Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
J Neurochem ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352694

RESUMO

The mechanisms underlying neuronal development and synaptic formation in the brain depend on intricate cellular and molecular processes. The neuronal membrane glycoprotein GPM6a promotes neurite elongation, filopodia/spine formation, and synapse development, yet its molecular mechanisms remain unknown. Since the extracellular domains of GPM6a (ECs) command its function, we investigated the interaction between ICAM5, the neuronal member of the intercellular adhesion molecule (ICAM) family, and GPM6a's ECs. Our study aimed to explore the functional relationship between GPM6a and ICAM5 in hippocampal culture neurons and cell lines. Immunostaining of 15 days in vitro (DIV) neurons revealed significant co-localization between endogenous GPM6a clusters and ICAM5 clusters in the dendritic shaft. These results were further corroborated by overexpressing GPM6a and ICAM5 in N2a cells and hippocampal neurons at 5 DIV. Moreover, results from the co-immunoprecipitations and cell aggregation assays prove the cis and trans interaction between both proteins in GPM6a/ICAM5 overexpressing HEK293 cells. Additionally, GPM6a and ICAM5 overexpression additively enhanced neurite length, the number of neurites in N2a cells, and filopodia formation in 5 DIV neurons, indicating their cooperative role. These findings highlight the dynamic association between GPM6a and ICAM5 during neuronal development, offering insights into their contributions to neurite outgrowth, filopodia formation, and cell-cell interactions.

2.
J Transl Med ; 21(1): 914, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102606

RESUMO

BACKGROUND: Magnetic resonance fingerprinting (MRF) enables fast myelin quantification via the myelin water fraction (MWF), offering a noninvasive method to assess brain development and disease. However, MRF-derived MWF lacks histological evaluation and remains unexamined in relation to leukodystrophy. This study aimed to access MRF-derived MWF through histology in mice and establish links between myelin, development, and leukodystrophy in mice and children, demonstrating its potential applicability in animal and human studies. METHODS: 3D MRF was performed on normal C57BL/6 mice with different ages, megalencephalic leukoencephalopathy with subcortical cyst 1 wild type (MLC1 WT, control) mice, and MLC 1 knock-out (MLC1 KO, leukodystrophy) mice using a 3 T MRI. MWF values were analyzed from 3D MRF data, and histological myelin quantification was carried out using immunohistochemistry to anti-proteolipid protein (PLP) in the corpus callosum and cortex. The associations between 'MWF and PLP' and 'MWF and age' were evaluated in C57BL/6 mice. MWF values were compared between MLC1 WT and MLC1 KO mice. MWF of normal developing children were retrospectively collected and the association between MWF and age was assessed. RESULTS: In 35 C57BL/6 mice (age range; 3 weeks-48 weeks), MWF showed positive relations with PLP immunoreactivity in the corpus callosum (ß = 0.0006, P = 0.04) and cortex (ß = 0.0005, P = 0.006). In 12-week-old C57BL/6 mice MWF showed positive relations with PLP immunoreactivity (ß = 0.0009, P = 0.003, R2 = 0.54). MWF in the corpus callosum (ß = 0.0022, P < 0.001) and cortex (ß = 0.0010, P < 0.001) showed positive relations with age. Seven MLC1 WT and 9 MLC1 KO mice showed different MWF values in the corpus callous (P < 0.001) and cortex (P < 0.001). A total of 81 children (median age, 126 months; range, 0-199 months) were evaluated and their MWF values according to age showed the best fit for the third-order regression model (adjusted R2 range, 0.44-0.94, P < 0.001). CONCLUSION: MWF demonstrated associations with histologic myelin quantity, age, and the presence of leukodystrophy, underscoring the potential of 3D MRF-derived MWF as a rapid and noninvasive quantitative indicator of brain myelin content in both mice and humans.


Assuntos
Bainha de Mielina , Doenças Neurodegenerativas , Criança , Humanos , Camundongos , Animais , Bainha de Mielina/patologia , Água/metabolismo , Estudos Retrospectivos , Camundongos Endogâmicos C57BL , Imageamento por Ressonância Magnética/métodos , Encéfalo/metabolismo
3.
Mol Biol Rep ; 51(1): 10, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085372

RESUMO

BACKGROUND: The Proteolipid Protein 2 (PLP2), a protein in the Endoplasmic Reticulum (ER) membrane, has been reported to be highly expressed in various tumors. Previous studies have demonstrated that the reduced PLP2 can induce apoptosis and autophagy through ER stress-related pathways, leading to a decreased proliferation and aggressiveness. However, there is no research literature on the role of PLP2 in Acute Myeloid Leukemia (AML). METHODS: PLP2 expression, clinical data, genetic mutations, and karyotype changes from GEO, TCGA, and timer2.0 databases were analyzed through the R packages. The possible functions and pathways of cells were explored through GO, KEGG, and GSEA enrichment analysis using the clusterProfiler R package. Immuno-infiltration analysis was conducted using the Cibersort algorithm and the Xcell R package. RT-PCR and western blot techniques were employed to identify the PLP2 expression, examine the knockdown effects in THP-1 cells, and assess the expression of genes associated with endoplasmic reticulum stress and apoptosis. Flow cytometry was utilized to determine the apoptosis and survival rates of different groups. RESULTS: PLP2 expression was observed in different subsets of AML and other cancers. Enrichment analyses revealed that PLP2 was involved in various tumor-related biological processes, primarily apoptosis and lysosomal functions. Additionally, PLP2 expression showed a strong association with immune cell infiltration, particularly monocytes. In vitro, the knockdown of PLP2 enhanced endoplasmic reticulum stress-related apoptosis and increased drug sensitivity in THP-1 cells. CONCLUSIONS: PLP2 could be a novel therapeutic target in AML, in addition, PLP2 is a potential endoplasmic reticulum stress regulatory gene in AML.


Assuntos
Apoptose , Leucemia Mieloide Aguda , Humanos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteolipídeos/genética , Proteolipídeos/metabolismo , Proteolipídeos/farmacologia
4.
Cell Mol Life Sci ; 79(8): 419, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35829923

RESUMO

The myelin sheath is an essential, multilayered membrane structure that insulates axons, enabling the rapid transmission of nerve impulses. The tetraspan myelin proteolipid protein (PLP) is the most abundant protein of compact myelin in the central nervous system (CNS). The integral membrane protein PLP adheres myelin membranes together and enhances the compaction of myelin, having a fundamental role in myelin stability and axonal support. PLP is linked to severe CNS neuropathies, including inherited Pelizaeus-Merzbacher disease and spastic paraplegia type 2, as well as multiple sclerosis. Nevertheless, the structure, lipid interaction properties, and membrane organization mechanisms of PLP have remained unidentified. We expressed, purified, and structurally characterized human PLP and its shorter isoform DM20. Synchrotron radiation circular dichroism spectroscopy and small-angle X-ray and neutron scattering revealed a dimeric, α-helical conformation for both PLP and DM20 in detergent complexes, and pinpoint structural variations between the isoforms and their influence on protein function. In phosphatidylcholine membranes, reconstituted PLP and DM20 spontaneously induced formation of multilamellar myelin-like membrane assemblies. Cholesterol and sphingomyelin enhanced the membrane organization but were not crucial for membrane stacking. Electron cryomicroscopy, atomic force microscopy, and X-ray diffraction experiments for membrane-embedded PLP/DM20 illustrated effective membrane stacking and ordered organization of membrane assemblies with a repeat distance in line with CNS myelin. Our results shed light on the 3D structure of myelin PLP and DM20, their structure-function differences, as well as fundamental protein-lipid interplay in CNS compact myelin.


Assuntos
Bicamadas Lipídicas , Proteína Proteolipídica de Mielina , Axônios/metabolismo , Sistema Nervoso Central/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Proteína Proteolipídica de Mielina/metabolismo , Bainha de Mielina/metabolismo , Isoformas de Proteínas/metabolismo
5.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36142746

RESUMO

Our laboratory reported the derivation of neural crest stem cell (NCSC)-like cells from the interfollicular epidermis of the neonatal and adult epidermis. These keratinocyte (KC)-derived Neural Crest (NC)-like cells (KC-NC) could differentiate into functional neurons, Schwann cells (SC), melanocytes, and smooth muscle cells in vitro. Most notably, KC-NC migrated along stereotypical pathways and gave rise to multiple NC derivatives upon transplantation into chicken embryos, corroborating their NC phenotype. Here, we present an innovative design concept for developing anisotropically aligned scaffolds with chemically immobilized biological cues to promote differentiation of the KC-NC towards the SC. Specifically, we designed electrospun nanofibers and examined the effect of bioactive cues in guiding KC-NC differentiation into SC. KC-NC attached to nanofibers and adopted a spindle-like morphology, similar to the native extracellular matrix (ECM) microarchitecture of the peripheral nerves. Immobilization of biological cues, especially Neuregulin1 (NRG1) promoted the differentiation of KC-NC into the SC lineage. This study suggests that poly-ε-caprolactone (PCL) nanofibers decorated with topographical and cell-instructive cues may be a potential platform for enhancing KC-NC differentiation toward SC.


Assuntos
Nanofibras , Células-Tronco Neurais , Animais , Biomimética , Diferenciação Celular , Embrião de Galinha , Sinais (Psicologia) , Crista Neural/metabolismo , Células-Tronco Neurais/metabolismo , Células de Schwann/metabolismo
6.
Neurobiol Dis ; 158: 105465, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34364975

RESUMO

Pelizaeus-Merzbacher disease (PMD) is a severe hypomyelinating disorder of the central nervous system (CNS) linked to mutations in the proteolipid protein-1 (PLP1) gene. Although there are multiple animal models of PMD, few of them fully mimic the human disease. Here, we report three spontaneous cases of male neonatal rhesus macaques with the clinical symptoms of hypomyelinating disease, including intention tremors, progressively worsening motor dysfunction, and nystagmus. These animals demonstrated a paucity of CNS myelination accompanied by reactive astrogliosis, and a lack of PLP1 expression throughout white matter. Genetic analysis revealed that these animals were related to one another and that their parents carried a rare, hemizygous missense variant in exon 5 of the PLP1 gene. These animals therefore represent the first reported non-human primate model of PMD, providing a novel and valuable opportunity for preclinical studies that aim to promote myelination in pediatric hypomyelinating diseases.


Assuntos
Doença de Pelizaeus-Merzbacher/patologia , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Gliose , Macaca mulatta , Masculino , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/fisiopatologia , Mutação de Sentido Incorreto , Proteína Proteolipídica de Mielina , Bainha de Mielina/patologia , Tremor/genética , Tremor/fisiopatologia , Substância Branca
7.
Int J Mol Sci ; 22(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810144

RESUMO

Multiple sclerosis (MS) has been considered to specifically affect the central nervous system (CNS) for a long time. As autonomic dysfunction including dysphagia can occur as accompanying phenomena in patients, the enteric nervous system has been attracting increasing attention over the past years. The aim of this study was to identify glial and myelin markers as potential target structures for autoimmune processes in the esophagus. RT-PCR analysis revealed glial fibrillary acidic protein (GFAP), proteolipid protein (PLP), and myelin basic protein (MBP) expression, but an absence of myelin oligodendrocyte glycoprotein (MOG) in the murine esophagus. Selected immunohistochemistry for GFAP, PLP, and MBP including transgenic mice with cell-type specific expression of PLP and GFAP supported these results by detection of (1) GFAP, PLP, and MBP in Schwann cells in skeletal muscle and esophagus; (2) GFAP, PLP, but no MBP in perisynaptic Schwann cells of skeletal and esophageal motor endplates; (3) GFAP and PLP, but no MBP in glial cells surrounding esophageal myenteric neurons; and (4) PLP, but no GFAP and MBP in enteric glial cells forming a network in the esophagus. Our results pave the way for further investigations regarding the involvement of esophageal glial cells in the pathogenesis of dysphagia in MS.


Assuntos
Biomarcadores , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Esôfago/metabolismo , Expressão Gênica , Neuroglia/imunologia , Neuroglia/metabolismo , Animais , Sistema Nervoso Central/patologia , Feminino , Imunofluorescência , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Esclerose Múltipla/etiologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Dev Dyn ; 249(8): 946-960, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32353175

RESUMO

BACKGROUND: The proteolipid protein (PLP) is the most abundant protein in the myelin sheath of the central nervous system (CNS). The gene coding PLP, proteolipid protein 1 (Plp1) is highly expressed in oligodendrocytes, the myelin-forming cells in the CNS. Previous studies demonstrate that Plp1 gene is expressed in the embryonic CNS much earlier before the generation of oligodendrocytes. However, the progenitor identity and the fate of Plp1-expressing cells are still elusive. RESULTS: We employed genetic approaches to permanently label Plp1-expressing cells with the reporter enhanced yellow fluorescence protein (EYFP) and used multicolored immunohistochemistry to characterize their identity and lineage fate. We found that Plp1-expressing cells were initially present without spatial restrictions and later confined to the ventral progenitor domains of the embryonic spinal cord. Our fate-mapping results showed that Plp1-expressing cells during early embryogenesis were multipotent neural progenitor cells that gave rise to not only neurons but also glial progenitor cells whereas they were bipotent glial progenitor cells during later neural development stages and generated oligodendroglial and astroglial lineage cells but not neurons. Intriguingly, postnatal astrocytes generated from embryonic Plp1-expressing glial progenitor cells were present only in the ventral spinal cord. CONCLUSION: Our study reveals that Plp1-expressing cells during embryonic neural development display dynamic cellular identities and have a broader lineage fate than oligodendroglial lineage.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteína Proteolipídica de Mielina/genética , Medula Espinal/embriologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Encéfalo/embriologia , Encéfalo/metabolismo , Linhagem da Célula , Sistema Nervoso Central/metabolismo , Feminino , Genótipo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Proteína Proteolipídica de Mielina/metabolismo , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Células-Tronco/citologia
9.
J Cell Mol Med ; 24(5): 2847-2856, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31778016

RESUMO

Proteolipid protein 2 (PLP2) is an integral ion channel membrane protein of the endoplasmic reticulum. The protein has been shown to be highly expressed in many cancer types, but its importance in glioma progression is poorly understood. Using publicly available datasets (Rembrandt, TCGA and CGGA), we found that the expression of PLP2 was significantly higher in high-grade gliomas than in low-grade gliomas. We confirmed these results at the protein level through IHC staining of high-grade (n = 56) and low-grade glioma biopsies (n = 16). Kaplan-Meier analysis demonstrated that increased PLP2 expression was associated with poorer patient survival. In functional experiments, siRNA and shRNA PLP2 knockdown induced ER stress and increased apoptosis and autophagy in U87 and U251 glioma cell lines. Inhibition of autophagy with chloroquine augmented apoptotic cell death in U87- and U251-siPLP2 cells. Finally, intracranial xenografts derived from U87- and U251-shPLP2 cells revealed that loss of PLP2 reduced glioma growth in vivo. Our results therefore indicate that increased PLP2 expression promotes GBM growth and that PLP2 represents a potential future therapeutic target.


Assuntos
Apoptose/genética , Autofagia/genética , Neoplasias Encefálicas/genética , Estresse do Retículo Endoplasmático/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Proteínas com Domínio MARVEL/genética , Proteolipídeos/genética , Animais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/ultraestrutura , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo/genética , Técnicas de Silenciamento de Genes , Glioblastoma/ultraestrutura , Humanos , Proteínas com Domínio MARVEL/metabolismo , Masculino , Camundongos , Prognóstico , Proteolipídeos/metabolismo , Fator de Transcrição CHOP/metabolismo
10.
Am J Hum Genet ; 100(4): 617-634, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28366443

RESUMO

Pelizaeus-Merzbacher disease (PMD) is a pediatric disease of myelin in the central nervous system and manifests with a wide spectrum of clinical severities. Although PMD is a rare monogenic disease, hundreds of mutations in the X-linked myelin gene proteolipid protein 1 (PLP1) have been identified in humans. Attempts to identify a common pathogenic process underlying PMD have been complicated by an incomplete understanding of PLP1 dysfunction and limited access to primary human oligodendrocytes. To address this, we generated panels of human induced pluripotent stem cells (hiPSCs) and hiPSC-derived oligodendrocytes from 12 individuals with mutations spanning the genetic and clinical diversity of PMD-including point mutations and duplication, triplication, and deletion of PLP1-and developed an in vitro platform for molecular and cellular characterization of all 12 mutations simultaneously. We identified individual and shared defects in PLP1 mRNA expression and splicing, oligodendrocyte progenitor development, and oligodendrocyte morphology and capacity for myelination. These observations enabled classification of PMD subgroups by cell-intrinsic phenotypes and identified a subset of mutations for targeted testing of small-molecule modulators of the endoplasmic reticulum stress response, which improved both morphologic and myelination defects. Collectively, these data provide insights into the pathogeneses of a variety of PLP1 mutations and suggest that disparate etiologies of PMD could require specific treatment approaches for subsets of individuals. More broadly, this study demonstrates the versatility of a hiPSC-based panel spanning the mutational heterogeneity within a single disease and establishes a widely applicable platform for genotype-phenotype correlation and drug screening in any human myelin disorder.


Assuntos
Oligodendroglia/patologia , Doença de Pelizaeus-Merzbacher/genética , Doença de Pelizaeus-Merzbacher/patologia , Técnicas de Cultura de Células , Criança , Pré-Escolar , Estresse do Retículo Endoplasmático , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Proteína Proteolipídica de Mielina , Oligodendroglia/metabolismo
11.
Neurochem Res ; 45(3): 663-671, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31782102

RESUMO

The myelin proteolipid protein gene (PLP1) encodes the most abundant protein in CNS myelin. Expression of the gene must be strictly regulated, as evidenced by human X-linked leukodystrophies resulting from variations in PLP1 copy number, including elevated dosages as well as deletions. Recently, we showed that the wmN1 region in human PLP1 (hPLP1) intron 1 is required to promote high levels of an hPLP1-lacZ transgene in mice, using a Cre-lox approach. The current study tests whether loss of the wmN1 region from a related transgene containing mouse Plp1 (mPlp1) DNA produces similar results. In addition, we investigated the effects of loss of another region (ASE) in mPlp1 intron 1. Previous studies have shown that the ASE is required to promote high levels of mPlp1-lacZ expression by transfection analysis, but had no effect when removed from the native gene in mouse. Whether this is due to compensation by another regulatory element in mPlp1 that was not included in the mPlp1-lacZ constructs, or to differences in methodology, is unclear. Two transgenic mouse lines were generated that harbor mPLP(+)Z/FL. The parental transgene utilizes mPlp1 sequences (proximal 2.3 kb of 5'-flanking DNA to the first 37 bp of exon 2) to drive expression of a lacZ reporter cassette. Here we demonstrate that mPLP(+)Z/FL is expressed in oligodendrocytes, oligodendrocyte precursor cells, olfactory ensheathing cells and neurons in brain, and Schwann cells in sciatic nerve. Loss of the wmN1 region from the parental transgene abolished expression, whereas removal of the ASE had no effect.


Assuntos
Sistema Nervoso Central/metabolismo , Elementos Facilitadores Genéticos , Óperon Lac , Proteína Proteolipídica de Mielina/metabolismo , Sistema Nervoso Periférico/metabolismo , Transgenes/fisiologia , Animais , Camundongos , Camundongos Transgênicos , Proteína Proteolipídica de Mielina/genética
12.
Glia ; 67(4): 634-649, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30637801

RESUMO

Proteolipid protein (PLP) is the most abundant integral membrane protein in central nervous system (CNS) myelin. Expression of the Plp-gene in oligodendrocytes is not essential for the biosynthesis of myelin membranes but required to prevent axonal pathology. This raises the question whether the exceptionally high level of PLP in myelin is required later in life, or whether high-level PLP expression becomes dispensable once myelin has been assembled. Both models require a better understanding of the turnover of PLP in myelin in vivo. Thus, we generated and characterized a novel line of tamoxifen-inducible Plp-mutant mice that allowed us to determine the rate of PLP turnover after developmental myelination has been completed, and to assess the possible impact of gradually decreasing amounts of PLP for myelin and axonal integrity. We found that 6 months after targeting the Plp-gene the abundance of PLP in CNS myelin was about halved, probably reflecting that myelin is slowly turned over in the adult brain. Importantly, this reduction by 50% was sufficient to cause the entire spectrum of neuropathological changes previously associated with the developmental lack of PLP, including myelin outfoldings, lamellae splittings, and axonal spheroids. In comparison to axonopathy and gliosis, the infiltration of cytotoxic T-cells was temporally delayed, suggesting a corresponding chronology also in the genetic disorders of PLP-deficiency. High-level abundance of PLP in myelin throughout adult life emerges as a requirement for the preservation of white matter integrity.


Assuntos
Axônios/metabolismo , Sistema Nervoso Central/citologia , Proteína Proteolipídica de Mielina/metabolismo , Bainha de Mielina/metabolismo , Animais , Axônios/ultraestrutura , Citocinas/genética , Citocinas/metabolismo , Antagonistas de Estrogênios/farmacologia , Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Imuno-Histoquímica , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Proteínas da Mielina/ultraestrutura , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/ultraestrutura , Bainha de Mielina/ultraestrutura , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/ultraestrutura , RNA Mensageiro/metabolismo , Tamoxifeno/farmacologia
13.
Mol Pharm ; 16(2): 607-617, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30615457

RESUMO

Contemporary approaches to treating autoimmune diseases like multiple sclerosis broadly modulate the immune system and leave patients susceptible to severe adverse effects. Antigen-specific immunotherapies (ASIT) offer a unique opportunity to selectively suppress autoreactive cell populations but have suffered from marginal efficacy even when employing traditional adjuvants to improve delivery. The development of immunologically active antigen delivery vehicles could potentially increase the clinical success of antigen-specific immunotherapies. An emulsion of the antioxidant tocopherol delivering an epitope of proteolipid protein autoantigen (PLP139-151) yielded significant efficacy in mice with experimental autoimmune encephalomyelitis (EAE). In vitro studies indicated tocopherol emulsions reduced oxidative stress in antigen-presenting cells. Ex vivo analysis revealed that tocopherol emulsions shifted cytokine responses in EAE splenocytes. In addition, IgG responses against PLP139-151 were increased in mice treated with tocopherol emulsions delivering the antigen, suggesting a possible skew in immunity. Overall, tocopherol emulsions provide a functional delivery vehicle for ASIT capable of ameliorating autoimmunity in a murine model.


Assuntos
Autoantígenos/uso terapêutico , Emulsões/química , Encefalomielite Autoimune Experimental/tratamento farmacológico , Tocoferóis/química , Tocoferóis/uso terapêutico , Animais , Autoantígenos/administração & dosagem , Citocinas/metabolismo , Feminino , Tolerância Imunológica/efeitos dos fármacos , Imunoterapia/métodos , Camundongos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Baço/citologia
14.
Glia ; 66(8): 1763-1774, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29683207

RESUMO

The myelin proteolipid protein gene (PLP1) encodes the most abundant protein present in myelin from the central nervous system (CNS). Its expression must be tightly controlled as evidenced by mutations that alter PLP1 dosage; both overexpression (elevated PLP1 copy number) and lack thereof (PLP1 deletion) result in X-linked genetic disorders in man. However, not much is known about the mechanisms that govern expression of the human gene. To address this, transgenic mice were generated which utilize human PLP1 (hPLP1) sequences (proximal 6.2 kb of 5'-flanking DNA to the first 38 bp of exon 2) to drive expression of a lacZ reporter cassette. LoxP sites were incorporated around a 1.5-kb section of hPLP1 intron 1 since it contains sequence orthologous to the wmN1 region from mouse which, previously, was shown to augment expression of a minimally-promoted transgene coincident with the active myelination period of CNS development. Eight transgenic lines were generated with the parental, 6.2hPLP(+)Z/FL, transgene. All lines expressed the transgene appropriately in brain as evidenced by staining with X-gal in white matter regions and olfactory bulb. Removal of the "wmN1" region from 6.2hPLP(+)Z/FL with a ubiquitously expressed Cre-driver caused a dramatic reduction in transgene activity. These results demonstrate for the first time that the wmN1 enhancer region: (1) is functional in hPLP1; (2) works in collaboration with its native promoter-not just a basal heterologous promoter; (3) is required for high levels of hPLP1 gene activity; (4) has a broader effect, both spatially and temporally, than originally projected with mPlp1.


Assuntos
Proteína Proteolipídica de Mielina/metabolismo , Oligodendroglia/metabolismo , Regiões Promotoras Genéticas/genética , Animais , Encéfalo/metabolismo , Humanos , Camundongos Transgênicos , Proteína Proteolipídica de Mielina/genética , Bainha de Mielina/metabolismo , Transfecção/métodos , Transgenes
15.
Dev Neurosci ; 40(4): 301-311, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30261498

RESUMO

AIMS: We performed quantitative diffusion tensor imaging and brain tractography to distinguish clinical severity in a series of 35 patients with hypomyelinating PLP1-related disorders classified using the Motor Developmental Score according to the best motor function acquired before the age of 5 years and the gross motor function measure (GMFM) at the time of magnetic resonance imaging acquisition. METHODS: We calculated fractional anisotropy and diffusivity values in 26 regions of interest and the numbers of fibers and volumes of hemisphere tractograms. Fiber bundles on tractograms were characterized according to 3 criteria: size, direction of main-stream fibers, and connectivity of bundles (extratelencephalic projections, commissural fibers, and intrahemispheric connections). RESULTS: Age-adjusted multivariate analysis in 3 severity groups revealed increased isotropic diffusion in the superior cerebellar peduncle and grey matter in the most severe group, and larger tractogram volumes and increased numbers of fibers in the least severely affected group. Tractogram patterns showed preserved extratelencephalic projections and a main anterior-posterior aspect of intrahemispheric fibers in most patients, whereas interhemispheric connectivity was variable. The most severely affected and intermediate patients had less intrahemispheric connectivity, with a frequent predominant anterior-posterior direction of main-stream fibers. INTERPRETATION: Diffusion tensor imaging and tractographic parameters can operate as biomarkers to distinguish clinical severity in PLP1-related disorders and could improve our understanding of hypomyelinating leukodystrophies.


Assuntos
Encéfalo/metabolismo , Imagem de Tensor de Difusão , Proteína Proteolipídica de Mielina/metabolismo , Adolescente , Adulto , Anisotropia , Encéfalo/patologia , Criança , Pré-Escolar , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
16.
J Neuroinflammation ; 15(1): 194, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970109

RESUMO

BACKGROUND: Genetically caused neurological disorders of the central nervous system (CNS) are mostly characterized by poor or even fatal clinical outcome and few or no causative treatments are available. Often, these disorders are associated with low-grade, disease-promoting inflammation, another feature shared by progressive forms of multiple sclerosis (PMS). We previously generated two mouse lines carrying distinct mutations in the oligodendrocytic PLP1 gene that have initially been identified in patients diagnosed with MS. These mutations cause a loss of PLP function leading to a histopathological and clinical phenotype common to both PMS and genetic CNS disorders, like hereditary spastic paraplegias. Importantly, neuroinflammation promotes disease progression in these models, suggesting that pharmacological modulation of inflammation might ameliorate disease outcome. METHODS: We applied teriflunomide, an approved medication for relapsing-remitting MS targeting activated T-lymphocytes, in the drinking water (10 mg/kg body weight/day). Experimental long-term treatment of PLP mutant mice was non-invasively monitored by longitudinal optical coherence tomography and by rotarod analysis. Immunomodulatory effects were subsequently analyzed by flow cytometry and immunohistochemistry and treatment effects regarding neural damage, and neurodegeneration were assessed by histology and immunohistochemistry. RESULTS: Preventive treatment with teriflunomide attenuated the increase in number of CD8+ cytotoxic effector T cells and fostered the proliferation of CD8+ CD122+ PD-1+ regulatory T cells in the CNS. This led to an amelioration of axonopathic features and neuron loss in the retinotectal system, also reflected by reduced thinning of the innermost retinal composite layer in longitudinal studies and ameliorated clinical outcome upon preventive long-term treatment. Treatment of immune-incompetent PLP mutants did not provide evidence for a direct, neuroprotective effect of the medication. When treatment was terminated, no rebound of neuroinflammation occurred and histopathological improvement was preserved for at least 75 days without treatment. After disease onset, teriflunomide halted ongoing axonal perturbation and enabled a recovery of dendritic arborization by surviving ganglion cells. However, neither neuron loss nor clinical features were ameliorated, likely due to already advanced neurodegeneration before treatment onset. CONCLUSIONS: We identify teriflunomide as a possible medication not only for PMS but also for inflammation-related genetic diseases of the nervous system for which causal treatment options are presently lacking.


Assuntos
Anti-Inflamatórios/uso terapêutico , Crotonatos/uso terapêutico , Inflamação , Leucócitos/patologia , Esclerose Múltipla , Toluidinas/uso terapêutico , Animais , Antígenos CD/metabolismo , Axônios/efeitos dos fármacos , Axônios/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroxibutiratos , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/patologia , Antígeno Ki-67/metabolismo , Leucócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/patologia , Esclerose Múltipla/complicações , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Mutação/genética , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Nitrilas , Receptor de Morte Celular Programada 1/metabolismo , Retina/patologia
17.
Stem Cells ; 35(2): 311-315, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27882623

RESUMO

Pelizaeus-Merzbacher disease (PMD) is an X-linked disorder caused by mutation in the proteolipid protein-1 (PLP1) gene, which encodes the proteolipid protein of myelinating oligodendroglia. PMD exhibits phenotypic variability that reflects its considerable genotypic heterogeneity, but all forms of the disease result in central hypomyelination, associated in most cases with early neurological dysfunction, progressive deterioration, and ultimately death. PMD may present as a connatal, classic and transitional forms, or as the less severe spastic paraplegia type 2 and PLP-null phenotypes. These disorders are most often associated with duplications of the PLP1 gene, but can also be caused by coding and noncoding point mutations as well as full or partial deletion of the gene. A number of genetically-distinct but phenotypically-similar disorders of hypomyelination exist which, like PMD, lack any effective therapy. Yet as relatively pure CNS hypomyelinating disorders, with limited involvement of the PNS and relatively little attendant neuronal pathology, PMD and similar hypomyelinating disorders are attractive therapeutic targets for neural stem cell and glial progenitor cell transplantation, efforts at which are now underway in a number of research centers. Stem Cells 2017;35:311-315.


Assuntos
Doença de Pelizaeus-Merzbacher/terapia , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Modelos Animais de Doenças , Humanos , Mutação/genética , Bainha de Mielina/metabolismo , Doença de Pelizaeus-Merzbacher/patologia
18.
Glia ; 65(11): 1762-1776, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28836307

RESUMO

Proteolipid protein (PLP) is the most abundant integral membrane protein in compact central nervous system myelin, and null mutations of the PLP1 gene cause spastic paraplegia type 2 (SPG2). SPG2 patients and PLP-deficient mice exhibit only moderate abnormalities of myelin but progressive degeneration of long axons. Since Plp1 gene products are detected in a subset of neurons it has been suggested that the loss of neuronal Plp1 expression could be the cause of the axonal pathology. To test this hypothesis, we created mice with a floxed Plp1 allele for selective Cre-mediated recombination in neurons. We find that recombination of Plp1 in excitatory projection neurons does not cause neuropathology, whereas oligodendroglial targeting of Plp1 is sufficient to cause the entire neurodegenerative spectrum of SPG2 including axonopathy and secondary neuroinflammation. We conclude that PLP-dependent loss of oligodendroglial support is the primary cause of axonal degeneration in SPG2.


Assuntos
Proteína Proteolipídica de Mielina/deficiência , Neurônios/metabolismo , Oligodendroglia/metabolismo , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/patologia , 2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/genética , 2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/metabolismo , Fatores Etários , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Antígenos CD/metabolismo , Axônios/metabolismo , Axônios/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Corpo Caloso/patologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Proteolipídica de Mielina/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
19.
Neurochem Res ; 42(6): 1747-1766, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28214987

RESUMO

The Jimpy mouse illustrates the importance of interactions between astrocytes and oligodendrocytes. It has a mutation in Plp coding for proteolipid protein and DM20. Its behavior is normal at birth but from the age of ~2 weeks it shows severe convulsions associated with oligodendrocyte/myelination deficits and early death. A normally occurring increase in oxygen consumption by highly elevated K+ concentrations is absent in Jimpy brain slices and cultured astrocytes, reflecting that Plp at early embryonic stages affects common precursors as also shown by the ability of conditioned medium from normal astrocytes to counteract histological abnormalities. This metabolic response is now known to reflect opening of L-channels for Ca2+. The resulting deficiency in Ca2+ entry has many consequences, including lack of K+-stimulated glycogenolysis and release of gliotransmitter ATP. Lack of purinergic stimulation compromises oligodendrocyte survival and myelination and affects connexins and K+ channels. Mice lacking the oligodendrocytic connexins Cx32 and 47 show similar neurological dysfunction as Jimpy. This possibly reflects that K+ released by intermodal axonal Kv channels is transported underneath a loosened myelin sheath instead of reaching the extracellular space via connexin-mediated transport to oligodendrocytes, followed by release and astrocytic Na+,K+-ATPase-driven uptake with subsequent Kir4.1-facilitated release and neuronal uptake.


Assuntos
Conexinas/deficiência , Doenças Desmielinizantes/metabolismo , Oligodendroglia/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Convulsões/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Conexinas/genética , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Humanos , Camundongos , Camundongos Jimpy , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Oligodendroglia/patologia , Canais de Potássio Corretores do Fluxo de Internalização/genética , Convulsões/genética , Convulsões/patologia , ATPase Trocadora de Sódio-Potássio/deficiência , ATPase Trocadora de Sódio-Potássio/genética , Proteína beta-1 de Junções Comunicantes
20.
J Comput Aided Mol Des ; 31(9): 841-854, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28756481

RESUMO

Proteolipid protein (PLP) is one of the main proteins of myelin sheath that are destroyed during the progress of multiple sclerosis (MS). The immunodominant PLP139-151 epitope is known to induce experimental autoimmune encephalomyelitis (EAE, animal model of MS), wherein residues 144 and 147 are recognized by T cell receptor (TCR) during the formation of trimolecular complex with peptide-antigen and major histocompability complex. The conformational behavior of linear and cyclic peptide analogues of PLP, namely PLP139-151 and cyclic (139-151) (L144, R147) PLP139-151, have been studied in solution by means of nuclear magnetic resonance (NMR) methods in combination with unrestrained molecular dynamics simulations. The results indicate that the side chains of mutated amino acids in the cyclic analogue have different spatial orientation compared with the corresponding side chains of the linear analogue, which can lead to reduced affinity to TCR. NMR experiments combined with theoretical calculations pave the way for the design and synthesis of potent restricted peptides of immunodominant PLP139-151 epitope as well as non peptide mimetics that rises as an ultimate goal.


Assuntos
Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Peptídeos Cíclicos/química , Proteolipídeos/química , Desenho de Fármacos , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/genética , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/genética , Proteolipídeos/síntese química , Proteolipídeos/genética , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa