Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1225-1239, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621969

RESUMO

Ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed to investigate the impacts of Pruni Semen processed with different methods(raw and fried) on the liver and spleen metabolism in mice. A total of 24 male mice were randomly assigned to three groups: raw Pruni Semen group, fried Pruni Semen group, and control(deionized water) group. Mice in the three groups were orally administrated with 0.01 g·mL~(-1) Pruni Semen decoction or deionized water for one week. After that, the liver and spleen tissues were collected, and liquid chromatography-mass spectrometry(LC-MS)-based metabolomic analysis was carried out to investigate the impact of Pruni Semen on the liver and spleen metabolism in mice. Compared with thte control group, the raw Pruni Semen group showed up-regulation of 11 metabolites and down-regulation of 57 metabolites in the spleen(P<0.05), as well as up-regulation of 15 metabolites and down-regulation of 58 metabolites in the liver(P<0.05). The fried Pruni Semen group showed up-regulation of 31 metabolites and down-regulation of 10 metabolites in the spleen(P<0.05), along with up-regulation of 26 metabolites and down-regulation of 61 metabolites in the liver(P<0.05). The differential metabolites identified in the raw Pruni Semen group were primarily associated with alanine, aspartate, and glutamate metabolism, purine metabolism, amino sugar and nucleotide sugar metabolism, and D-glutamine and D-glutamate metabolism. The differential metabolites identified in the fried Pruni Semen group predominantly involved riboflavin metabolism, amino sugar and nucleotide sugar metabolism, purine metabolism, alanine, aspartate, and glutamate metabolism, D-glutamine and D-glutamate metabolism, and glutathione metabolism. The findings suggest that both raw and fried Pruni Semen have the potential to modulate the metabolism of the liver and spleen in mice by influencing the glutamine and glutamate metabolism.


Assuntos
Ácido Glutâmico , Baço , Camundongos , Masculino , Animais , Sêmen , Glutamina , Ácido Aspártico , Metabolômica/métodos , Fígado/metabolismo , Alanina/metabolismo , Amino Açúcares/metabolismo , Água/metabolismo , Nucleotídeos/metabolismo , Purinas/metabolismo , Açúcares , Cromatografia Líquida de Alta Pressão , Biomarcadores/metabolismo
2.
Fitoterapia ; 175: 105942, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575088

RESUMO

Pruni Semen, the dried ripe seed of Prunus humilis, P. japonica, or P. pedunculata as recorded in the Chinese Pharmacopoeia, has been widely used in pharmaceutical and food industries. The adulteration of the marketed product with morphologically similar plants of the same genus has led to variable product quality and clinical effectiveness. This study systematically investigated the phylogenetic relationships, morphological traits, and chemical profiles of 37 Pruni Semen samples from planting bases, markets, and fields. DNA barcoding could successfully distinguish the genuine and counterfeit Pruni Semen, and the results indicated that there was almost no authentic Pruni Semen available in the market. The samples were divided into "big seed" (P. pedunculata and P. salicina seeds) and "small seed" (P. humilis, P. japonica, P. tomentosa, and P. avium seeds) categories based on morphology results. The notable discrepancy in the chemical characteristics of "big seed" and "small seed" was that "small seeds" were rich in flavonoids and low in amygdalin, whereas "big seeds" were the opposite. Furthermore, principal component analysis and clustered heatmap analysis verified the distinguishing features of "big seed" and "small seed" based on morphological and chemical characteristics. This study suggested that a combination of DNA barcoding and morphological and chemical characteristics can aid in the identification and quality evaluation of authentic and adulterated Pruni Semen. These findings may help standardize Pruni Semen available in the market and protect the rights and interests of customers.


Assuntos
Código de Barras de DNA Taxonômico , Filogenia , Prunus , Sementes , Sementes/química , Prunus/química , Prunus/classificação , Prunus/genética , Amigdalina , Flavonoides/análise , Contaminação de Medicamentos , China , Compostos Fitoquímicos
3.
J Agric Food Chem ; 72(2): 1096-1113, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38169317

RESUMO

This study was sought to investigate the chemical composition and antibacterial and antiulcerative colitis (UC) effects of essential oil from Pruni Semen (PSEO). A GC-MS assay showed that the major compounds in PSEO were products of amygdalin hydrolysis, which possessed great antibacterial and anti-inflammatory potential. In vitro antibacterial experiments demonstrated that PSEO treatment inhibited activity of four kinds of intestinal pathogens probably by disrupting the cell wall. Further in vivo studies showed that PSEO administration significantly improved physiological indexes, attenuated histopathological characteristics, and inhibited proinflammatory cytokine production in dextran sulfate sodium (DSS)-induced UC mice. Network pharmacology and molecular docking results predicted that PSEO might prevent UC via regulating the PI3K/AKT pathway. Western blotting and immunofluorescence assays were further conducted for verification, and the results evidenced that PSEO intervention significantly regulated the PI3K/AKT pathway and the expression of its downstream proteins in DSS-induced mice. PSEO might provide a new dietary strategy for UC treatment.


Assuntos
Colite Ulcerativa , Colite , Óleos Voláteis , Camundongos , Animais , Óleos Voláteis/química , Proteínas Proto-Oncogênicas c-akt/genética , Sêmen/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Antibacterianos/farmacologia , Colite Ulcerativa/induzido quimicamente , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo/metabolismo
4.
J Pharm Anal ; 12(5): 733-742, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36320598

RESUMO

Pruni Semen, the seed of several unique Prunus plants, is a traditional purgative herbal material. To determine the authentic sources of Pruni Semen, 46 samples from four species were collected and analyzed. Ten compounds including multiflorin A (Mul A), a notable purative compound, were isolated and identified by chemical separation and nuclear magnetic resonance spectroscopy. Seventy-six communal components were identified by ultra-high performance liquid chromatography with linear ion trap-quadrupole Orbitrap mass spectrometry, and acetyl flavonoid glycosides were recognized as characteristic constituents. The flavonoids were distributed in the seed coat and cyanogenic glycosides in the kernel. Based on this, methods for identifying Pruni Semen from different sources were established using chemical fingerprinting, quantitative analysis of the eight principal compounds, hierarchical cluster analysis, principal component analysis, and orthogonal partial least squares discriminant analysis. The results showed that the samples were divided into two categories: one is the small seeds from Prunus humilis (Ph) and Prunus japonica (Pj), and the other is the big seeds from Prunus pedunculata (Pp) and Prunus triloba (Pt). The average content of Mul A was 3.02, 6.93, 0.40, and 0.29 mg/g, while the average content of amygdalin was 18.5, 17.7, 31.5, and 30.9 mg/g in Ph, Pj, Pp, and Pt, respectively. All the above information suggests that small seeds might be superior sources of Pruni Semen. This is the first comprehensive report on the identification of chemical components in Pruni Semen from different species.

5.
Artigo em Chinês | WPRIM | ID: wpr-972280

RESUMO

This article has systematically sorted out and verified the name, origin, producing area, quality evaluation, harvesting and processing of Pruni Semen by consulting ancient materia medica, medical books, prescription books and modern literature, in order to provide a basis for the development of famous classical formulas containing Pruni Semen. The results showed that Pruni Semen, as a medicinal material, has been widely used in medical literature of past dynasties since it was collected in Shennong Bencaojing, and also included under the names such as Yuhe, Yuzi and Yuli, and aliases such as Jueli, Queli and Chexiali. The primordial plants mentioned in the past dynasties involve about 12 species of Rosaceae, but with Prunus humilis, P. japonica and P. glandulosa as mainstream varieties used in the past dynasties, while the 2020 edition of Chinese Pharmacopoeia stipulates that the basal plants are P. humilis, P. japonica and P. pedunculata. Most of the ancient records for the origin of Pruni Semen are found everywhere in high mountains, valleys and hills, modern literature records that its origin varies according to its base, for example, P. humilis and P. japonica are mainly produced in Hebei, eastern Inner Mongolia, Liaoning, Shandong and other regions of China, and P. pedunculata is mainly produced in Inner Mongolia. Modern literature summarizes its quality as faint yellow, full and fulfilling, neat and not broken, and non-oiling, and the small Pruni Semen is better than the big Pruni Semen. The ancient processing methods of Pruni Semen mainly include blanching and peeling, blanching and peeling followed by frying, and blanching and peeling followed by pounding, with the common feature of blanching and peeling. The successive editions of Chinese Pharmacopoeia stipulate that it should be pounded when used. Based on the results of the herbal textual research and the writing time of Bianzhenglu, and combined with the market survey of Pruni Semen, it is suggested that P. humilis or P. japonica should be used as the origin of Pruni Semen in Sanpiantang, and it is harvested when the fruits are ripe, the kernels are collected by removing the stones, and processed by blanching, peeling and pounding consulting the decoction method in the current edition of Chinese Pharmacopoeia.

6.
Artigo em Chinês | WPRIM | ID: wpr-991099

RESUMO

Pruni Semen,the seed of several unique Prunus plants,is a traditional purgative herbal material.To determine the authentic sources of Pruni Semen,46 samples from four species were collected and analyzed.Ten compounds including multiflorin A(Mul A),a notable purative compound,were isolated and identified by chemical separation and nuclear magnetic resonance spectroscopy.Seventy-six communal components were identified by ultra-high performance liquid chromatography with linear ion trap-quadrupole Orbitrap mass spectrometry,and acetyl flavonoid glycosides were recognized as characteristic constituents.The flavonoids were distributed in the seed coat and cyanogenic glycosides in the kernel.Based on this,methods for identifying Pruni Semen from different sources were established using chemical fingerprinting,quantitative analysis of the eight principal compounds,hierarchical cluster analysis,principal component analysis,and orthogonal partial least squares discriminant analysis.The results showed that the samples were divided into two categories:one is the small seeds from Prunus humilis(Ph)and Prunus japonica(Pj),and the other is the big seeds from Prunus pedunculata(Pp)and Prunus triloba(Pt).The average content of Mul A was 3.02.6.93,0.40,and 0.29 mg/g,while the average content of amygdalin was 18.5,17.7,31.5,and 30.9 mg/g in Ph,Pj,Pp,and Pt,respectively.All the above information suggests that small seeds might be superior sources of Pruni Semen.This is the first comprehensive report on the identification of chemical components in Pruni Semen from different species.

7.
Artigo em Chinês | WPRIM | ID: wpr-751838

RESUMO

Objective The present study aimed to explore the rationality of peeling process of Pruni semen through the determination of amygdalin. Methods The content of amarogentin in seed coat, seed kernel and total seed of Pruni semen, respectively, were determined by HPLC according to the methods of content determination under Pruni semen in Chinese Pharmaсopeia (2015). The chromatographic column was Inertsil ODS-SP C18 (4.6 mm×150 mm, 5 μm). The gradient elution with acetonitrile-water as mobile phase was performed. The flow velocity was 0.6 ml/min, the column temperature was 40 , and the wavelength was ℃210 nm. Results The average recovery rate (n=6) was 98.26%. The sample was stable within 24 h, and the RSD (n=6) was 1.12%. The quality of control products was good in the range of 0.02-0.40 μg. The analysis indicated that there is no significant differences (P>0.05) in the contents of amygdalin in seed coat, seed kernel and total seed of Pruni semen. Conclusions With the content of amygdalin as the index of evaluation, the Pruni semen had better not be peeled.

8.
Artigo em Chinês | WPRIM | ID: wpr-797180

RESUMO

Objective@#The present study aimed to explore the rationality of peeling process of Pruni semen through the determination of amygdalin.@*Methods@#The content of amarogentin in seed coat, seed kernel and total seed of Pruni semen, respectively, were determined by HPLC according to the methods of content determination under Pruni semen in Chinese Pharmacopeia (2015). The chromatographic column was Inertsil ODS-SP C18 (4.6 mm×150 mm, 5 μm). The gradient elution with acetonitrile-water as mobile phase was performed. The flow velocity was 0.6 ml/min, the column temperature was 40 ℃, and the wavelength was 210 nm.@*Results@#The average recovery rate (n=6) was 98.26%. The sample was stable within 24 h, and the RSD (n=6) was 1.12%. The quality of control products was good in the range of 0.02-0.40 μg. The analysis indicated that there is no significant differences (P>0.05) in the contents of amygdalin in seed coat, seed kernel and total seed of Pruni semen.@*Conclusions@#With the content of amygdalin as the index of evaluation, the Pruni semen had better not be peeled.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa