Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Res ; 200: 107069, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218356

RESUMO

The study of wasp venoms has captured attention due to the presence of a wide variety of active compounds, revealing a diverse array of biological effects. Among these compounds, certain antimicrobial peptides (AMPs) such as mastoparans and chemotactic peptides have emerged as significant players, characterized by their unique amphipathic short linear alpha-helical structure. These peptides exhibit not only antibiotic properties but also a range of other biological activities, which are related to their ability to interact with biological membranes to varying degrees. This review article aims to provide updated insights into the structure/function relationships of AMPs derived from wasp venoms, linking this knowledge to the potential development of innovative treatments against infections.


Assuntos
Peptídeos Antimicrobianos , Venenos de Vespas , Venenos de Vespas/farmacologia , Venenos de Vespas/química , Peptídeos/química
2.
J Pept Sci ; 23(5): 392-402, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28299840

RESUMO

The misuse and overuse of antibiotics result in the emergence of resistant bacteria and fungi, which make an urgent need of the new antimicrobial agents. Nowadays, antimicrobial peptides have attracted great attention of researchers. However, the low physiological stability in biological system limits the application of naturally occurring antimicrobial peptides as novel therapeutics. In the present study, we synthesized derivatives of protonectin by substituting all the amino acid residues or the cationic lysine residue with the corresponding D-amino acids. Both the D-enantiomer of protonectin (D-prt) and D-Lys-protonectin (D-Lys-prt) exhibited strong antimicrobial activity against bacteria and fungi. Moreover, D-prt showed strong stability against trypsin, chymotrypsin and the human serum, while D-Lys-prt only showed strong stability against trypsin. Circular dichroism analysis revealed that D-Lys-prt still kept typical α-helical structure in the membrane mimicking environment, while D-prt showed left hand α-helical structure. In addition, propidium iodide uptake assay and bacteria and fungi killing experiments indicated that all D-amino acid substitution or partially D-amino acid substitution analogs could disrupt the integrity of membrane and lead the cell death. In summary, these findings suggested that D-prt and D-Lys-prt might be promising candidate antibiotic agents for therapeutic application against resistant bacteria and fungi infection. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Anti-Infecciosos/síntese química , Peptídeos Catiônicos Antimicrobianos/síntese química , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Venenos de Vespas/química , Substituição de Aminoácidos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Dicroísmo Circular , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Venenos de Vespas/genética
3.
Biochim Biophys Acta ; 1848(10 Pt A): 2365-73, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26209560

RESUMO

Candidiasis is often observed in immunocompromised patients and is the 4th most common cause of bloodstream infections. However, antifungals are limited, so novel antifungal agents are urgently needed. Antimicrobial peptides (AMPs) are considered as potential alternatives of conventional antibiotics. In the present study, antimicrobial peptide protonectin was chemically synthesized and its antifungal activity and mode of action were studied. Our results showed that protonectin has potent antifungal activity and fungicidal activity against the tested fungi cells. Its action mode involved the disruption of the membrane integrity and the inducing of the production of cellular ROS. Furthermore, protonectin could inhibit the formation of biofilm and kill the adherent fungi cells. In conclusion, with the increase of fungal infection, protonectin may offer a new strategy and be considered as a potential therapeutic agent against fungal disease.


Assuntos
Candida/classificação , Candida/fisiologia , Permeabilidade da Membrana Celular/fisiologia , Fluidez de Membrana/efeitos dos fármacos , Oligopeptídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Venenos de Vespas/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Candida/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Oligopeptídeos/síntese química , Venenos de Vespas/síntese química
4.
J Colloid Interface Sci ; 601: 517-530, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34090029

RESUMO

Despite the need for innovative compounds as antimicrobial and anticancer agents, natural sources of peptides remain underexplored. Protonectin (PTN), a cationic dodecapeptide of pharmacological interest, presents large hydrophobicity that is associated with the tendency to aggregate and supposedly influences bioactivity. A disaggregating role was assigned to PTN' N-terminal fragment (PTN1-6), which enhances the bioactivity of PTN in a 1:1 mixture (PTN/PTN1-6). Spectroscopic techniques and model membranes (phospholipid bilayers and SDS micelles) revealed that environment-dependent aggregation is reduced for PTN/PTN1-6, but cytotoxicity of PTNs on MDA-MB-231 breast cancer showed the same CC50 values around 16 µM and on MCF-10A epithelial breast cells 6 to 5-fold higher values, revealing a selective interaction. Since PTN1-6 lacks activity on breast cells, its presence should differently affect PTN activity, suggesting that aggregation could modulate activity depending on the membrane characteristics. Indeed, increased partitioning and lytic activity of PTN/PTN1-6 were found in model membranes independently of charge density, but affected by the curvature tendency. PTN and PTN/PTN1-6 do not alter morphology and roughness of cancer cells, indicating a superficial interaction with membranes and consistent with results obtained in NMR experiments. Our results indicate that aggregation of PTNs depends on the membrane characteristics and modulates the activity of the peptides.


Assuntos
Antineoplásicos , Neoplasias da Mama , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Lipídeos , Micelas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa