly involved in mitochondrial functions. There was no report on the ATP5D, ND6, NDUFS3, RPL8, and RPS16 in GC. Our results showed that the most affected processes in GC are the metabolic processes, and the oxidative phosphorylation pathway was considerably enriched which showed the significance of mitochondria in GC pathogenesis. Most of the affected pathways in GC were also involved in neurodegenerative diseases. Promoter analysis showed that negative regulation of signal transduction might play an important role in GC pathogenesis. In the analysis of the basal expression pattern of the selected genes whose basal expression presented a change during the age, we found that a change in age may be an indicator of changes in disease insurgence and/or progression at different ages. CONCLUSIONS: These results might open up new insights into GC pathogenesis. The identified genes might be novel diagnostic/prognostic biomarkers or potential therapeutic targets for GC. This work, being based on bioinformatics analysis act as a hypothesis generator that requires further clinical validation.


Assuntos
Redes Reguladoras de Genes , Neoplasias Gástricas , Humanos , Biologia de Sistemas , Perfilação da Expressão Gênica/métodos , Neoplasias Gástricas/patologia , Mapas de Interação de Proteínas/genética , Regulação Neoplásica da Expressão Gênica
6.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139221

RESUMO

ENDOU-1 encodes an endoribonuclease that overcomes the inhibitory upstream open reading frame (uORF)-trap at 5'-untranslated region (UTR) of the CHOP transcript, allowing the downstream coding sequence of CHOP be translated during endoplasmic reticulum (ER) stress. However, transcriptional control of ENDOU-1 remains enigmatic. To address this, we cloned an upstream 2.1 kb (-2055~+77 bp) of human ENDOU-1 (pE2.1p) fused with reporter luciferase (luc) cDNA. The promoter strength driven by pE2.1p was significantly upregulated in both pE2.1p-transfected cells and pE2.1p-injected zebrafish embryos treated with stress inducers. Comparing the luc activities driven by pE2.1p and -1125~+77 (pE1.2p) segments, we revealed that cis-elements located at the -2055~-1125 segment might play a critical role in ENDOU-1 upregulation during ER stress. Since bioinformatics analysis predicted many cis-elements clustered at the -1850~-1250, we further deconstructed this segment to generate pE2.1p-based derivatives lacking -1850~-1750, -1749~-1650, -1649~-1486, -1485~-1350 or -1350~-1250 segments. Quantification of promoter activities driven by these five internal deletion plasmids suggested a repressor binding element within the -1649~-1486 and an activator binding element within the -1350~-1250. Since luc activities driven by the -1649~-1486 were not significantly different between normal and stress conditions, we herein propose that the stress-inducible activator bound at the -1350~-1250 segment makes a major contribution to the increased expression of human ENDOU-1 upon ER stresses.


Assuntos
Endorribonucleases Específicas de Uridilato , Peixe-Zebra , Animais , Humanos , Sequência de Bases , Endorribonucleases Específicas de Uridilato/genética , Peixe-Zebra/genética , Regiões Promotoras Genéticas , Regulação da Expressão Gênica , Transcrição Gênica
7.
Plant Mol Biol ; 110(6): 545-563, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35997919

RESUMO

WD40 domain-containing proteins are one of the eukaryotes' most ancient and ubiquitous protein families. Little is known about the presence and function of these proteins in cyanobacteria in general and Anabaena in particular. In silico analysis confirmed the presence of WD40 repeats. Gene expression analysis indicated that the transcript levels of both the target proteins were up-regulated up to 4 fold in Cd and drought and 2-3 fold in heat, salt, and UV-B stress. Using a fluorescent oxidative stress indicator, we showed that the recombinant proteins were scavenging reactive oxygen species (ROS) (4-5 fold) more efficiently than empty vectors. Chromatin immunoprecipitation analysis (ChIP) and electrophoretic mobility shift assay (EMSA) revealed that the target proteins function as transcription factors after binding to the promoter sequences. The presence of kinase activity (2-4 fold) in the selected proteins indicated that these proteins could modulate the functions of other cellular proteins under stress conditions by inducing phosphorylation of specific amino acids. The chosen proteins also demonstrated interaction with Zn, Cd, and Cu (1.4-2.5 fold), which might stabilize the proteins' structure and biophysical functions under multiple abiotic stresses. The functionally characterized Alr0671 and All2352 proteins act as transcription factors and offer tolerance to agriculturally relevant abiotic stresses.


Alr0671 and All2352 are novel WD40 proteins of Anabaena capable of regulating biochemical functions and abiotic stress tolerance by acting as a transcription factor and mediating DNA-protein interaction.


Assuntos
Anabaena , Cádmio , Anabaena/genética , Estresse Fisiológico/genética , Secas , Fatores de Transcrição/genética , Proteínas de Plantas/genética
8.
Plant Mol Biol ; 109(1-2): 67-82, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35377091

RESUMO

KEY MESSAGE: Plasma membrane-localized AtAVT6D importing aspartic acid can be targeted to develop plants with enhanced osmotic and nitrogen-starvation tolerance. AtAVT6D promoter can be exploited as a stress-inducible promoter for genetic improvements to raise stress-resilient crops. The AtAVT6 family of amino acid transporters in Arabidopsis thaliana has been predicted to export amino acids like aspartate and glutamate. However, the functional characterization of these amino acid transporters in plants remains unexplored. The present study investigates the expression patterns of AtAVT6 genes in different tissues and under various abiotic stress conditions using quantitative Real-time PCR. The expression analysis demonstrated that the member AtAVT6D was significantly induced in response to phytohormone ABA and stresses like osmotic and drought. The tissue-specific expression analysis showed that AtAVT6D was strongly expressed in the siliques. Taking together these results, we can speculate that AtAVT6D might play a vital role in silique development and abiotic stress tolerance. Further, subcellular localization study showed AtAVT6D was localized to the plasma membrane. The heterologous expression of AtAVT6D in yeast cells conferred significant tolerance to nitrogen-deficient and osmotic stress conditions. The Xenopus oocyte studies revealed that AtAVT6D is involved in the uptake of Aspartic acid. While overexpression of AtAVT6D resulted in smaller siliques in Arabidopsis thaliana. Additionally, transient expression studies were performed with the full-length AtAVT6D promoter and its deletion constructs to study the effect of ACGT-N24-ACGT motifs on the reporter gene expression in response to abiotic stresses and ABA treatment. The fluorometric GUS analyses revealed that the promoter deletion construct-2 (Pro.C2) possessing a single copy of ACGT-N24-ACGT motif directed the strongest GUS expression under all the abiotic conditions tested. These results suggest that Pro.C2 can be used as a stress-inducible promoter to drive a significant transgene expression.


Assuntos
Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Ácido Aspártico/genética , Secas , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Pressão Osmótica , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico
9.
Genomics ; 113(2): 530-539, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33482324

RESUMO

Although Saccharomyces cerevisiae and S. cerevisiae var. boulardii share more than 95% genome sequence homology, only S. cerevisiae var. boulardii displays probiotic activity. In this study, the transcriptomic differences exhibited by S. cerevisiae and S. cerevisiae var. boulardii in intestinal like medium were evaluated. S. cerevisiae was found to display stress response overexpression, consistent with higher ability of S. cerevisiae var. boulardii to survive within the human host, while S. cerevisiae var. boulardii exhibited transcriptional patterns associated with probiotic activity, suggesting increased acetate biosynthesis. Resorting to the creation of a S. cerevisiae var. boulardii genomic database within Yeastract+, a possible correlation between loss or gain of transcription factor binding sites in S. cerevisiae var. boulardii promoters and the transcriptomic pattern is discussed. This study suggests that S. cerevisiae var. boulardii probiotic activity, when compared to S. cerevisiae, relies, at least partially, on differential expression regulation, based on promoter variability.


Assuntos
Polimorfismo Genético , Probióticos , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Transcriptoma , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
10.
Int J Mol Sci ; 23(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35742980

RESUMO

Zinc alleviates hepatic lipid deposition, but the transcriptional regulatory mechanisms are still unclear. In this study, we characterized the promoter of an SHP (short heterodimer partner) in a teleost Pelteobagrus fulvidraco. The binding sites of an FXR (farnesoid X receptor) were predicted by the SHP promoter, indicating that the FXR mediated its transcriptional activity. The site mutagenesis and the EMSA (electrophoretic mobility shift assay) found that the -375/-384 bp FXR site on the SHP promoter was the functional binding locus responsible for the Zn-induced transcriptional activation. A further study of yellow catfish hepatocytes suggested that the activation of the FXR/SHP is responsible for the effect of Zn on the decreasing lipid content. Thus, this study provides direct evidence of the interaction between the FXR and SHP promoter in fish, and accordingly elucidates the potential transcriptional mechanism by which Zn reduces hepatic lipid accumulation.


Assuntos
Peixes-Gato , Metabolismo dos Lipídeos , Animais , Peixes-Gato/genética , Peixes-Gato/metabolismo , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/genética , Lipídeos/farmacologia , Fígado/metabolismo , Regiões Promotoras Genéticas , Zinco/metabolismo , Zinco/farmacologia
11.
Int J Mol Sci ; 23(24)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36555358

RESUMO

In recent years, miR528, a monocot-specific miRNA, has been assigned multifaceted roles during development and stress response in several plant species. However, the transcription regulation and the molecular mechanisms controlling MIR528 expression in maize are still poorly explored. Here we analyzed the zma-MIR528a promoter region and found conserved transcription factor binding sites related to diverse signaling pathways, including the nitrate (TGA1/4) and auxin (AuxRE) response networks. Accumulation of both pre-miR528a and mature miR528 was up-regulated by exogenous nitrate and auxin treatments during imbibition, germination, and maize seedling establishment. Functional promoter analyses demonstrated that TGA1/4 and AuxRE sites are required for transcriptional induction by both stimuli. Overall, our findings of the nitrogen- and auxin-induced zma-MIR528a expression through cis-regulatory elements in its promoter contribute to the knowledge of miR528 regulome.


Assuntos
Ácidos Indolacéticos , Nitratos , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Nitratos/farmacologia , Nitratos/metabolismo , Zea mays/genética , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica
12.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35409334

RESUMO

LEAFY (LFY) plays an important role in the flowering process of plants, controlling flowering time and mediating floral meristem differentiation. Owing to its considerable importance, the mango LFY gene (MiLFY; GenBank accession no. HQ585988) was isolated, and its expression pattern and function were characterized in the present study. The cDNA sequence of MiLFY was 1152 bp, and it encoded a 383 amino acid protein. MiLFY was expressed in all tested tissues and was highly expressed in flowers and buds. Temporal expression analysis showed that MiLFY expression was correlated with floral development stage, and two relative expression peaks were detected in the early stages of floral transition and floral organ differentiation. Moreover, 35S::GFP-MiLFY fusion protein was shown to be localized to the nucleus of cells. Overexpression of MiLFY in Arabidopsis promoted early flowering and the conversion of lateral meristems into terminal flowers. In addition, transgenic plants exhibited obvious morphological changes, such as differences in cauline leaf shape, and the number of lateral branches. When driven by the MiLFY promoter, GFP was highly expressed in leaves, floral organs, stems, and roots, during the flowering period. Exogenous gibberellin (GA3) treatment downregulated MiLFY promoter expression, but paclobutrazol (PPP333) upregulated it. Bimolecular fluorescence complementation (BiFC) assays showed that the MiLFY protein can interact with zinc-finger protein 4 (ZFP4) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (MiSOC1D). Taken together, these results indicate that MiLFY plays a pivotal role in controlling mango flowering, and that it is regulated by gibberellin and paclobutrazol.


Assuntos
Arabidopsis , Mangifera , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas , Mangifera/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo
13.
Int J Mol Sci ; 23(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35163610

RESUMO

Crop Wild Relatives (CWRs) form a comprehensive gene pool that can answer the queries related to plant domestication, speciation, and ecological adaptation. The genus 'Oryza' comprises about 27 species, of which two are cultivated, while the remaining are wild. Here, we have attempted to understand the conservation and diversification of the genes encoding Cystathionine ß-synthase (CBS) domain-containing proteins (CDCPs) in domesticated and CWRs of rice. Few members of CDCPs were previously identified to be stress-responsive and associated with multiple stress tolerance in rice. Through genome-wide analysis of eleven rice genomes, we identified a total of 36 genes encoding CDCPs in O. longistaminata, 38 in O. glaberrima, 39 each in O. rufipogon, O. glumaepatula, O. brachyantha, O. punctata, and O. sativa subsp. japonica, 40 each in O. barthii and O. meridionalis, 41 in O. nivara, and 42 in O. sativa subsp. indica. Gene duplication analysis as well as non-synonymous and synonymous substitutions in the duplicated gene pairs indicated that this family is shaped majorly by the negative or purifying selection pressure through the long-term evolution process. We identified the presence of two additional hetero-domains, namely TerCH and CoatomerE (specifically in O. sativa subsp. indica), which were not reported previously in plant CDCPs. The in silico expression analysis revealed some of the members to be responsive to various abiotic stresses. Furthermore, the qRT-PCR based analysis identified some members to be highly inducive specifically in salt-tolerant genotype in response to salinity. The cis-regulatory element analysis predicted the presence of numerous stress as well as a few phytohormone-responsive elements in their promoter region. The data presented in this study would be helpful in the characterization of these CDCPs from rice, particularly in relation to abiotic stress tolerance.


Assuntos
Cistationina beta-Sintase/genética , Evolução Molecular , Oryza/enzimologia , Estresse Fisiológico , Oryza/genética , Oryza/fisiologia , Filogenia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Salinidade
14.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35409005

RESUMO

Synaptogyrin-3 (SYNGR3) is a synaptic vesicular membrane protein. Amongst four homologues (SYNGR1 to 4), SYNGR1 and 3 are especially abundant in the brain. SYNGR3 interacts with the dopamine transporter (DAT) to facilitate dopamine (DA) uptake and synaptic DA turnover in dopaminergic transmission. Perturbed SYNGR3 expression is observed in Parkinson's disease (PD). The regulatory elements which affect SYNGR3 expression are unknown. Nuclear-receptor-related-1 protein (NURR1) can regulate dopaminergic neuronal differentiation and maintenance via binding to NGFI-B response elements (NBRE). We explored whether NURR1 can regulate SYNGR3 expression using an in silico analysis of the 5'-flanking region of the human SYNGR3 gene, reporter gene activity and an electrophoretic mobility shift assay (EMSA) of potential cis-acting sites. In silico analysis of two genomic DNA segments (1870 bp 5'-flanking region and 1870 + 159 bp of first exon) revealed one X Core Promoter Element 1 (XCPE1), two SP1, and three potential non-canonical NBRE response elements (ncNBRE) but no CAAT or TATA box. The longer segment exhibited gene promoter activity in luciferase reporter assays. Site-directed mutagenesis of XCPE1 decreased promoter activity in human neuroblastoma SH-SY5Y (↓43.2%) and human embryonic kidney HEK293 cells (↓39.7%). EMSA demonstrated NURR1 binding to these three ncNBRE. Site-directed mutagenesis of these ncNBRE reduced promoter activity by 11-17% in SH-SY5Y (neuronal) but not in HEK293 (non-neuronal) cells. C-DIM12 (Nurr1 activator) increased SYNGR3 protein expression in SH-SY5Y cells and its promoter activity using a real-time luciferase assay. As perturbed vesicular function is a feature of major neurodegenerative diseases, inducing SYNGR3 expression by NURR1 activators may be a potential therapeutic target to attenuate synaptic dysfunction in PD.


Assuntos
Vesículas Sinápticas , Fatores de Transcrição , Regulação da Expressão Gênica , Células HEK293 , Humanos , Luciferases/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptogirinas/genética , Sinaptogirinas/metabolismo , Fatores de Transcrição/metabolismo
15.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293115

RESUMO

The stable genetic transformation of soybean is time-consuming and inefficient. As a simple and practical alternative method, hairy root transformation mediated by Agrobacterium rhizogenes is widely applied in studying root-specific processes, nodulation, biochemical and molecular functions of genes of interest, gene editing efficiency of CRISPR/Cas9, and biological reactors and producers. Therefore, many laboratories have developed unique protocols to obtain hairy roots in composite plants composed of transgenic roots and wild-type shoots. However, these protocols still suffer from the shortcomings of low efficiency and time, space, and cost consumption. To address this issue, we developed a new protocol efficient regeneration and transformation of hairy roots (eR&T) in soybean, by integrating and optimizing the main current methods to achieve high efficiency in both hairy root regeneration and transformation within a shorter period and using less space. By this eR&T method, we obtained 100% regeneration of hairy roots for all explants, with an average 63.7% of transformation frequency, which promoted the simultaneous and comparative analysis of the function of several genes. The eR&T was experimentally verified Promoter:GUS reporters, protein subcellular localization, and CRISPR/Cas9 gene editing experiments. Employing this approach, we identified several novel potential regulators of nodulation, and nucleoporins of the Nup107-160 sub-complex, which showed development-dependent and tissue-dependent expression patterns, indicating their important roles in nodulation in soybean. Thus, the new eR&T method is an efficient and economical approach for investigating not only root and nodule biology, but also gene function.


Assuntos
Glycine max , Complexo de Proteínas Formadoras de Poros Nucleares , Glycine max/genética , Transformação Genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Plantas Geneticamente Modificadas/genética , Raízes de Plantas/genética , Agrobacterium/genética , Biologia
16.
J Exp Bot ; 72(7): 2769-2789, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33481007

RESUMO

Malate efflux from roots, which is regulated by the transcription factor STOP1 (SENSITIVE-TO-PROTON-RHIZOTOXICITY1) and mediates aluminum-induced expression of ALUMINUM-ACTIVATED-MALATE-TRANSPORTER1 (AtALMT1), is critical for aluminum resistance in Arabidopsis thaliana. Several studies showed that AtALMT1 expression in roots is rapidly observed in response to aluminum; this early induction is an important mechanism to immediately protect roots from aluminum toxicity. Identifying the molecular mechanisms that underlie rapid aluminum resistance responses should lead to a better understanding of plant aluminum sensing and signal transduction mechanisms. In this study, we observed that GFP-tagged STOP1 proteins accumulated in the nucleus soon after aluminum treatment. The rapid aluminum-induced STOP1-nuclear localization and AtALMT1 induction were detected in the presence of a protein synthesis inhibitor, suggesting that post-translational regulation is involved in these events. STOP1 also regulated rapid aluminum-induced expression for other genes that carry a functional/high-affinity STOP1-binding site in their promoter, including STOP2, GLUTAMATE-DEHYDROGENASE1 and 2 (GDH1 and 2). However STOP1 did not regulate Al resistance genes which have no functional STOP1-binding site such as ALUMINUM-SENSITIVE3, suggesting that the binding of STOP1 in the promoter is essential for early induction. Finally, we report that GDH1 and 2 which are targets of STOP1, are novel aluminum-resistance genes in Arabidopsis.


Assuntos
Alumínio/toxicidade , Proteínas de Arabidopsis , Arabidopsis , Alumínio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glutamato Desidrogenase , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
17.
J Neurogenet ; 35(3): 192-212, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34382904

RESUMO

The foraging gene in Drosophila melanogaster, which encodes a cGMP-dependent protein kinase, is a highly conserved, complex gene with multiple pleiotropic behavioral and physiological functions in both the larval and adult fly. Adult foraging expression is less well characterized than in the larva. We characterized foraging expression in the brain, gastric system, and reproductive systems using a T2A-Gal4 gene-trap allele. In the brain, foraging expression appears to be restricted to multiple sub-types of glia. This glial-specific cellular localization of foraging was supported by single-cell transcriptomic atlases of the adult brain. foraging is extensively expressed in most cell types in the gastric and reproductive systems. We then mapped multiple cis-regulatory elements responsible for parts of the observed expression patterns by a nested cloned promoter-Gal4 analysis. The mapped cis-regulatory elements were consistently modular when comparing the larval and adult expression patterns. These new data using the T2A-Gal4 gene-trap and cloned foraging promoter fusion GAL4's are discussed with respect to previous work using an anti-FOR antibody, which we show here to be non-specific. Future studies of foraging's function will consider roles for glial subtypes and peripheral tissues (gastric and reproductive systems) in foraging's pleiotropic behavioral and physiological effects.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/biossíntese , Proteínas de Drosophila/biossíntese , Drosophila melanogaster/fisiologia , Transcriptoma , Animais , Encéfalo/metabolismo , Genitália/metabolismo , Estômago/metabolismo
18.
Ann Bot ; 127(3): 371-380, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33090200

RESUMO

BACKGROUND AND AIMS: Oat (Avena sativa) has human health benefits when consumed as a whole-grain food, attributed to the high content of (1,3;1,4)-ß-d-glucan (mixed-linkage glucan [MLG]), but little is known about the synthase genes and synthesis mechanism of MLG polysaccharides in this species. METHODS: The concentration of oat MLGs under different light intensities was measured by a standard enzymatic approach and further verified by immunoelectron microscopy. The effect of light intensity on MLG synthase genes was examined by RT-qPCR and western blot analyses. The pattern of expression directed by the promoter of the oat MLG synthase gene was also investigated by histochemical ß-glucuronidase (GUS) analysis. KEY RESULTS: The oat orthologues of genes implicated in the synthesis of MLG in other cereals, including cellulose synthase-like (Csl) F, H and J gene families, were defined. Transcript profiling of these genes across oat tissues indicated that AsCslF6 transcripts dominated. Under high light intensities, the expression of AsCslF6, a major isoform of the MLG synthase genes, increased to >30 % of the dark growth control. The amount of MLG in oat rose from 0.07 to 1.06 % with increased light intensity. Histochemical tests showed that the AsCslF6 gene promoter preferentially directs GUS expression under high light intensity conditions. CONCLUSIONS: Oat MLG synthesis is regulated by light. High light intensity upregulates the expression of the MLG synthase AsCslF6 gene, leading to an increase in the amount of MLG in oat leaves.


Assuntos
Glucanos , beta-Glucanas , Avena/genética , Folhas de Planta , Polissacarídeos
19.
Proc Natl Acad Sci U S A ; 115(25): E5824-E5833, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29866850

RESUMO

The mechanisms controlling the transcription of gene sets in specific regions of a plant embryo shortly after fertilization remain unknown. Previously, we showed that G564 mRNA, encoding a protein of unknown function, accumulates to high levels in the giant suspensor of both Scarlet Runner Bean (SRB) and Common Bean embryos, and a cis-regulatory module containing three unique DNA sequences, designated as the 10-bp, Region 2, and Fifth motifs, is required for G564 suspensor-specific transcription [Henry KF, et al. (2015) Plant Mol Biol 88:207-217; Kawashima T, et al. (2009) Proc Natl Acad Sci USA 106:3627-3632]. We tested the hypothesis that these motifs are also required for transcription of the SRB GA 20-oxidase gene, which encodes a gibberellic acid hormone biosynthesis enzyme and is coexpressed with G564 at a high level in giant bean suspensors. We used deletion and gain-of-function experiments in transgenic tobacco embryos to show that two GA 20-oxidase DNA regions are required for suspensor-specific transcription, one in the 5' UTR (+119 to +205) and another in the 5' upstream region (-341 to -316). Mutagenesis of sequences in these two regions determined that the cis-regulatory motifs required for G564 suspensor transcription are also required for GA 20-oxidase transcription within the suspensor, although the motif arrangement differs. Our results demonstrate the flexibility of motif positioning within a cis-regulatory module that activates gene transcription within giant bean suspensors and suggest that G564 and GA 20-oxidase comprise part of a suspensor gene regulatory network.


Assuntos
Sementes/genética , Transcrição Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes/genética , Oxigenases de Função Mista/genética , Phaseolus/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , RNA Mensageiro/genética , Nicotiana/genética
20.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208159

RESUMO

B-cell lymphoma 2 (Bcl-2) and cytochrome c (Cycs) are two important proteins relevant to cellular apoptosis. In this study, we characterized the functions of the promoter regions of two apoptosis-related genes, Bcl-2 and Cycs, in yellow catfish Pelteobagrus fulvidraco. We obtained a 1989 bp Bcl-2 promoter and an 1830 bp Cycs promoter and predicted several key transcription factor binding sites (TFBSs) on the promoters, such as Kruppel-like factor 4 (KLF4), signal transducer and activator of transcription factor 3 (STAT3), forkhead box O (FOXO), metal-responsive element (MRE) and hepatocyte nuclear factor 1α (HNF-1α). Zinc (Zn) increased the activities of the Bcl-2 promoter but decreased the activities of the Cycs promoter. Metal-responsive transcription factor 1 (MTF-1) and HNF-1α directly bound with Bcl-2 and Cycs promoters, and they positively regulated the activity of the Bcl-2 promoter but negatively regulated the activity of the Cycs promoter. Zn promoted the binding ability of HNF-1α to the Bcl-2 promoter but decreased its binding ability to the Cycs promoter. However, Zn had no significant effect on the binding capability of MTF-1 to the regions of Bcl-2 and Cycs promoters. Zn upregulated the mRNA and total protein expression of Bcl-2 but downregulated the mRNA and total protein expression of Cycs. At the same time, Annexin V-FITC/PI staining showed that Zn significantly reduced the apoptosis of primary hepatocytes. For the first time, our study provides evidence for the MRE and HNF-1α response elements on the Bcl-2 and Cycs promoters, offering new insight into the mechanism by which Zn affects apoptosis in vertebrates.


Assuntos
Apoptose/genética , Peixes-Gato/genética , Citocromos c/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-bcl-2/genética , Zinco/farmacologia , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Sítios de Ligação , Citocromos c/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa