Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 402
Filtrar
1.
J Biol Chem ; 300(2): 105623, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176650

RESUMO

Group A Streptococcal M-related proteins (Mrps) are dimeric α-helical-coiled-coil cell membrane-bound surface proteins. During infection, Mrp recruit the fragment crystallizable region of human immunoglobulin G via their A-repeat regions to the bacterial surface, conferring upon the bacteria enhanced phagocytosis resistance and augmented growth in human blood. However, Mrps show a high degree of sequence diversity, and it is currently not known whether this diversity affects the Mrp-IgG interaction. Herein, we report that diverse Mrps all bind human IgG subclasses with nanomolar affinity, with differences in affinity which ranged from 3.7 to 11.1 nM for mixed IgG. Using surface plasmon resonance, we confirmed Mrps display preferential IgG-subclass binding. All Mrps were found to have a significantly weaker affinity for IgG3 (p < 0.05) compared to all other IgG subclasses. Furthermore, plasma pulldown assays analyzed via Western blotting revealed that all Mrp were able to bind IgG in the presence of other serum proteins at both 25 °C and 37 °C. Finally, we report that dimeric Mrps bind to IgG with a 1:1 stoichiometry, enhancing our understanding of this important host-pathogen interaction.


Assuntos
Proteínas de Bactérias , Streptococcus pyogenes , Humanos , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Imunoglobulina G/metabolismo , Streptococcus pyogenes/metabolismo
2.
J Biol Chem ; 300(1): 105452, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949218

RESUMO

Hepcidin, a peptide hormone that negatively regulates iron metabolism, is expressed by bone morphogenetic protein (BMP) signaling. Erythroferrone (ERFE) is an extracellular protein that binds and inhibits BMP ligands, thus positively regulating iron import by indirectly suppressing hepcidin. This allows for rapid erythrocyte regeneration after blood loss. ERFE belongs to the C1Q/TNF-related protein family and is suggested to adopt multiple oligomeric forms: a trimer, a hexamer, and a high molecular weight species. The molecular basis for how ERFE binds BMP ligands and how the different oligomeric states impact BMP inhibition are poorly understood. In this study, we demonstrated that ERFE activity is dependent on the presence of stable dimeric or trimeric ERFE and that larger species are dispensable for BMP inhibition. Additionally, we used an in silico approach to identify a helix, termed the ligand-binding domain, that was predicted to bind BMPs and occlude the type I receptor pocket. We provide evidence that the ligand-binding domain is crucial for activity through luciferase assays and surface plasmon resonance analysis. Our findings provide new insight into how ERFE oligomerization impacts BMP inhibition, while identifying critical molecular features of ERFE essential for binding BMP ligands.


Assuntos
Proteínas Morfogenéticas Ósseas , Hormônios Peptídicos , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas Morfogenéticas Ósseas/metabolismo , Ligantes , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Hormônios Peptídicos/genética , Hormônios Peptídicos/isolamento & purificação , Hormônios Peptídicos/farmacologia , Multimerização Proteica/genética , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Domínios Proteicos , Humanos
3.
J Cell Sci ; 136(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37073556

RESUMO

Mitochondria are essential organelles of eukaryotic cells and are characterized by their unique and complex membrane system. They are confined from the cytosol by an envelope consisting of two membranes. Signals, metabolites, proteins and lipids have to be transferred across these membranes via proteinaceous contact sites to keep mitochondria functional. In the present study, we identified a novel mitochondrial contact site in Saccharomyces cerevisiae that is formed by the inner membrane protein Cqd1 and the outer membrane proteins Por1 and Om14. Similar to what is found for the mitochondrial porin Por1, Cqd1 is highly conserved, suggesting that this complex is conserved in form and function from yeast to human. Cqd1 is a member of the UbiB protein kinase-like family (also called aarF domain-containing kinases). It was recently shown that Cqd1, in cooperation with Cqd2, controls the cellular distribution of coenzyme Q by a yet unknown mechanism. Our data suggest that Cqd1 is additionally involved in phospholipid homeostasis. Moreover, overexpression of CQD1 and CQD2 causes tethering of mitochondria to the endoplasmic reticulum, which might explain the ability of Cqd2 to rescue ERMES deletion phenotypes.


Assuntos
Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Humanos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
4.
Trends Biochem Sci ; 45(2): 108-122, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31679840

RESUMO

Ticks are hematophagous arachnids that parasitize mammals and other hosts, feeding on their blood. Ticks secrete numerous salivary factors that enhance host blood flow or suppress the host inflammatory response. The recruitment of leukocytes, a hallmark of inflammation, is regulated by chemokines, which activate chemokine receptors on the leukocytes. Ticks target this process by secreting glycoproteins called Evasins, which bind to chemokines and prevent leukocyte recruitment. This review describes the recent discovery of numerous Evasins produced by ticks, their classification into two structural and functional classes, and the efficacy of Evasins in animal models of inflammatory diseases. The review also proposes a standard nomenclature system for Evasins and discusses the potential of repurposing or engineering Evasins as therapeutic anti-inflammatory agents.


Assuntos
Quimiocinas/antagonistas & inibidores , Proteínas de Insetos/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Carrapatos/metabolismo , Animais , Leucócitos/metabolismo , Receptores de Quimiocinas/metabolismo , Terminologia como Assunto
5.
J Biol Chem ; 299(4): 104581, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871757

RESUMO

Commitment to apoptotic cell death occurs at the mitochondria and is regulated by BCL-2 family proteins localized to this organelle. However, BIK, a resident protein of the endoplasmic reticulum, inhibits mitochondrial BCL-2 proteins to promote apoptosis. In a recent paper in the JBC, Osterlund et al. investigated this conundrum. Surprisingly, they discovered that these endoplasmic reticulum and mitochondrial proteins moved toward each other and met at the contact site between the two organelles, thereby forming a 'bridge to death'.


Assuntos
Apoptose , Retículo Endoplasmático , Proteínas Proto-Oncogênicas c-bcl-2 , Apoptose/fisiologia , Retículo Endoplasmático/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
6.
Mol Biol Evol ; 40(7)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37352150

RESUMO

Snake venoms harbor a wide and diverse array of enzymatic and nonenzymatic toxic components, allowing them to exert myriad effects on their prey. However, they appear to trend toward a few optimal compositional scaffolds, dominated by four major toxin classes: SVMPs, SVSPs, 3FTxs, and PLA2s. Nevertheless, the latter appears to be restricted to vipers and elapids, as it has never been reported as a major venom component in rear-fanged species. Here, by investigating the original transcriptomes from 19 species distributed in eight genera from the Pseudoboini tribe (Dipsadidae: Xenodontinae) and screening among seven additional tribes of Dipsadidae and three additional families of advanced snakes, we discovered that a novel type of venom PLA2, resembling a PLA2-IIE, has been recruited to the venom of some species of the Pseudoboini tribe, where it is a major component. Proteomic and functional analyses of these venoms further indicate that these PLA2s play a relevant role in the venoms from this tribe. Moreover, we reconstructed the phylogeny of PLA2s across different snake groups and show that different types of these toxins have been recruited in at least five independent events in caenophidian snakes. Additionally, we present the first compositional profiling of Pseudoboini venoms. Our results demonstrate how relevant phenotypic traits are convergently recruited by different means and from homologous and nonhomologous genes in phylogenetically and ecologically divergent snake groups, possibly optimizing venom composition to overcome diverse adaptative landscapes.


Assuntos
Colubridae , Proteômica , Animais , Venenos de Serpentes/genética , Fosfolipases A2/genética , Filogenia , Colubridae/genética , Serpentes
7.
Mol Microbiol ; 120(2): 224-240, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37387308

RESUMO

The haloarchaeon Haloferax volcanii degrades D-glucose via the semiphosphorylative Entner-Doudoroff pathway and D-fructose via a modified Embden-Meyerhof pathway. Here, we report the identification of GfcR, a novel type of transcriptional regulator that functions as an activator of both D-glucose and D-fructose catabolism. We find that in the presence of D-glucose, GfcR activates gluconate dehydratase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase and also acts as activator of the phosphotransferase system and of fructose-1,6-bisphosphate aldolase, which are involved in uptake and degradation of D-fructose. In addition, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase are activated by GfcR in the presence of D-fructose and also during growth on D-galactose and glycerol. Electrophoretic mobility shift assays indicate that GfcR binds directly to promoters of regulated genes. Specific intermediates of the degradation pathways of the three hexoses and of glycerol were identified as inducer molecules of GfcR. GfcR is composed of a phosphoribosyltransferase (PRT) domain with an N-terminal helix-turn-helix motif and thus shows homology to PurR of Gram-positive bacteria that is involved in the transcriptional regulation of nucleotide biosynthesis. We propose that GfcR of H. volcanii evolved from a PRT-like enzyme to attain a function as a transcriptional regulator of central sugar catabolic pathways in archaea.


Assuntos
Archaea , Piruvato Quinase , Archaea/metabolismo , Glicerol , Glucose/metabolismo , Frutose/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo
8.
Pharmacol Res ; 205: 107257, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866264

RESUMO

Global aging is a tendency of the world, as is the increasing prevalence of diabetes, and the two are closely linked. In our early research, Enteromorpha prolifera oligosaccharide (EPO) possesses the excellent ability of anti-oxidative, anti-inflammatory, and anti-diabetic. We aim to further explore the deeper mechanism of how EPO delays aging and regulates glycometabolism. EPO effectively impacts crotonylation procession to enhance glucose metabolism and reduce cell senescence in aging diabetic rats. Crotonylation modification of XPO1 influences the expression of critical genes, including p53, CDK1, and CCNB1, which affect cell cycle regulation and aging. Additionally, EPO improves glucose metabolism by inhibiting the crotonylation modification of HSPA8-K126 and activating the AKT pathway. EPO promotes crotonylation of histones in intestinal cells, influencing the aging process by increasing the butyric acid-producing bacteria Ruminococcaceae. The observed enhancement in pyrimidine metabolism underscores EPO's potential role in regulating intestinal health, presenting a promising avenue for delaying aging. In summary, our findings affirm EPO as a naturally bioactive ingredient with significant potential for anti-aging and antidiabetic interventions.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Oligossacarídeos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Oligossacarídeos/farmacologia , Oligossacarídeos/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Masculino , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Envelhecimento/metabolismo , Envelhecimento/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Ratos Sprague-Dawley , Ratos , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos
9.
EMBO Rep ; 23(3): e53365, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34994476

RESUMO

Bark protects the tree against environmental insults. Here, we analyzed whether this defensive strategy could be utilized to broadly enhance protection against colitis. As a proof of concept, we show that exosome-like nanoparticles (MBELNs) derived from edible mulberry bark confer protection against colitis in a mouse model by promoting heat shock protein family A (Hsp70) member 8 (HSPA8)-mediated activation of the AhR signaling pathway. Activation of this pathway in intestinal epithelial cells leads to the induction of COP9 Constitutive Photomorphogenic Homolog Subunit 8 (COPS8). Utilizing a gut epithelium-specific knockout of COPS8, we demonstrate that COPS8 acts downstream of the AhR pathway and is required for the protective effect of MBELNs by inducing an array of anti-microbial peptides. Our results indicate that MBELNs represent an undescribed mode of inter-kingdom communication in the mammalian intestine through an AhR-COPS8-mediated anti-inflammatory pathway. These data suggest that inflammatory pathways in a microbiota-enriched intestinal environment are regulated by COPS8 and that edible plant-derived ELNs may hold the potential as new agents for the prevention and treatment of gut-related inflammatory disease.


Assuntos
Colite , Exossomos , Morus , Nanopartículas , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colite/prevenção & controle , Modelos Animais de Doenças , Exossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Casca de Planta/metabolismo
10.
Exp Cell Res ; 424(1): 113504, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736606

RESUMO

FET proteins (FUS, EWS, and TAF15) share a common domain organization, bind RNA/DNA, and perform similarly multifunctional roles in the regulation of gene expression. Of the FET proteins, however, only EWS appears to have a distinct property in the cellular stress response. Therefore, we focused on the relationship between hyperosmotic stress response and post-translational modifications of the FET proteins. We confirmed that the hyperosmotic stress-dependent translocation from the nucleus to the cytoplasm and the cellular granule formation of FET proteins, and that EWS is less likely to partition into cellular granules in the cytoplasm than FUS or TAF15. The domain involved in the less partitioning property of EWS was found to be its low-complexity domain (LCD). Chemoenzymatic labeling analysis of O-linked ß-N-acetylglucosamine (O-GlcNAc) residues revealed that O-GlcNAc glycosylation occurs frequently in the LCD of EWS. A correlation was observed between the glycosylation of EWS and the less partitioning property under the hyperosmotic stress. These results suggest that among the FET proteins, only EWS has acquired the unique property through O-GlcNAc glycosylation. The glycosylation may play an essential role in regulating physiological functions of EWS, such as transcriptional activity, in addition to the property in cellular stress response.


Assuntos
Grânulos Citoplasmáticos , Processamento de Proteína Pós-Traducional , Glicosilação , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Grânulos Citoplasmáticos/metabolismo , Citoplasma/metabolismo , Acetilglucosamina/metabolismo
11.
Acta Biochim Biophys Sin (Shanghai) ; 56(3): 356-365, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38419499

RESUMO

Currently, platinum agents remain the mainstay of chemotherapy for ovarian cancer (OC). However, cisplatin (DDP) resistance is a major reason for chemotherapy failure. Thus, it is extremely important to elucidate the mechanism of resistance to DDP. Here, we establish two DDP-resistant ovarian cancer cell lines and find that caseinolytic protease P (CLPP) level is significantly downregulated in DDP-resistant cell lines compared to wild-type ovarian cancer cell lines (SK-OV-3 and OVcar3). Next, we investigate the functions of CLPP in DDP-resistant and wild-type ovarian cancer cells using various assays, including cell counting kit-8 assay, western blot analysis, immunofluorescence staining, and detection of reactive oxygen species (ROS) and apoptosis. Our results show that CLPP knockdown significantly increases the half maximal inhibitory concentration (IC 50) and mitophagy of wild-type SK-OV-3 and OVcar3 cells, while CLPP overexpression reduces the IC 50 values and mitophagy of DDP-resistant SK-OV-3 and OVcar3 cells. Next, we perform database predictions and confirmation experiments, which show that heat shock protein family A member 8 (HSPA8) regulates CLPP protein stability. The dynamic effects of the HSPA8/CLPP axis in ovarian cancer cells are also examined. HSPA8 increases mitophagy and the IC 50 values of SK-OV-3 and OVcar3 cells but inhibits their ROS production and apoptosis. In addition, CLPP partly reverses the effects induced by HSPA8 in SK-OV-3 and OVcar3 cells. In conclusion, CLPP increases DDP resistance in ovarian cancer by inhibiting mitophagy and promoting cellular stress. Meanwhile, HSPA8 promotes the degradation of CLPP protein by regulating its stability.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Feminino , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Endopeptidase Clp , Proteínas de Choque Térmico HSC70/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Foodborne Pathog Dis ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625018

RESUMO

Salmonella Typhimurium (STM) is an important zoonotic Gram-negative pathogen that can cause infection in a variety of livestock and poultry. Meanwhile, as an important foodborne pathogen, the bacterium can survive in various stressful environments and transmits through the fecal-oral route, posing a serious threat to global food safety. To investigate the roles of STM1863, a member of the DUFs protein family, involved in STM environmental adaptation, biofilm formation, and virulence. We analyzed the molecular characteristics of the protein encoded by STM1863 gene and examined intra- and extracellular expression levels of STM1863 gene in mouse macrophages. Furthermore, we constructed STM1863 gene deletion and complementation strains and determined its environmental adaptation under stressful conditions such as acid, alkali, high salt, bile salt, and oxidation. And the capacity of biofilm formation and pathogenicity of those strains were analyzed and compared. In addition, the interaction between the promoter of STM1863 gene and RcsB protein was analyzed using DNA gel electrophoresis migration assay (electrophoretic mobility shift assay [EMSA]). The experiments revealed that acid adaptability and biofilm formation ability of STM1863 gene deletion strain were significantly weakened compared with the parental and complementary strains. Moreover, the adhesion and invasion ability of STM1863 deletion strain to mouse macrophages was significantly decreased, while the median lethal dose (LD50) increased by 2.148-fold compared with the parental strain. In addition, EMSA confirmed that RcsB protein could bind to the promoter sequence of STM1863 gene, suggesting that the expression of STM1863 gene might be modulated by RcsB. The present study demonstrated for the first time that STM1863, a member of the DUFs protein family, is involved in the modulation of environmental adaptation, biofilm formation, and virulence.

13.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791133

RESUMO

Identifying alterations caused by aging could be an important tool for improving the diagnosis of cardiovascular diseases. Changes in vascular tone regulation involve various mechanisms, like NO synthase activity, activity of the sympathetic nervous system, production of prostaglandin, endothelium-dependent relaxing, and contracting factors, etc. Surprisingly, Ca2+-dependent Cl- channels (CaCCs) are involved in all alterations of the vascular tone regulation mentioned above. Furthermore, we discuss these mechanisms in the context of ontogenetic development and aging. The molecular and electrophysiological mechanisms of CaCCs activation on the cell membrane of the vascular smooth muscle cells (VSMC) and endothelium are explained, as well as the age-dependent changes that imply the activation or inhibition of CaCCs. In conclusion, due to the diverse intracellular concentration of chloride in VSMC and endothelial cells, the activation of CaCCs depends, in part, on intracellular Ca2+ concentration, and, in part, on voltage, leading to fine adjustments of vascular tone. The activation of CaCCs declines during ontogenetic development and aging. This decline in the activation of CaCCs involves a decrease in protein level, the impairment of Ca2+ influx, and probably other alterations in vascular tone regulation.


Assuntos
Envelhecimento , Cálcio , Canais de Cloreto , Músculo Liso Vascular , Humanos , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Cálcio/metabolismo , Músculo Liso Vascular/metabolismo , Canais de Cloreto/metabolismo , Endotélio Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo
14.
Compr Rev Food Sci Food Saf ; 23(3): e13340, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38778570

RESUMO

Immunoglobulin E (IgE)-mediated food allergy is a rapidly growing public health problem. The interaction between allergens and IgE is at the core of the allergic response. One of the best ways to understand this interaction is through structural characterization. This review focuses on animal-derived food allergens, overviews allergen structures determined by X-ray crystallography, presents an update on IgE conformational epitopes, and explores the structural features of these epitopes. The structural determinants of allergenicity and cross-reactivity are also discussed. Animal-derived food allergens are classified into limited protein families according to structural features, with the calcium-binding protein and actin-binding protein families dominating. Progress in epitope characterization has provided useful information on the structural properties of the IgE recognition region. The data reveals that epitopes are located in relatively protruding areas with negative surface electrostatic potential. Ligand binding and disulfide bonds are two intrinsic characteristics that influence protein structure and impact allergenicity. Shared structures, local motifs, and shared epitopes are factors that lead to cross-reactivity. The structural properties of epitope regions and structural determinants of allergenicity and cross-reactivity may provide directions for the prevention, diagnosis, and treatment of food allergies. Experimentally determined structure, especially that of antigen-antibody complexes, remains limited, and the identification of epitopes continues to be a bottleneck in the study of animal-derived food allergens. A combination of traditional immunological techniques and emerging bioinformatics technology will revolutionize how protein interactions are characterized.


Assuntos
Alérgenos , Epitopos , Hipersensibilidade Alimentar , Imunoglobulina E , Alérgenos/química , Alérgenos/imunologia , Hipersensibilidade Alimentar/imunologia , Epitopos/química , Epitopos/imunologia , Animais , Cristalografia por Raios X , Humanos , Imunoglobulina E/imunologia , Imunoglobulina E/química , Reações Cruzadas , Conformação Proteica
15.
Pflugers Arch ; 475(2): 277-281, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36418493

RESUMO

The concept of solvent drag, i.e., water and solutes sharing the same pore and their transport being frictionally coupled, was first proposed in the early 1950s. During the following decades, it was applied to transport processes across cell membranes as well as transport along the paracellular pathway. Water-driven solute transport was proposed as the major mechanism for electrolyte and nutrient absorption in the small intestine and for Cl- and HCO3- reabsorption in the renal proximal tubule. With the discovery of aquaporins as transcellular route for water transport and the claudin protein family as the major determinant of paracellular transport properties, new mechanistic insights in transepithelial water and solute transport are emerging and call for a reassessment of the solvent drag concept. Current knowledge does not provide a molecular basis for relevant solvent drag-driven, paracellular nutrient, and inorganic anion (re-)absorption. For inorganic cation transport, in contrast, solvent drag along claudin-2-formed paracellular channels appears feasible.


Assuntos
Túbulos Renais Proximais , Água , Túbulos Renais Proximais/metabolismo , Transporte Biológico , Transporte de Íons , Água/metabolismo , Solventes/metabolismo , Junções Íntimas/metabolismo
16.
Apoptosis ; 28(1-2): 20-38, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36342579

RESUMO

Acquired resistance to cell death is a hallmark of cancer. The BCL-2 protein family members play important roles in controlling apoptotic cell death. Abnormal over-expression of pro-survival BCL-2 family members or abnormal reduction of pro-apoptotic BCL-2 family proteins, both resulting in the inhibition of apoptosis, are frequently detected in diverse malignancies. The critical role of the pro-survival and pro-apoptotic BCL-2 family proteins in the regulation of apoptosis makes them attractive targets for the development of agents for the treatment of cancer. This review describes the roles of the various pro-survival and pro-apoptotic members of the BCL-2 protein family in normal development and organismal function and how defects in the control of apoptosis promote the development and therapy resistance of cancer. Finally, we discuss the development of inhibitors of pro-survival BCL-2 proteins, termed BH3-mimetic drugs, as novel agents for cancer therapy.


Assuntos
Apoptose , Neoplasias , Humanos , Apoptose/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
17.
Funct Integr Genomics ; 23(2): 78, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36881338

RESUMO

This paper was to uncover the mechanism of circular RNA Argonaute 2 (circAGO2) in colorectal cancer (CRC) progression. The expression of circAGO2 was detected in CRC cells and tissues, and the relationship between clinicopathological features of CRC and circAGO2 level was evaluated. The growth and invasion of CRC cells and subcutaneous xenograft of nude mice were measured to evaluate the effect of circAGO2 on CRC development. Bioinformatics databases were applied to analyze levels of retinoblastoma binding protein 4 (RBBP4) and heat shock protein family B 8 (HSPB8) in cancer tissues. The relevance of circAGO2 and RBBP4 expression and the relationship between RBBP4 and HSPB8 during histone acetylation were assessed. The targeting relationship between miR-1-3p and circAGO2 or RBBP4 was predicted and confirmed. The effects of miR-1-3p and RBBP4 on biological functions of CRC cells were also verified. CircAGO2 was upregulated in CRC. CircAGO2 promoted the growth and invasion of CRC cells. CircAGO2 competitively bound to miR-1-3p and regulated RBBP4 expression, thus inhibiting HSPB8 transcription by promoting histone deacetylation. Silencing circAGO2 enhanced miR-1-3p expression and reduced RBBP4 expression, while suppression of miR-1-3p downgraded levels of miR-1-3p, up-regulated RBBP4, and facilitated cell proliferation and invasion in the presence of silencing circAGO2. RBBP4 silencing decreased RBBP4 expression and reduced proliferation and invasion of cells where circAGO2 and miR-1-3p were silenced. CircAGO2 overexpression decoyed miR-1-3p to increase RBBP4 expression, which inhibited HSPB8 transcription via histone deacetylation in HSPB8 promoter region, promoting proliferation and invasion of CRC cells.


Assuntos
Neoplasias Colorretais , Proteínas de Choque Térmico , MicroRNAs , RNA Circular , Animais , Humanos , Camundongos , Neoplasias Colorretais/genética , Proteínas de Choque Térmico/genética , Histonas , Camundongos Nus , MicroRNAs/genética , Proteína 4 de Ligação ao Retinoblastoma/genética , RNA Circular/genética , Chaperonas Moleculares/genética
18.
Am J Kidney Dis ; 81(2): 240-244, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35970429

RESUMO

Focal segmental glomerulosclerosis (FSGS) is a histological lesion with a variety of potential causes, including rare variants of podocyte-related genes. Recently, it has been found that variants in the TBC1D8B gene on the X chromosome can lead to early-onset focal segmental glomerulosclerosis and steroid-resistant nephrotic syndrome by affecting endocytosis and recycling of nephrin. Here, we report a 19-year-old Chinese patient with nephrotic syndrome and normal kidney function. He had a complete remission of nephrotic syndrome after full-dose prednisone and cyclosporine treatment. Unfortunately, a relapse of nephrotic syndrome occurred during prednisone tapering. Focal segmental glomerulosclerosis was proven by a kidney biopsy, and a hemizygous pathogenic variant located in the TBC (Tre-2-Bub2-Cdc16) domain of TBC1D8B was detected by whole-exome sequencing. By comparing our case with reports of other patients with TBC1D8B variants, we suggest possible genotype-phenotype correlations. To our knowledge, this is the first report identifying a pathogenetic variant in the TBC domain of TBC1D8B in an adult-onset focal segmental glomerulosclerosis patient with steroid-dependent NS. With this report, we broaden the clinical and genetic spectrum of X-linked genetic FSGS.


Assuntos
Glomerulosclerose Segmentar e Focal , Síndrome Nefrótica , Podócitos , Masculino , Humanos , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/genética , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Glomerulosclerose Segmentar e Focal/genética , Prednisona/uso terapêutico , Ciclosporina/uso terapêutico , Podócitos/patologia
19.
Pediatr Allergy Immunol ; 34 Suppl 28: e13854, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37186333

RESUMO

Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.


Assuntos
Hipersensibilidade , Humanos , Hipersensibilidade/diagnóstico , Hipersensibilidade/terapia , Alérgenos , Imunoglobulina E
20.
Biosci Biotechnol Biochem ; 88(1): 74-78, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37766390

RESUMO

Recombinant 3-(5-oxo-2-thioxoimidazolidin-4-yl) propionic acid desulfhydrase (ErtC) derived from Burkholderia sp. HME13 was purified to homogeneity. Here, ErtC's kinetic parameters, optimum reaction temperature and pH, and stability at varying temperatures and pH and the effects of various additives on ErtC activity were determined. Real-time polymerase chain reaction and enzyme assays suggested that ergothioneine induced the expression of ertC.


Assuntos
Burkholderia , Ergotioneína , Propionatos , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa