Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Appl Environ Microbiol ; 90(6): e0213523, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38727222

RESUMO

Listeria monocytogenes, a prominent foodborne pathogen responsible for zoonotic infections, owes a significant portion of its virulence to the presence of the phospholipase PlcB. In this study, we performed an in-depth examination of the intricate relationship between L. monocytogenes PlcB and host cell mitochondria, unveiling a novel participant in bacterial survival: the mitochondrial carboxylase propionyl-coenzyme A carboxylase (PCCA). Our investigation uncovered previously unexplored levels of interaction and colocalization between PCCA and PlcB within host cells, with particular emphasis on the amino acids 504-508 of PCCA, which play a pivotal role in this partnership. To assess the effect of PCCA expression on L. monocytogenes proliferation, PCCA expression levels were manipulated by siRNA-si-PCCA or pCMV-N-HA-PCCA plasmid transfection. Our findings demonstrated a clear inverse correlation between PCCA expression levels and the proliferation of L. monocytogenes. Furthermore, the effect of L. monocytogenes infection on PCCA expression was investigated by assessing PCCA mRNA and protein expression in HeLa cells infected with L. monocytogenes. These results indicate that L. monocytogenes infection did not significantly alter PCCA expression. These findings led us to propose that PCCA represents a novel participant in L. monocytogenes survival, and its abundance has a detrimental impact on bacterial proliferation. This suggests that L. monocytogenes may employ PlcB-PCCA interactions to maintain stable PCCA expression, representing a unique pro-survival strategy distinct from that of other intracellular bacterial pathogens. IMPORTANCE: Mitochondria represent attractive targets for pathogenic bacteria seeking to modulate host cellular processes to promote their survival and replication. Our current study has uncovered mitochondrial carboxylase propionyl-coenzyme A carboxylase (PCCA) as a novel host cell protein that interacts with L. monocytogenes PlcB. The results demonstrate that PCCA plays a negative regulatory role in L. monocytogenes infection, as heightened PCCA levels are associated with reduced bacterial survival and persistence. However, L. monocytogenes may exploit the PlcB-PCCA interaction to maintain stable PCCA expression and establish a favorable intracellular milieu for bacterial infection. Our findings shed new light on the intricate interplay between bacterial pathogens and host cell mitochondria, while also highlighting the potential of mitochondrial metabolic enzymes as antimicrobial agents.


Assuntos
Proteínas de Bactérias , Listeria monocytogenes , Listeria monocytogenes/genética , Listeria monocytogenes/enzimologia , Humanos , Células HeLa , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Mitocôndrias/metabolismo , Listeriose/microbiologia , Viabilidade Microbiana
2.
J Hepatol ; 78(3): 627-642, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36462680

RESUMO

BACKGROUND & AIMS: Alterations of multiple metabolites characterize distinct features of metabolic reprograming in hepatocellular carcinoma (HCC). However, the role of most metabolites, including propionyl-CoA (Pro-CoA), in metabolic reprogramming and hepatocarcinogenesis remains elusive. In this study, we aimed to dissect how Pro-CoA metabolism affects these processes. METHODS: TCGA data and HCC samples were used to analyze ALDH6A1-mediated Pro-CoA metabolism and its correlation with HCC. Multiple metabolites were assayed by targeted mass spectrometry. The role of ALDH6A1-generated Pro-CoA in HCC was evaluated in HCC cell lines as well as xenograft nude mouse models and primary liver cancer mouse models. Non-targeted metabolomic and targeted energy metabolomic analyses, as well as multiple biochemical assays, were performed. RESULTS: Decreases in Pro-CoA and its derivative propionyl-L-carnitine due to ALDH6A1 downregulation were tightly associated with HCC. Functionally, ALDH6A1-mediated Pro-CoA metabolism suppressed HCC proliferation in vitro and impaired hepatocarcinogenesis in mice. The aldehyde dehydrogenase activity was indispensable for this function of ALDH6A1, while Pro-CoA carboxylases antagonized ALDH6A1 function by eliminating Pro-CoA. Mechanistically, ALDH6A1 caused a signature enrichment of central carbon metabolism in cancer and impaired energy metabolism: ALDH6A1-generated Pro-CoA suppressed citrate synthase activity, which subsequently reduced tricarboxylic acid cycle flux, impaired mitochondrial respiration and membrane potential, and decreased ATP production. Moreover, Pro-CoA metabolism generated 2-methylcitric acid, which mimicked the inhibitory effect of Pro-CoA on citrate synthase and dampened mitochondrial respiration and HCC proliferation. CONCLUSIONS: The decline of ALDH6A1-mediated Pro-CoA metabolism contributes to metabolic remodeling and facilitates hepatocarcinogenesis. Pro-CoA, propionyl-L-carnitine and 2-methylcitric acid may serve as novel metabolic biomarkers for the diagnosis and treatment of HCC. Pro-CoA metabolism may provide potential targets for development of novel strategies against HCC. IMPACT AND IMPLICATIONS: Our study presents new insights on the role of propionyl-CoA metabolism in metabolic reprogramming and hepatocarcinogenesis. This work has uncovered potential diagnostic and predictive biomarkers, which could be used by physicians to improve clinical practice and may also serve as targets for the development of therapeutic strategies against HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Citrato (si)-Sintase , Carnitina/metabolismo , Carnitina/farmacologia
3.
Metabolomics ; 19(2): 12, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750484

RESUMO

INTRODUCTION: Our untargeted metabolic data unveiled that Acyl-CoAs undergo dephosphorylation, however little is known about these novel metabolites and their physiology/pathology relevance. OBJECTIVES: To understand the relationship between acyl-CoAs dephosphorylation and energy status as implied in our previous work, we seek to investigate how ischemia (energy depletion) triggers metabolic changes, specifically acyl-CoAs dephosphorylation in this work. METHODS: Rat hearts were isolated and perfused in Langendorff mode for 15 min followed by 0, 5, 15, and 30 minutes of global ischemia. The heart tissues were harvested for metabolic analysis. RESULTS: As expected, ATP and phosphocreatine were significantly decreased during ischemia. Most short- and medium-chain acyl-CoAs progressively increased with ischemic time from 0 to 15 min, whereas a 30-minute ischemia did not lead to further change. Unlike other acyl-CoAs, propionyl-CoA accumulated progressively in the hearts that underwent ischemia from 0 to 30 min. Progressive dephosphorylation occurred to all assayed acyl-CoAs and free CoA regardless their level changes during the ischemia. CONCLUSION: The present work further confirms that dephosphorylation of acyl-CoAs is an energy-dependent process and how this dephosphorylation is mediated warrants further investigations. It is plausible that dephosphorylation of acyl-CoAs and limited anaplerosis are involved in ischemic injuries to heart. Further investigations are warranted to examine the mechanisms of acyl-CoA dephosphorylation and how the dephosphorylation is possibly involved in ischemic injuries.


Assuntos
Acil Coenzima A , Coração , Metabolômica , Isquemia Miocárdica , Animais , Ratos , Acil Coenzima A/metabolismo , Coração/fisiopatologia , Isquemia Miocárdica/etiologia , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Fosforilação , Perfusão/efeitos adversos , Perfusão/métodos
4.
Crit Rev Biotechnol ; 43(7): 1063-1072, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35994297

RESUMO

Odd-chain fatty acids (OcFAs) and their derivatives have attracted great interest due to their wide applications in the food, pharmaceutical and petrochemical industries. Microorganisms can naturally de novo produce fatty acids (FAs), where mainly, even-chain with acetyl-CoA instead of odd-chain with propionyl-CoA is used as the primer. Usually, the absence of the precursor propionyl-CoA is considered the main reason that limits the efficient production of OcFAs. It is thus crucial to explore/evaluate/identify promising propionyl-CoA biosynthetic pathways to achieve large-scale biosynthesis of OcFAs. This review discusses the latest advances in microbial metabolism engineering toward producing propionyl-CoA and considers future research directions and challenges toward optimized production of OcFAs.

5.
Biotechnol Bioeng ; 120(4): 917-931, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36522132

RESUMO

Odd-chain fatty acids (OcFAs) and their derivatives have attracted much attention due to their beneficial physiological effects and their potential to be alternatives to advanced fuels. However, cells naturally produce even-chain fatty acids (EcFAs) with negligible OcFAs. In the process of biosynthesis of fatty acids (FAs), the acetyl-CoA serves as the starter unit for EcFAs, and propionyl-CoA works as the starter unit for OcFAs. The lack of sufficient propionyl-CoA, the precursor, is usually regarded as the main restriction for large-scale bioproduction of OcFAs. In recent years, synthetic biology strategies have been used to modify several microorganisms to produce more propionyl-CoA that would enable an efficient biosynthesis of OcFAs. This review discusses several reported and potential metabolic pathways for propionyl-CoA biosynthesis, followed by advances in engineering several cell factories for OcFAs production. Finally, trends and challenges of synthetic biology driven OcFAs production are discussed.


Assuntos
Ácidos Graxos , Redes e Vias Metabólicas , Ácidos Graxos/metabolismo , Acetilcoenzima A/metabolismo
6.
J Inherit Metab Dis ; 46(1): 28-42, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36251252

RESUMO

Propionic acidemia (PA, OMIM 606054) is a devastating inborn error of metabolism arising from mutations that reduce the activity of the mitochondrial enzyme propionyl-CoA carboxylase (PCC). The defects in PCC reduce the concentrations of nonesterified coenzyme A (CoASH), thus compromising mitochondrial function and disrupting intermediary metabolism. Here, we use a hypomorphic PA mouse model to test the effectiveness of BBP-671 in correcting the metabolic imbalances in PA. BBP-671 is a high-affinity allosteric pantothenate kinase activator that counteracts feedback inhibition of the enzyme to increase the intracellular concentration of CoA. Liver CoASH and acetyl-CoA are depressed in PA mice and BBP-671 treatment normalizes the cellular concentrations of these two key cofactors. Hepatic propionyl-CoA is also reduced by BBP-671 leading to an improved intracellular C3:C2-CoA ratio. Elevated plasma C3:C2-carnitine ratio and methylcitrate, hallmark biomarkers of PA, are significantly reduced by BBP-671. The large elevations of malate and α-ketoglutarate in the urine of PA mice are biomarkers for compromised tricarboxylic acid cycle activity and BBP-671 therapy reduces the amounts of both metabolites. Furthermore, the low survival of PA mice is restored to normal by BBP-671. These data show that BBP-671 relieves CoA sequestration, improves mitochondrial function, reduces plasma PA biomarkers, and extends the lifespan of PA mice, providing the preclinical foundation for the therapeutic potential of BBP-671.


Assuntos
Acidemia Propiônica , Camundongos , Animais , Acidemia Propiônica/genética , Metilmalonil-CoA Descarboxilase/genética , Metilmalonil-CoA Descarboxilase/metabolismo , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Carnitina
7.
Neuropathology ; 43(2): 143-150, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36102083

RESUMO

Propionic acidemia (PA) is an autosomal recessive inheritable metabolic disease caused by mutations in the propionyl CoA carboxylase gene (PCC) that affects multiple systems of the human body. Here, we report neuropathological findings of a PA patient. The patient was a male infant who presented with increasing lethargy and poor feeding from four days postpartum. He gradually became comatose and died from complications after liver transplantation at three months old. The results of laboratory examination were consistent with PA, and genetic analysis revealed compound heterozygous mutations in the gene for PCC subunit beta: c.838dupC (rs769968548) and c.1127G>T (rs142982097). Brain-restricted autopsy was performed 23 h after his death, and the neuropathological examination revealed distinct astrocytosis, oligodendrocytic loss, neuronal loss, and demyelination across the brainstem, motor cortex, basal ganglia, and thalamus. Spongiosis, vacuolization, and the appearance of Alzheimer type II astrocytes and activated microglia were observed as well. This is the first brain autopsy report of PA with a clear genetic cause.


Assuntos
Acidemia Propiônica , Lactente , Feminino , Humanos , Masculino , Acidemia Propiônica/diagnóstico , Acidemia Propiônica/genética , Metilmalonil-CoA Descarboxilase/genética , Metilmalonil-CoA Descarboxilase/metabolismo , Mutação , Tálamo/metabolismo , Neuropatologia
8.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982310

RESUMO

Androsta-4-ene-3,17-dione (AD), androsta-1,4-diene-3,17-dione (ADD), and 9α-hydroxy-4-androstene-3,17-dione (9-OHAD), which belong to C-19 steroids, are critical steroid-based drug intermediates. The biotransformation of phytosterols into C-19 steroids by Mycolicibacterium cell factories is the core step in the synthesis of steroid-based drugs. The production performance of engineered mycolicibacterial strains has been effectively enhanced by sterol core metabolic modification. In recent years, research on the non-core metabolic pathway of steroids (NCMS) in mycolicibacterial strains has made significant progress. This review discusses the molecular mechanisms and metabolic modifications of NCMS for accelerating sterol uptake, regulating coenzyme I balance, promoting propionyl-CoA metabolism, reducing reactive oxygen species, and regulating energy metabolism. In addition, the recent applications of biotechnology in steroid intermediate production are summarized and compared, and the future development trend of NCMS research is discussed. This review provides powerful theoretical support for metabolic regulation in the biotransformation of phytosterols.


Assuntos
Mycobacteriaceae , Fitosteróis , Fermentação , Mycobacteriaceae/metabolismo , Biotecnologia , Fitosteróis/metabolismo , Esteroides/metabolismo , Biotransformação , Redes e Vias Metabólicas , Androstenodiona
9.
Molecules ; 28(18)2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37764443

RESUMO

In fungi, the methylcitrate cycle converts cytotoxic propionyl-coenzyme A (CoA) to pyruvate, which enters gluconeogenesis. The glyoxylate cycle converts acetyl-CoA to succinate, which enters gluconeogenesis. The tricarboxylic acid cycle is a central carbon metabolic pathway that connects the methylcitrate cycle, the glyoxylate cycle, and other metabolisms for lipids, carbohydrates, and amino acids. Fungal citrate synthase and 2-methylcitrate synthase as well as isocitrate lyase and 2-methylisocitrate lyase, each evolved from a common ancestral protein. Impairment of the methylcitrate cycle leads to the accumulation of toxic intermediates such as propionyl-CoA, 2-methylcitrate, and 2-methylisocitrate in fungal cells, which in turn inhibits the activity of many enzymes such as dehydrogenases and remodels cellular carbon metabolic processes. The methylcitrate cycle and the glyoxylate cycle synergistically regulate carbon source utilization as well as fungal growth, development, and pathogenic process in pathogenic fungi.


Assuntos
Ciclo do Ácido Cítrico , Fungos , Acetilcoenzima A , Fungos/metabolismo , Carbono/metabolismo , Glioxilatos/metabolismo
10.
Microb Cell Fact ; 21(1): 218, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266684

RESUMO

BACKGROUND: The production of androstenedione (AD) from phytosterols by Mycolicibacterium neoaurum is a multi-step biotransformation process, which requires degradation of sterol side chains, accompanied by the production of propionyl-CoA. However, the transient production of large amounts of propionyl-CoA can accumulate intracellularly to produce toxic effects and severely inhibit AD production. RESULTS: In the present study, the intracellular propionyl-CoA concentration was effectively reduced and the productivity of the strain was improved by enhancing the cytosolic methyl-branched lipid synthesis pathway and increasing the expression level of nat operator gene, respectively. Subsequently, the application of a pathway combination strategy, combined and the inducible regulation strategy, further improved AD productivity with a maximum AD conversion rate of 96.88%, an increase of 13.93% over the original strain. CONCLUSIONS: Overall, we provide a new strategy for reducing propionyl-CoA stress during biotransformation for the production of AD and other steroidal drugs using phytosterols.


Assuntos
Mycobacterium , Fitosteróis , Androstenodiona , Mycobacterium/metabolismo , Fitosteróis/metabolismo , Redes e Vias Metabólicas , Esteróis/metabolismo
11.
Mol Genet Metab ; 134(3): 257-266, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635437

RESUMO

Propionic acidemia (PA) is an autosomal recessive metabolic disorder after gene encoding propionyl-CoA carboxylase, Pcca or Pccb, is mutated. This genetic disorder could develop various complications which are ascribed to dysregulated propionyl-CoA metabolism in organs. However, the effect of attenuated PCC on propionyl-CoA metabolism in different organs remains to be fully understood. We investigated metabolic perturbations in organs of Pcca-/-(A138T) mice (a mouse model of PA) under chow diet and acute administration of [13C3]propionate to gain insight into pathological mechanisms of PA. With chow diet, the metabolic alteration is organ dependent. l-Carnitine reduction induced by propionylcarnitine accumulation only occurs in lung and liver of Pcca-/- (A138T) mice. [13C3]Propionate tracing data demonstrated that PCC activity was dramatically reduced in Pcca-/-(A138T) brain, lung, liver, kidney, and adipose tissues, but not significantly changed in Pcca-/-(A138T) muscles (heart and skeletal muscles) and pancreas, which was largely supported by PCCA expression data. The largest expansion of propionylcarnitine in Pcca-/-(A138T) heart after acute administration of propionate indicated the vulnerability of heart to high circulating propionate. The overwhelming propionate in blood also stimulated ketone production from the increased fatty acid oxidation in Pcca-/-(A138T) liver by lowering malonyl-CoA, which has been observed in cases where metabolic decompensation occurs in PA patients. This work shed light on organ-specific metabolic alternations under varying severities of PA.


Assuntos
Acil Coenzima A/análise , Propionatos/metabolismo , Acidemia Propiônica/fisiopatologia , Ração Animal , Animais , Modelos Animais de Doenças , Coração/fisiopatologia , Fígado/química , Fígado/fisiopatologia , Pulmão/química , Pulmão/fisiopatologia , Masculino , Análise do Fluxo Metabólico , Metabolômica , Metilmalonil-CoA Descarboxilase/genética , Camundongos , Propionatos/sangue
12.
Appl Microbiol Biotechnol ; 105(4): 1435-1446, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33484319

RESUMO

In this study, we applied metabolic engineering and bioprocessing strategies to enhance heterologous production of an important biodegradable copolymer, i.e., poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), with a modulated 3-hydroxyvalerate (3-HV) monomeric fraction from structurally unrelated carbon of glycerol in engineered Escherichia coli under different oxygenic conditions. We used our previously derived propanologenic (i.e., 1-propanol-producing) E. coli strain with an activated genomic Sleeping beauty mutase (Sbm) operon as a host for heterologous expression of the phaCAB operon. The 3-HV monomeric fraction was modulated by regulating dissimilated carbon flux channeling from the tricarboxylic acid (TCA) cycle into the Sbm pathway for biosynthesis of propionyl-CoA, which is a key precursor to (R)-3-hydroxyvaleryl-CoA (3-HV-CoA) monomer. The carbon flux channeling was regulated either by manipulating a selection of genes involved in the TCA cycle or varying oxygenic condition of the bacterial culture. With these consolidated strategies being implemented, we successfully achieved high-level PHBV biosynthesis with a wide range of 3-HV monomeric fraction from ~ 4 to 50 mol%, potentially enabling the fine-tuning of PHBV mechanical properties at the biosynthesis stage. We envision that similar strategies can be applied to enhance bio-based production of chemicals derived from succinyl-CoA. KEY POINTS: • TCA cycle engineering was applied to enhance 3-HV monomeric fraction in E. coli. • Effects of oxygenic conditions on 3-HV incorporation into PHBV in E. coli were investigated. • Bacterial cultivation for high-level PHBV production in engineered E. coli was performed.


Assuntos
Escherichia coli , Hidroxibutiratos , Escherichia coli/genética , Ácidos Pentanoicos , Poliésteres
13.
Metab Eng ; 61: 141-151, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31726215

RESUMO

3-Hydroxyacids are a group of valuable fine chemicals with numerous applications, and 3-hydroxybutyrate (3-HB) represents the most common species with acetyl-CoA as a precursor. Due to the lack of propionyl-CoA in most, if not all, microorganisms, bio-based production of 3-hydroxyvalerate (3-HV), a longer-chain 3-hydroxyacid member with both acetyl-CoA and propionyl-CoA as two precursors, is often hindered by high costs associated with the supplementation of related carbon sources, such as propionate or valerate. Here, we report the derivation of engineered Escherichia coli strains for the production of 3-HV from unrelated cheap carbon sources, in particular glucose and glycerol. Activation of the sleeping beauty mutase (Sbm) pathway in E. coli enabled the intracellular formation of non-native propionyl-CoA. A selection of enzymes involved in 3-HV biosynthetic pathway from various microorganisms were explored for investigating their effects on 3-HV biosynthesis in E. coli. Glycerol outperformed glucose as the carbon source, and glycerol dissimilation for 3-HV biosynthesis was primarily mediated through the aerobic GlpK-GlpD route. To further enhance 3-HV production, we developed metabolic engineering strategies to redirect more dissimilated carbon flux from the tricarboxylic acid (TCA) cycle to the Sbm pathway, resulting in an enlarged intracellular pool of propionyl-CoA. Both the presence of succinate/succinyl-CoA and their interconversion step in the TCA cycle were identified to critically limit the carbon flux redirection into the Sbm pathway and, therefore, 3-HV biosynthesis. A selection of E. coli host TCA genes encoding enzymes near the succinate node were targeted for manipulation to evaluate the contribution of the three TCA routes (i.e. oxidative TCA cycle, reductive TCA branch, and glyoxylate shunt) to the redirected carbon flux into the Sbm pathway. Finally, the carbon flux redirection into the Sbm pathway was enhanced by simultaneously deregulating glyoxylate shunt and blocking the oxidative TCA cycle, significantly improving 3-HV biosynthesis. With the implementation of these biotechnological and bioprocessing strategies, our engineered E. coli strains can effectively produce 3-HV up to 3.71 g l-1 with a yield of 24.1% based on the consumed glycerol in shake-flask cultures.


Assuntos
Ciclo do Ácido Cítrico , Proteínas de Escherichia coli , Escherichia coli , Engenharia Metabólica , Ácidos Pentanoicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
14.
Metab Eng ; 62: 42-50, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32860966

RESUMO

Propionyl-CoA carboxylase (PCC) is a promising enzyme in the fields of biological CO2 utilization, synthesis of natrual products, and so on. The activity and substrate specificity of PCC are dependent on its key subunit carboxyltransferase (CT). To obtain PCC with high enzyme activity, seven pccB genes encoding CT subunit from diverse microorganisms were expressed in recombinant E. coli, and PccB from Bacillus subtilis showed the highest activity in vitro. To further optimize this protein using directed evolution, a genetic screening system based on oxaloacetate availability was designed to enrich the active variants of PccBBs. Four amino acid substitutions (D46G, L97Q, N220I and I391T) proved of great assistance in PccBBs activity improvement, and a double mutant of PccBBs (N220I/I391T) showed a 94-fold increase of overall catalytic efficiency indicated by kcat/Km. Moreover, this PccBBs double mutant was applied in construction of new succinate biosynthetic pathway. This new pathway produces succinate from acetyl-CoA with fixation of two CO2 molecules, which was confirmed by isotope labeling experiment with NaH13CO3. Compared with previous succinate production based on carboxylation of phosphoenolpyruvate or pyruvate, this new pathway showed some advantages including higher CO2 fixation potentiality and availability under aerobic conditions. In summary, this study developed a PCC with high enzyme activity which can be widely used in biotechnology field, and also demonstrated the feasibility of new succinate biosynthetic pathway with two CO2 fixation reactions.


Assuntos
Dióxido de Carbono , Ácido Succínico , Vias Biossintéticas , Escherichia coli/genética , Escherichia coli/metabolismo , Metilmalonil-CoA Descarboxilase/genética , Metilmalonil-CoA Descarboxilase/metabolismo , Succinatos
15.
BMC Med Genet ; 21(1): 166, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819290

RESUMO

BACKGROUND: Propionic acidemia (PA)(OMIM#606054) is an inborn error of branched-chain amino acid metabolism, caused by defects in the propionyl-CoA carboxylase (PCC) enzyme which encoded by the PCCA and PCCB genes. CASE PRESENTATION: Here we report a Chinese neonate diagnosed with suspected PA based on the clinical symptoms, gas chromatography-mass spectrometry (GC/MS), and brain imaging tests. Targeted next-generation sequencing (NGS) was performed on the proband. We detected only one heterozygous recurrent nonsense variant (c.937C > T, p.Arg313Ter) in the PCCA gene. When we manually checked the binary alignment map (BAM) diagram of PCCA gene, we found a heterozygous deletion chr13:100915039-100915132delinsAA (c.773_819 + 47delinsAA) (GRCh37.p13) inside the exon 10 in the PCCA gene. The results were validated by Sanger sequencing and qPCR method in the family: the variant (c.937C > T, p.Arg313Ter) was in the maternal allele, and the delins was in the paternal allele. When the mother was pregnant again, prenatal diagnosis was carried out through amniocentesis at 18 weeks gestation, the fetus carried neither of the two mutations. After birth, newborn screening was undertaken, the result was negative. CONCLUSIONS: We identified a recurrent c.937C > T and a novel c.773_819 + 47delinsAA mutations in the PCCA gene, which may be the genetic cause of the phenotype of this patient. Our findings expanded the spectrum of causative genotype-phenotype of the PCCA gene. For the cases, the NGS results revealed only a heterozygous mutation in autosomal recessive disease when the gene is associated with phenotypes, it is necessary to manually check the BAM diagram to improve the detection rate. Targeted NGS is an effective technique to detect the various genetic lesions responsible for the PA in one step. Genetic testing is essential for genetic counselling and prenatal diagnosis in the family to avoid birth defects.


Assuntos
Carbono-Carbono Ligases/genética , Mutação/genética , Acidemia Propiônica/enzimologia , Acidemia Propiônica/genética , Sequência de Bases , Humanos , Recém-Nascido , Masculino , Triagem Neonatal , Diagnóstico Pré-Natal , Acidemia Propiônica/diagnóstico
16.
Biotechnol Bioeng ; 117(5): 1304-1315, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31956980

RESUMO

A propanologenic (i.e., 1-propanol-producing) bacterium Escherichia coli strain was previously derived by activating the genomic sleeping beauty mutase (Sbm) operon. The activated Sbm pathway branches out of the tricarboxylic acid (TCA) cycle at the succinyl-CoA node to form propionyl-CoA and its derived metabolites of 1-propanol and propionate. In this study, we targeted several TCA cycle genes encoding enzymes near the succinyl-CoA node for genetic manipulation to identify the individual contribution of the carbon flux into the Sbm pathway from the three TCA metabolic routes, that is, oxidative TCA cycle, reductive TCA branch, and glyoxylate shunt. For the control strain CPC-Sbm, in which propionate biosynthesis occurred under relatively anaerobic conditions, the carbon flux into the Sbm pathway was primarily derived from the reductive TCA branch, and both succinate availability and the SucCD-mediated interconversion of succinate/succinyl-CoA were critical for such carbon flux redirection. Although the oxidative TCA cycle normally had a minimal contribution to the carbon flux redirection, the glyoxylate shunt could be an alternative and effective carbon flux contributor under aerobic conditions. With mechanistic understanding of such carbon flux redirection, metabolic strategies based on blocking the oxidative TCA cycle (via ∆sdhA mutation) and deregulating the glyoxylate shunt (via ∆iclR mutation) were developed to enhance the carbon flux redirection and therefore propionate biosynthesis, achieving a high propionate titer of 30.9 g/L with an overall propionate yield of 49.7% upon fed-batch cultivation of the double mutant strain CPC-Sbm∆sdhA∆iclR under aerobic conditions. The results also suggest that the Sbm pathway could be metabolically active under both aerobic and anaerobic conditions.


Assuntos
Escherichia coli , Engenharia Metabólica/métodos , Propionatos/metabolismo , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Reatores Biológicos/microbiologia , Ciclo do Ácido Cítrico/genética , Escherichia coli/genética , Escherichia coli/metabolismo
17.
Biotechnol Bioeng ; 117(12): 3785-3798, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32716047

RESUMO

To maximize the productivity of engineered metabolic pathway, in silico model is an established means to provide features of enzyme reaction dynamics. In our previous study, Escherichia coli engineered with acrylate pathway yielded low propionic acid titer. To understand the bottleneck behind this low productivity, a kinetic model was developed that incorporates the enzymatic reactions of the acrylate pathway. The resulting model was capable of simulating the fluxes reported under in vitro studies with good agreement, suggesting repression of propionyl-CoA transferase (Pct) by carboxylate metabolites as the main limiting factor for propionate production. Furthermore, the predicted flux control coefficients of the pathway enzymes under steady state conditions revealed that the control of flux is shared between Pct and lactoyl-CoA dehydratase. Increase in lactate concentration showed gradual decrease in flux control coefficients of Pct that in turn confirmed the control exerted by the carboxylate substrate. To interpret these in silico predictions under in vivo system, an organized study was conducted with a lactic acid bacteria strain engineered with acrylate pathway. Analysis reported a decreased product formation rate on attainment of inhibitory titer by suspected metabolites and supported the model.


Assuntos
Acrilatos/metabolismo , Simulação por Computador , Lactococcus lactis , Engenharia Metabólica , Modelos Biológicos , Lactococcus lactis/genética , Lactococcus lactis/metabolismo
18.
Appl Microbiol Biotechnol ; 104(12): 5259-5272, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32291486

RESUMO

As petro-based production generates numerous environmental impacts and their associated technological concerns, bio-based production has been well recognized these days as a modern alternative to manufacture chemical products in a more renewable, environmentally friendly, and sustainable manner. Herein, we report the development of a microbial bioprocess for high-level and potentially economical production of 3-hydroxyvalerate (3-HV), a valuable special chemical with multiple applications in chemical, biopolymer, and pharmaceutical industries, from glycerol, which can be cheaply and renewably refined as a byproduct from biodiesel production. We used our recently derived 3-HV-producing Escherichia coli strains for bioreactor characterization under various culture conditions. In the parental strain, 3-HV biosynthesis was limited by the intracellular availability of propionyl-CoA, whose formation was favored by anaerobic conditions, which often compromised cell growth. With appropriate strain engineering, we demonstrated that 3-HV can be effectively produced under both microaerobic (close to anaerobic) and aerobic conditions, which determine the direction of dissimilated carbon flux toward the succinate node in the tricarboxylic acid (TCA) cycle. We first used the ∆sdhA single mutant strain, in which the dissimilated carbon flux was primarily directed to the Sleeping beauty mutase (Sbm) pathway (via the reductive TCA branch, with enhanced cell growth under microaerobic conditions, achieving 3.08 g L-1 3-HV in a fed-batch culture. In addition, we used the ∆sdhA-∆iclR double mutant strain, in which the dissimilated carbon flux was directed from the TCA cycle to the Sbm pathway via the deregulated glyoxylate shunt, for cultivation under rather aerobic conditions. In addition to demonstrating effective cell growth, this strain has shown impressive 3-HV biosynthesis (up to 10.6 g L-1), equivalent to an overall yield of 18.8% based on consumed glycerol, in aerobic fed-batch culture. This study not only represents one of the most effective bio-based production of 3-HV from structurally unrelated carbons to date, but also highlights the importance of integrated strain engineering and bioprocessing strategies to enhance bio-based production.Key points• TCA cycle engineering was applied to enhance 3-HV biosynthesis in E. coli. • Effects of oxygenic conditions on 3-HV in E. coli biosynthesis were investigated. • Bioreactor characterization of 3-HV biosynthesis in E. coli was performed.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Ácidos Pentanoicos/metabolismo , Acil Coenzima A/metabolismo , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Ciclo do Ácido Cítrico , Proteínas de Escherichia coli/genética , Fermentação , Microbiologia Industrial
19.
Biochem J ; 475(4): 749-758, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339464

RESUMO

Propionic acidemia is the accumulation of propionate in blood due to dysfunction of propionyl-CoA carboxylase. The condition causes lethargy and striatal degeneration with motor impairment in humans. How propionate exerts its toxic effect is unclear. Here, we show that intravenous administration of propionate causes dose-dependent propionate accumulation in the brain and transient lethargy in mice. Propionate, an inhibitor of histone deacetylase, entered GABAergic neurons, as could be seen from increased neuronal histone H4 acetylation in the striatum and neocortex. Propionate caused an increase in GABA (γ-amino butyric acid) levels in the brain, suggesting inhibition of GABA breakdown. In vitro propionate inhibited GABA transaminase with a Ki of ∼1 mmol/l. In isolated nerve endings, propionate caused increased release of GABA to the extracellular fluid. In vivo, propionate reduced cerebral glucose metabolism in both striatum and neocortex. We conclude that propionate-induced inhibition of GABA transaminase causes accumulation of GABA in the brain, leading to increased extracellular GABA concentration, which inhibits neuronal activity and causes lethargy. Propionate-mediated inhibition of neuronal GABA transaminase, an enzyme of the inner mitochondrial membrane, indicates entry of propionate into neuronal mitochondria. However, previous work has shown that neurons are unable to metabolize propionate oxidatively, leading us to conclude that propionyl-CoA synthetase is probably absent from neuronal mitochondria. Propionate-induced inhibition of energy metabolism in GABAergic neurons may render the striatum, in which >90% of the neurons are GABAergic, particularly vulnerable to degeneration in propionic acidemia.


Assuntos
4-Aminobutirato Transaminase/antagonistas & inibidores , Neurônios GABAérgicos/efeitos dos fármacos , Letargia/metabolismo , Propionatos/administração & dosagem , Acidemia Propiônica/metabolismo , 4-Aminobutirato Transaminase/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Neurônios GABAérgicos/metabolismo , Glucose/metabolismo , Inibidores de Histona Desacetilases/administração & dosagem , Histona Desacetilases , Humanos , Letargia/induzido quimicamente , Letargia/fisiopatologia , Metilmalonil-CoA Descarboxilase/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neocórtex/efeitos dos fármacos , Neocórtex/metabolismo , Neocórtex/patologia , Acidemia Propiônica/induzido quimicamente , Acidemia Propiônica/fisiopatologia , Ácido gama-Aminobutírico/metabolismo
20.
Appl Environ Microbiol ; 84(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29439982

RESUMO

Branched-chain amino acid (BCAA) degradation is a major source of propionyl coenzyme A (propionyl-CoA), a key precursor of erythromycin biosynthesis in Saccharopolyspora erythraea In this study, we found that the bkd operon, responsible for BCAA degradation, was regulated directly by PccD, a transcriptional regulator of propionyl-CoA carboxylase genes. The transcriptional level of the bkd operon was upregulated 5-fold in a pccD gene deletion strain (ΔpccD strain) and decreased 3-fold in a pccD overexpression strain (WT/pIB-pccD), demonstrating that PccD was a negative transcriptional regulator of the operon. The deletion of pccD significantly improved the ΔpccD strain's growth rate, whereas pccD overexpression repressed WT/pIB-pccD growth rate, in basic Evans medium with 30 mM valine as the sole carbon and nitrogen source. The deletion of gdhA1 and the BcdhE1 gene (genes in the bkd operon) resulted in lower growth rates of ΔgdhA1 and ΔBcdhE1 strains, respectively, on 30 mM valine, further suggesting that the bkd operon is involved in BCAA degradation. Both bkd overexpression (WT/pIB-bkd) and pccD inactivation (ΔpccD strain) improve erythromycin production (38% and 64%, respectively), whereas the erythromycin production of strain WT/pIB-pccD was decreased by 48%. Lastly, we explored the applications of engineering pccD and bkd in an industrial high-erythromycin-producing strain. pccD deletion in industrial strain S. erythraea E3 (E3pccD) improved erythromycin production by 20%, and the overexpression of bkd in E3ΔpccD (E3ΔpccD/pIB-bkd) increased erythromycin production by 39% compared with S. erythraea E3 in an industrial fermentation medium. Addition of 30 mM valine to industrial fermentation medium further improved the erythromycin production by 23%, a 72% increase from the initial strain S. erythraea E3.IMPORTANCE We describe a bkd operon involved in BCAA degradation in S. erythraea The genes of the operon are repressed by a TetR regulator, PccD. The results demonstrated that PccD controlled the supply of precursors for biosynthesis of erythromycin via regulating the BCAA degradation and propionyl-CoA assimilation and exerted a negative effect on erythromycin production. The findings reveal a regulatory mechanism in feeder pathways and provide new strategies for designing metabolic engineering to increase erythromycin yield.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Proteínas de Bactérias/genética , Eritromicina/biossíntese , Saccharopolyspora/genética , Proteínas de Bactérias/metabolismo , Saccharopolyspora/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa