RESUMO
The continuous net reclassification improvement (NRI) statistic is a popular model change measure that was developed to assess the incremental value of new factors in a risk prediction model. Two prominent statistical issues identified in the literature call the utility of this measure into question: (1) it is not a proper scoring function and (2) it has a high false positive rate when testing whether new factors contribute to the risk model. For binary response regression models, these subjects are interrogated and a modification of the continuous NRI, guided by the likelihood-based score residual, is proposed to address these issues. Within a nested model framework, the modified NRI may be viewed as a distance measure between two risk models. An application of the modified NRI is illustrated using prostate cancer data.
RESUMO
Calibration is an important measure of the predictive accuracy for a prognostic risk model. A widely used measure of calibration when the outcome is survival time is the expected Brier score. In this paper, methodology is developed to accurately estimate the difference in expected Brier scores derived from nested survival models and to compute an accompanying variance estimate of this difference. The methodology is applicable to time invariant and time-varying coefficient Cox survival models. The nested survival model approach is often applied to the scenario where the full model consists of conventional and new covariates and the subset model contains the conventional covariates alone. A complicating factor in the methodologic development is that the Cox model specification cannot, in general, be simultaneously satisfied for nested models. The problem has been resolved by projecting the properly specified full survival model onto the lower dimensional space of conventional markers alone. Simulations are performed to examine the method's finite sample properties and a prostate cancer data set is used to illustrate its application.