RESUMO
To assess the potential risks posed to the environment and human health, analyzing pesticide residues in proso millet is important. This paper aimed to develop a modified QuEChERS method with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the analysis of 54 pesticide residues in proso millet. Parameters including the mobile phase of the instrument, the acidity of the extraction solvent, and the type of absorbents were optimized to provide satisfactory performance. The method was validated concerning linearity, limit of quantification (LOQ), matrix effect, accuracy, and precision. In detail, the linearity of the matrix-matched calibration curve was acceptable with correlation coefficients (R2) higher than 0.99. The mean recovery was in the range of 86% to 114% with relative standard deviations (RSDs) ≤ 20% (n = 5). The LOQ was determined to be 0.25-10 µg/kg. The developed method was feasible for the determination of multiple pesticide residues in proso millet.
Assuntos
Panicum , Resíduos de Praguicidas , Praguicidas , Humanos , Praguicidas/análise , Resíduos de Praguicidas/análise , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodosRESUMO
Molecular dynamic (MD) simulation provides an insight into the behavior of a protein under applied processing at the molecular level. The behavior of glutelin type-B 5-like protein, a type of glutelin protein from proso millet was studied, in solution under different temperatures (300, 350, and 400 K) and pressure (1 bar, 3 kbar, and 6 kbar) levels using a molecular dynamics simulation approach. The combined treatment effect (400 K, 6 kbar) increased the compaction of the protein compared to the level at (300 K, 1 bar) as shown by the decreased radius of gyration values from 3.26 to 2.92 nm, decreased solvent accessibility surface area from 327.47 to 311.06 nm2 and decreased volume from 108.35 to 105.04 nm3. The root means square deviation increased with increasing temperature but decreased with increasing pressure while the root means square fluctuations increased significantly with increased in temperature and pressure. A snapshot of the three-dimensional structure of the protein revealed compression of its occluded cavities at higher pressure levels but no obvious disruption to the secondary structure elements of the protein was observed, except for the loss of a few amino acid residues that comprise the secondary structure element. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05594-y.
RESUMO
BACKGROUND: The climate crisis threatens sustainability of crop production worldwide. Crop diversification may enhance food security while reducing the negative impacts of climate change. Proso millet (Panicum milaceum L.) is a minor cereal crop which holds potential for diversification and adaptation to different environmental conditions. In this study, we assembled a world collection of proso millet consisting of 88 varieties and landraces to investigate its genomic and phenotypic diversity for seed traits, and to identify marker-trait associations (MTA). RESULTS: Sequencing of restriction-site associated DNA fragments yielded 494 million reads and 2,412 high quality single nucleotide polymorphisms (SNPs). SNPs were used to study the diversity in the collection and perform a genome wide association study (GWAS). A genotypic diversity analysis separated accessions originating in Western Europe, Eastern Asia and Americas from accessions sampled in Southern Asia, Western Asia, and Africa. A Bayesian structure analysis reported four cryptic genetic groups, showing that landraces accessions had a significant level of admixture and that most of the improved proso millet materials clustered separately from landraces. The collection was highly diverse for seed traits, with color varying from white to dark brown and width spanning from 1.8 to 2.6 mm. A GWAS study for seed morphology traits identified 10 MTAs. In addition, we identified three MTAs for agronomic traits that were previously measured on the collection. CONCLUSION: Using genomics and automated seed phenotyping, we elucidated phylogenetic relationships and seed diversity in a global millet collection. Overall, we identified 13 MTAs for key agronomic and seed traits indicating the presence of alleles with potential for application in proso breeding programs.
Assuntos
Biodiversidade , Produtos Agrícolas/genética , Grão Comestível/genética , Estudo de Associação Genômica Ampla , Panicum/genética , Fenótipo , Sementes/genética , Europa (Continente) , Genótipo , Filogenia , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Proso millet (Panicum miliaceum L.) is resilient to abiotic stress, especially to land degradation caused by soil salinization. However, the mechanisms by which its roots adapt and tolerate salt stress are obscure. In this study, plants of a salt-sensitive cultivar (SS 212) and a salt-tolerant cultivar (ST 47) of proso millet were exposed to severe salt stress and subsequent re-watering. ST 47 exhibited greater salt tolerance than SS 212, as evidenced by higher increases in total root length (TRL), root surface area (RSA), root tip number (RTN). Moreover, microstructural analysis showed that relative to SS 212, the roots of ST 47 could maintain more intact internal structures and thicker cell walls under salt stress. Digital RNA sequence analysis revealed that ST 47 maintained better Na+/K+ balance to resist Na+ toxicity via a higher capability to restrict Na+ uptake, vacuolar Na+ sequestration, and Na+ exclusion. The mechanism for Na+ toxicity resistance in ST 47 involved promoting cell wall composition changes via efficient regulation of galactose metabolism and biosynthesis of cellulose and phenylpropanoids. Overall, this study provides valuable salt-tolerant cultivar resources and mechanisms for regulating salt tolerance, which could be applied for the rehabilitation of saline lands.
Assuntos
Panicum , Agricultura , Sódio , Solo , Estresse FisiológicoRESUMO
Resistant starch (RS) is widely used in the food industry because of its ability to regulate and protect the small intestine, but their distinct effects on the structural and functional properties of waxy and non-waxy proso millet starches are not completely understood. The crystalline structure and physicochemical properties of waxy and non-waxy proso millets' starch samples were analyzed after heat-moisture treatment (HMT). The analysis revealed significant differences between the RS of waxy and non-waxy proso millets. The crystal type of proso millets' starch changed from type A to type B + V. The relative crystallinity of the RS of waxy proso millet was better than that of non-waxy proso millet. The gelatinization temperature and thermal stability of RS significantly increased, and the pasting temperature (PTM) of the RS of waxy proso millet was the highest. The water solubility and swelling power of the RS in proso millet decreased, and the viscoelasticity improved. The correlation between the short-range ordered structure of RS and ΔH, and gelatinization properties has a stronger correlation. This study provides practical information for improving the nutritional benefits of waxy and non-waxy proso millet in food applications.
Assuntos
Panicum/química , Amido/química , Ceras/química , Cristalização , Manipulação de Alimentos , Alimento Funcional , Solubilidade , Temperatura , ViscosidadeRESUMO
Virus-induced flowering (VIF) exploits RNA or DNA viruses to express flowering time genes to induce flowering in plants. Such plant virus-based tools have recently attracted widespread attention for their fundamental and applied uses in flowering physiology and in accelerating breeding in dicotyledonous crops and woody fruit-trees. We now extend this technology to a monocot grass and a cereal crop. Using a Foxtail mosaic virus (FoMV)-based VIF system, dubbed FoMViF, we showed that expression of florigenic Flowering Locus T (FT) genes can promote early flowering and spikelet development in proso millet, a C4 grass species with potential as a nutritional food and biofuel resource, and in non-vernalized C3 wheat, a major food crop worldwide. Floral and spikelet/grain induction in the two monocot plants was caused by the virally expressed untagged or FLAG-tagged FT orthologs, and the florigenic activity of rice Hd3a was more pronounced than its dicotyledonous counterparts in proso millet. The FoMViF system is easy to use and its efficacy to induce flowering and early spikelet/grain production is high. In addition to proso millet and wheat, we envisage that FoMViF will be also applicable to many economically important monocotyledonous food and biofuel crops.
Assuntos
Melhoramento Vegetal , Potexvirus , Produtos Agrícolas/genética , TriticumRESUMO
As a result of climate change, causing high temperature, erratic precipitation, and extreme meteorological events, in recent times in Italy productivity of Maize is becoming less reliable. Climate change effects are accompanied by the increase in the presence of mycotoxins and various pathogens, which contribute to the reduction of the possibility of successfully producing Maize. In this framework, Proso Millet (Panicum miliaceum L.) may be an interesting alternative, as it is a relatively low-demanding crop, highly drought-resistant, and can be employed, similarly to Sorghum, in rotation, maintaining a certain amount of biodiversity and contributing to the revenue for the farmers. Moreover, Proso Millet has a very short cycle, and may be used as a catch crop, when other crops have failed or after their harvest. Millet used to be cultivated in ancient times in Italy, but then it was abandoned in favor of Maize, so now it is necessary to re-define proper agricultural practices and managements, as well as to remedy to the lack of an exact description of its phenological development. In the frame of a Life-CCA EU project, called Growing REsilience AgriculTure-Life (GREAT LIFE), aim of this work is to encode phenology of Proso Millet using BBCH scale. The lack of an exact definition of Proso Millet phenology is a major drawback in progressing in research on this crop, which could be a very valuable tool for improving the resilience of agro-ecosystems to climate change in the Mediterranean basin. For this purpose, Proso Millet was cultivated in two experimental sites in the Emilia-Romagna region (North of Italy). The crop was closely monitored throughout the life cycle, in order to document, even photographically, the achievement of the subsequent phenological phases (including the time necessary to reach each phenological stage, expressed as Days After Sowing-DAS). Thanks to weather data collection from agrometeorological stations close to the experimental fields, it was possible to correlate the phenological development to temperature-driven heat-unit accumulation (Cumulated Growing Degree Days-CGDD), using the single triangle method (useful tool for forecasting purposes). Ancillary agronomic data have also been collected, for completeness. This study well describes primary and secondary phenological stages of Proso Millet, managing at encoding them in the BBCH scale and contextually providing DAS and CGDD values necessary to achieve the different phenophases. The difference observed between the two experimental sites in reaching each BBCH stage according to both CGDD and DAS is mostly restrained, suggesting that this work may represent a valid first tool in defining the phenological development of Proso Millet in the areas of Northern Italy. The effort made to encode Proso Millet phenology in BBCH scale may be useful to give to researchers comprehensive indications for future agronomic surveys on the crop. The agronomic data collected show that the crop had a good agronomic performance despite the adverse weather pattern during the season, enlightening for farmers the opportunity offered by Millet in Italy as a resilient crop.
Assuntos
Panicum , Animais , Mudança Climática , Ecossistema , Itália , Estações do AnoRESUMO
BACKGROUND: Drought stress is a major abiotic stress that causes huge losses in agricultural production. Proso millet (Panicum miliaceum L.) can efficiently adapt to drought stress and provides important information and gene resources to improve drought tolerance. However, its complex drought-responsive mechanisms remain unclear. RESULTS: Among 37 core Chinese proso millet cultivars, Jinshu 6 (JS6) was selected as the drought-sensitive test material, whereas Neimi 5 (NM5) was selected as the drought-tolerant test material under PEG-induced water stress. After sequencing, 1695 differentially expressed genes (DEGs) were observed in JS6 and NM5 without PEG-induced water stress (JS6CK and NM5CK). A total of 833 and 2166 DEGs were found in the two cultivars under simulated drought by using 20% PEG-6000 for 6 (JS6T6 and NM5T6) and 24 h (JS6T24 and NM5T24), respectively. The DEGs in JS6T6 and JS6T24 treatments were approximately 0.298- and 0.754-fold higher than those in NM5T6 and NM5T24, respectively. Compared with the respective controls, more DEGs were found in T6 treatments than in T24 treatments. A delay in the transcriptional responses of the ROS scavenging system to simulated drought treatment and relatively easy recovery of the expression of photosynthesis-associated genes were observed in NM5. Compared with JS6, different regulation strategies were observed in the jasmonic acid (JA) signal transduction pathway of NM5. CONCLUSION: Under PEG-induced water stress, NM5 maintained highly stable gene expression levels. Compared with drought-sensitive cultivars, the different regulation strategies in the JA signal transduction pathway in drought-tolerant cultivars may be one of the driving forces underlying drought stress tolerance.
Assuntos
Secas , Regulação da Expressão Gênica de Plantas/fisiologia , Panicum/fisiologia , Transcriptoma , Panicum/genética , Folhas de Planta/genética , Folhas de Planta/fisiologia , Estresse FisiológicoRESUMO
Hydration characteristics of little millet (Panicum sumatrense) and proso millet (Panicum miliaceum) were studied at different soaking temperatures (30, 40, 50, 60 and 70 °C) and fitted into hydration models. From the initial moisture contents of 11.02 (d.b.) and 10.45% (d.b), little millet and proso millet grains attained the equilibrium moisture content of 38-50.17% (d.b) and 39.11-47.15% (d.b.), respectively. Little millet took 18.5 h to reach equilibrium moisture content at soaking temperature of 30 °C and 3.5 h at 70 °C. For proso millet, it took 4 h at 70 °C and 19 h at 30 °C. The data of moisture content with time fitted to Lewis, Page, modified Page and Peleg models shown higher coefficient of determination values ranging from 0.92 to 0.99. Among the models, the Peleg model is more suitable for the little millet grains and both Page and Peleg models are more suitable for the proso millet grains, to represent the hydration kinetics in the soak water temperature range of 30-70 °C. The dependency of the coefficients of the hydration models with temperature of soaking was found to be linear for both little and proso millets with coefficient of determination values ranging from 0.88 to 0.97.
RESUMO
The volatile compounds in proso millet wine were extracted by headspace solid-phase microextraction (85 µm polyacrylate (PA), 100 µm polydimethylsiloxane (PDMS), 75 µm Carboxen (CAR)/PDMS, and 50/30 µm divinylbenzene (DVB)/CAR/PDMS fibers), and analyzed using gas chromatography-mass spectrometry; the odor characteristics and intensities were analyzed by the odor activity value (OAV). Different sample preparation factors were used to optimize this method: sample amount, extraction time, extraction temperature, and content of NaCl. A total of 64 volatile compounds were identified from the wine sample, including 14 esters, seven alcohols, five aldehydes, five ketones, 12 benzene derivatives, 12 hydrocarbons, two terpenes, three phenols, two acids, and two heterocycles. Ethyl benzeneacetate, phenylethyl alcohol, and benzaldehyde were the main volatile compounds found in the samples. According to their OAVs, 14 volatile compounds were determined to be odor-active compounds (OAV > 1), and benzaldehyde, benzeneacetaldehyde, 1-methyl-naphthalene, 2-methyl-naphthalene, and biphenyl were the prominent odor-active compounds (OAV > 50), having a high OAV. Principal component analysis (PCA) showed the difference of distribution of the 64 volatile compounds and 14 odor-active compounds with four solid-phase microextraction (SPME) fibers.
Assuntos
Odorantes/análise , Panicum/química , Fenóis/química , Compostos Orgânicos Voláteis/química , Ésteres/química , Ésteres/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Fenóis/isolamento & purificação , Álcool Feniletílico/química , Álcool Feniletílico/isolamento & purificação , Compostos Orgânicos Voláteis/isolamento & purificação , Vinho/análiseRESUMO
Background and Aims: Intercropping systems contain two or more species simultaneously in close proximity. Due to contrasting features of the component crops, quantification of the light environment and photosynthetic productivity is extremely difficult. However it is an essential component of productivity. Here, a low-tech but high-resolution method is presented that can be applied to single- and multi-species cropping systems to facilitate characterization of the light environment. Different row layouts of an intercrop consisting of Bambara groundnut ( Vigna subterranea ) and proso millet ( Panicum miliaceum ) have been used as an example and the new opportunities presented by this approach have been analysed. Methods: Three-dimensional plant reconstruction, based on stereo cameras, combined with ray tracing was implemented to explore the light environment within the Bambara groundnut-proso millet intercropping system and associated monocrops. Gas exchange data were used to predict the total carbon gain of each component crop. Key Results: The shading influence of the tall proso millet on the shorter Bambara groundnut results in a reduction in total canopy light interception and carbon gain. However, the increased leaf area index (LAI) of proso millet, higher photosynthetic potential due to the C4 pathway and sub-optimal photosynthetic acclimation of Bambara groundnut to shade means that increasing the number of rows of millet will lead to greater light interception and carbon gain per unit ground area, despite Bambara groundnut intercepting more light per unit leaf area. Conclusions: Three-dimensional reconstruction combined with ray tracing provides a novel, accurate method of exploring the light environment within an intercrop that does not require difficult measurements of light interception and data-intensive manual reconstruction, especially for such systems with inherently high spatial possibilities. It provides new opportunities for calculating potential productivity within multi-species cropping systems, enables the quantification of dynamic physiological differences between crops grown as monoculture and those within intercrops, and enables the prediction of new productive combinations of previously untested crops.
Assuntos
Produção Agrícola , Imageamento Tridimensional , Produção Agrícola/métodos , Imageamento Tridimensional/métodos , Luz , Modelos Teóricos , Panicum/crescimento & desenvolvimento , Fotossíntese , Vigna/crescimento & desenvolvimentoRESUMO
The glycaemic response of millet foods and the effect of processing are not known. Therefore, decorticated proso millet was used to produce four types of common food products (biscuits, couscous, porridge and an extruded snack). Postprandial blood glucose response of these products (all containing 50 g of total starch) was compared to the same foods produced with refined corn, in a crossover human study with 12 healthy male participants (age 26.3 ± 3.8 yr; BMI 23.3 ± 2.8 kg/m2). Capillary blood samples were collected and glycaemic response was determined; differences were assessed using repeat measures ANOVA. Overall, the mean (±SEM) incremental area under the blood glucose response curve (mmol min/l) of the proso millet products was different from the corn products, but individual products (couscous = 66.7 ± 11.6, biscuit = 82.6 ± 13.7, extrudate = 198.7 ± 20.9, porridge = 40.1 ± 5.8) were not significantly lower (couscous = 43.5 ± 5.8, biscuit = 102.0 ± 10.3, extrudate = 198.7 ± 20.9, porridge = 52.2 ± 8.1) (p > .05). Glycaemic response of the products was not dependent on the grain type, but rather product matrix.
Assuntos
Glicemia/efeitos dos fármacos , Panicum/química , Adulto , Estudos Cross-Over , Alimentos Especializados , Humanos , Masculino , Período Pós-Prandial , Lanches , Adulto Jovem , Zea maysRESUMO
There is an increased demand among the consumers for convenient foods for various reasons. Millets such as little, proso, barnyard and ragi were explored for processing into Ready-To-Cook (RTC) millet flakes to meet the needs of modern consumers. Physico-functional and nutrient composition of RTC millet flakes were evaluated against the control (oats flakes and rice flakes). Variation in physical, functional and nutrient composition were observed among the flakes. The RTC flakes of minor millets were smaller in size and density but more fragile and crisp than the commercial oats and rice flakes. Higher flake volume (16.35 ml) and lower bulk density was recorded in little millet flakes (0.15 g/ml). Good cooking properties were recorded in all millet flakes. Lowest fat content (0.40 g/100 g) was recorded in little millet flakes whereas proso millet flakes exhibited highest crude protein (14.72 g/100) and dietary fiber (21.56 g/100 g). Among the millet flakes, RTC little millet flake was most acceptable in terms of sensory quality and also exhibited good shelf life of four months at ambient temperature of 24-31 °C. The microbial load decreased during storage period and was within permissible limits.
RESUMO
Proso millet (Panicum miliaceum L.) is resilient to abiotic stress, especially to drought. However, the mechanisms by which its roots adapt and tolerate salt stress are obscure. In this study, to clarify the molecular mechanism of proso millet in response to drought stress, the physiological indexes and transcriptome in the root of seedlings of the proso millet cultivar 'Yumi 2' were analyzed at 0, 0.5, 1.0, 1.5, and 3.0 h of stimulated drought stress by using 20% PEG-6000 and after 24 h of rehydration. The results showed that the SOD activity, POD activity, soluble protein content, MDA, and O2-· content of 'Yumi 2' increased with the time of drought stress, but rapidly decreased after rehydration. Here, 130.46 Gb of clean data from 18 samples were obtained, and the Q30 value of each sample exceeded 92%. Compared with 0 h, the number of differentially expressed genes (DEGs) reached the maximum of 16,105 after 3 h of drought, including 9153 upregulated DEGs and 6952 downregulated DEGs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that upregulated DEGs were mainly involved in ATP binding, nucleus, protein serine/threonine phosphatase activity, MAPK signaling pathway-plant, plant-pathogen interactions, and plant hormone signal transduction under drought stress, while downregulated DEGs were mainly involved in metal ion binding, transmembrane transporter activity, and phenylpropanoid biosynthesis. Additionally, 1441 TFs screened from DEGs were clustered into 64 TF families, such as AP2/ERF-ERF, bHLH, WRKY, NAC, MYB, and bZIP TF families. Genes related to physiological traits were closely related to starch and sucrose metabolism, phenylpropanoid biosynthesis, glutathione metabolism, and plant hormone signal transduction. In conclusion, the active oxygen metabolism system and the soluble protein of proso millet root could be regulated by the activity of protein serine/threonine phosphatase. AP2/ERF-ERF, bHLH, WRKY, NAC, MYB, and bZIP TF families were found to be closely associated with drought tolerance in proso millet root. This study will provide data to support a subsequent study on the function of the drought tolerance gene in proso millet.
RESUMO
Nitrogen has a critical influence on the yield and quality of proso millet. However, the exact impact of nitrogen on the cooking quality of proso millet is not clear. In this study, the cooking quality and starch properties of two proso millet varieties (waxy-Shaanxi millet [wSM] variety and non-waxy-Shaanxi millet [nSM] variety) were compared and analyzed under nitrogen fertilizer treatment (N150, 150 kg/hm2) and a control group without nitrogen application (N0, 0 kg/hm2). Compared with the N0 group, the N150 treatment significantly increased protein content, amylose levels, and total yield. Employing rapid visco analyser and differential scanning calorimetry analyses, we observed that under the N150 treatment, the peak viscosity and breakdown viscosity of proso millet powder were diminished, while the setback viscosity and enthalpy values (ΔH) increased. In addition, nitrogen treatment increased the solids content in the obtained rice soup and significantly hardened the texture of the rice. At the same time, we noticed that the absorption capacity of starch in water and oil was enhanced. These results showed that nitrogen fertilizer had significant effects on the cooking quality and starch properties of proso millet.
RESUMO
Introduction: Proso millet, a high-quality fermentation material used for Chinese yellow wine production, can produce special flavored substances; however, its role in improving the flavor and altering microbial communities of light-flavored Baijiu during fermentation remain unknown. Thus, we aimed to investigate the effect of proso millet on improving the flavor of light-flavored Baijiu and altering microbial communities during different fermentation stages. Methods: The dynamic changes in the microbial communities and flavor of proso millet (50%) + sorghum (50%) mixed fermentation samples were analyzed through intermittent sampling on days 7, 14, 21, and 28 of the fermentation process. Microbial high-throughput sequencing and the analysis of flavor characteristics were conducted through 16S DNA/ ITS amplicon sequencing and gas chromatography (multi-capillary column)-ion mobility spectrometry, respectively. Results: Proso millet significantly changed the core flavor compound composition of traditional light-flavored Baijiu from ethyl acetate, ethyl hexanoate, ethyl hexanoate dimer, ethyl butanoate, ethyl lactate, and butyl acetate to oct-2-ene, 2-butanol, propyl propanoate, 2-pentenal, and 4-methylpentanal. The amplicon sequencing analysis revealed that the alpha diversity parameters of bacterial and fungal communities, including the Chao1, Pielou_e, Shannon, and Simpson indices, for proso millet-sorghum mixed fermentation samples were significantly higher than those for sorghum fermentation samples (p < 0.05). Of the 40 most significant microbial genera in two treatments, proso millet significantly increased the abundance of 12 bacterial and 18 fungal genera. Among the 40 most significant bacterial and fungal species, 23 bacterial species belonged to the Lactobacillus genus, whereas the 30 primary fungal species belonged to 28 different genera. The analysis of the relationship between microbial changes and the main flavor compounds of light-flavored Baijiu showed that bacteria from the Weissella, Acinetobacter, Bacteroides, Psychrobacter, Pseudarthrobacter, Lactococcus, Chloroplast, Saccharopolyspora, Psychrobacter, Saccharopolyspora, Pseudonocardiaceae, Bacteroides genera and fungi from the Thermoascus, Aspergillus, Pichia, Rhizomucor, Papiliotrema, Hyphopichia, and Mucor genera significantly inhibited the synthesis of ethyl hexanoate, ethyl butanoate, ethyl lactate ethyl lactate, and butyl acetate but increased the synthesis of ethyl acetate (p < 0.05). Moreover, these microbes exhibited a significantly greater abundance in proso millet-sorghum mixed fermentation samples than in sorghum samples. The synthesis of special flavored compounds in proso millet Baijiu was significantly positively correlated with the presence of fungi from the Rhizopus, Papiliotrema, Wickerhamomyces, Aspergillus, and Thermoascus genera but negative correlated with the presence of bacteria from the Weissella, Acinetobacter, Psychrobacter, Pseudarthrobacter, Bacteroides, and Saccharopolyspora genera. Regarding ethanol content, the low alcohol content of Fenjiu may be due to the significantly high abundance of fungi from the Psathyrella genus and bacteria from the Staphylococcus, Kroppenstedtia, Brevibacterium, and Acetobacter genera during fermentation. In summary, proso millet significantly altered the flavor of light-flavored Baijiu by inducing the formation of a special microbial community; however, it did not increase alcohol concentration. Discussion: This study lays the foundation for future research on Baijiu fermentation. Additionally, the study findings may help improve the production efficiency and elevate the quality and flavor of the final product.
RESUMO
This study aimed to reveal the underlying mechanisms of the differences in viscoelasticity and digestibility between mung bean starch (MBS) and proso millet starch (PMS) from the viewpoint of starch fine molecular structure. The contents of amylopectin B2 chains (14.94-15.09 %), amylopectin B3 chains (14.48-15.07 %) and amylose long chains (183.55-198.84) in MBS were significantly higher than PMS (10.45-10.76 %, 12.48-14.07 % and 70.59-88.03, respectively). MBS with higher amylose content (AC, 28.45-31.80 %) not only exhibited a lower weight-average molar mass (91,750.65-128,120.44 kDa) and R1047/1022 (1.1520-1.1904), but also was significantly lower than PMS in relative crystallinity (15.22-23.18 %, p < 0.05). MBS displayed a higher storage modulus (G') and loss modulus (G'') than PMS. Although only MBS-1 showed two distinct and discontinuous phases, MBS exhibited a higher resistant starch (RS) content than PMS (31.63-39.23 %), with MBS-3 having the highest RS content (56.15 %). Correlation analysis suggested that the amylopectin chain length distributions and AC played an important role in affecting the crystal structure, viscoelastic properties and in vitro starch digestibility of MBS and PMS. These results will provide a theoretical and scientific basis for the development of starch science and industrial production of low glycemic index starchy food.
Assuntos
Amilopectina , Amilose , Panicum , Amido , Vigna , Amilopectina/análise , Amilose/análise , Vigna/química , Amido/química , Panicum/química , Pepsina A/metabolismo , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Peso Molecular , CinéticaRESUMO
Millet is a small-seeded cereal crop with big potential. There are many different cultivars of proso millet (Panicum miliaceum L.) with different characteristics, bringing forth the issue of sorting which are important for growers, processors, and consumers. Current methods of grain cultivar detection and classification are subjective, destructive, and time-consuming. Therefore, there is a need to develop nondestructive methods for sorting the cultivars of proso millet. In this study, the feasibility of using near-infrared (NIR) hyperspectral imaging (900-1700 nm) to discriminate between different cultivars of proso millet seeds was evaluated. A total of 5000 proso millet seeds were randomly obtained and investigated from the ten most popular cultivars in the United States, namely Cerise, Cope, Earlybird, Huntsman, Minco, Plateau, Rise, Snowbird, Sunrise, and Sunup. To reduce the large dimensionality of the hyperspectral imaging, principal component analysis (PCA) was applied, and the first two principal components were used as spectral features for building the classification models because they had the largest variance. The classification performance showed prediction accuracy rates as high as 99% for classifying the different cultivars of proso millet using a Gradient tree boosting ensemble machine learning algorithm. Moreover, the classification was successfully performed using only 15 and 5 selected spectral features (wavelengths), with an accuracy of 98.14% and 97.6%, respectively. The overall results indicate that NIR hyperspectral imaging could be used as a rapid and nondestructive method for the classification of proso millet seeds.
RESUMO
Proso millet is an important but under-researched and underutilized crop with the potential to become a future smart crop because of its climate-resilient features and high nutrient content. Assessing diversity and marker-trait associations are essential to support the genomics-assisted improvement of proso millet. This study aimed to assess the population structure and diversity of a proso millet diversity panel and identify marker-trait associations for agronomic and grain nutrient traits. In this study, genome-wide single nucleotide polymorphisms (SNPs) were identified by mapping raw genotyping-by-sequencing (GBS) data onto the proso millet genome, resulting in 5621 quality-filtered SNPs in 160 diverse accessions. The modified Roger's Distance assessment indicated an average distance of 0.268 among accessions, with the race miliaceum exhibiting the highest diversity and ovatum the lowest. Proso millet germplasm diversity was structured according to geographic centers of origin and domestication. Genome-wide association mapping identified 40 marker-trait associations (MTAs), including 34 MTAs for agronomic traits and 6 for grain nutrients; 20 of these MTAs were located within genes. Favourable alleles and phenotypic values were estimated for all MTAs. This study provides valuable insights into the population structure and diversity of proso millet, identified marker-trait associations, and reported favourable alleles and their phenotypic values for supporting genomics-assisted improvement efforts in proso millet.
Assuntos
Mapeamento Cromossômico , Grão Comestível , Genoma de Planta , Estudo de Associação Genômica Ampla , Panicum , Polimorfismo de Nucleotídeo Único , Panicum/genética , Grão Comestível/genética , Locos de Características Quantitativas , Fenótipo , Genótipo , Característica Quantitativa HerdávelRESUMO
Starch chain-length distributions play a key role in regulating the processing and digestion characteristics of proso millet starch. Waxy proso millet starch has higher endothermic enthalpy (13.06-16.73 J/g) owing to its higher relative crystallinity (27.83%-32.04%), while nonwaxy proso millet starch has lower peak viscosity (1.0630-1.1930 Paâs) and stronger viscoelasticity owing to its higher amylose content (21.72%-24.34%). Non-waxy proso millet starch exhibited two different digestion phases and its resistant starch content (18.37%-20.80%) was higher than waxy proso millet starch. Correlation analysis showed proso millet starch with longer amylopectin B1 chains and more amylopectin B2 chains exhibited excellent thermal ability and retrograde resistance, whereas proso millet starch with shorter and more amylose medium/long-chains not only reduced the digestion rate and increased the resistant starch content but also exhibited stronger viscoelasticity and excellent retrogradation properties. These results could provide more insights into efficient utilization of proso millet starch.