Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
Mol Microbiol ; 122(1): 68-80, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845079

RESUMO

Iron is an essential element for microbial survival and secondary metabolism. However, excess iron availability and overloaded secondary metabolites can hinder microbial growth and survival. Microorganisms must tightly control iron homeostasis and secondary metabolism. Our previous studies have found that the stringent starvation protein A (SspA) positively regulates prodiginine biosynthesis by activating iron uptake in Pseudoalteromonas sp. strain R3. It is believed that the interaction between SspA and the small nucleotide ppGpp is important for iron to exert regulation functions. However, the roles of ppGpp in iron absorption and prodiginine biosynthesis, and the underlying relationship between ppGpp and SspA in strain R3 remain unclear. In this study, we found that ppGpp accumulation in strain R3 could be induced by limiting iron. In addition, ppGpp not only positively regulated iron uptake and prodiginine biosynthesis via increasing the SspA level but also directly repressed iron uptake and prodiginine biosynthesis independent of SspA, highlighting the finding that ppGpp can stabilize both iron levels and prodiginine production. Notably, the abolishment of ppGpp significantly increased prodiginine production, thus providing a theoretical basis for manipulating prodiginine production in the future. This dynamic ppGpp-mediated interaction between iron uptake and prodiginine biosynthesis has significant implications for understanding the roles of nutrient uptake and secondary metabolism for the survival of bacteria in unfavorable environments.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Ferro , Prodigiosina , Pseudoalteromonas , Pseudoalteromonas/metabolismo , Pseudoalteromonas/genética , Ferro/metabolismo , Prodigiosina/metabolismo , Prodigiosina/biossíntese , Prodigiosina/análogos & derivados , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Homeostase , Metabolismo Secundário
2.
Appl Environ Microbiol ; 90(2): e0177923, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38193673

RESUMO

The Pseudoalteromonas genus marine bacteria have attracted increasing interest because of their abilities to produce bioactive metabolites. The pigmented Pseudoalteromonas group encodes more secondary metabolite biosynthetic gene clusters (BGCs) than the non-pigmented group. Here, we report a yellow pigmented bacterium Pseudoalteromonas sp. strain T1lg65, which was isolated from a mangrove forest sediment. We showed that the yellow pigments of T1lg65 belong to the group of lipopeptide alterochromides. Further genetic analyses of the alterochromide BGC revealed that the yellow pigments are biosynthesized by aryl-polyene synthases and nonribosomal peptide synthases. Within the gene cluster, altA encodes a tyrosine ammonia acid lyase, which catalyzes synthesis of the precursor 4-hydroxycinnamic acid (4-HCA) from tyrosine in the alterochromide biosynthetic pathway. In addition, altN, encoding a putative flavin-dependent halogenase, was proven to be responsible for the bromination of alterochromides based on gene deletion, molecular docking, and site mutagenesis analyses. In summary, the biosynthetic pathway, precursor synthesis, and bromination mechanism of the lipopeptide alterochromides were studied in-depth. Our results expand the knowledge on biosynthesis of Pseudoalteromonas pigments and could promote the development of active pigments in the future.IMPORTANCEThe marine bacteria Pseudoalteromonas spp. are important biological resources because they are producers of bioactive natural products, including antibiotics, pigments, enzymes, and antimicrobial peptides. One group of the microbial pigments, alterochromides, holds a great value for their novel lipopeptide structures and antimicrobial activities. Previous studies were limited to the structural characterization of alterochromides and genome mining for the alterochromide biosynthesis. This work focused on the biosynthetic mechanism for alterochromide production, especially revealing functions of two key genes within the gene cluster for the alterochromide biosynthesis. On the one hand, our study provides a target for metabolic engineering of the alterochromide biosynthesis; on the other hand, the 4-HCA synthase AltA and brominase AltN show potential in the biocatalyst industry.


Assuntos
Pseudoalteromonas , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Simulação de Acoplamento Molecular , Flavinas/metabolismo , Lipopeptídeos/metabolismo , Tirosina/metabolismo
3.
Appl Environ Microbiol ; 90(9): e0058824, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39136490

RESUMO

Many bacteria co-exist and produce antibiotics, yet we know little about how they cope and occupy the same niche. The purpose of the present study was to determine if and how two potent antibiotic-producing marine bacteria influence the secondary metabolome of each other. We established an agar- and broth-based system allowing co-existence of a Phaeobacter species and Pseudoalteromonas piscicida that, respectively, produce tropodithietic acid (TDA) and bromoalterochromides (BACs). Co-culturing of Phaeobacter sp. strain A36a-5a on Marine Agar with P. piscicida strain B39bio caused a reduction of TDA production in the Phaeobacter colony. We constructed a transcriptional gene reporter fusion in the tdaC gene in the TDA biosynthetic pathway in Phaeobacter and demonstrated that the reduction of TDA by P. piscicida was due to the suppression of the TDA biosynthesis. A stable liquid co-cultivation system was developed, and the expression of tdaC in Phaeobacter was reduced eightfold lower (per cell) in the co-culture compared to the monoculture. Mass spectrometry imaging of co-cultured colonies revealed a reduction of TDA and indicated that BACs diffused into the Phaeobacter colony. BACs were purified from Pseudoalteromonas; however, when added as pure compounds or a mixture they did not influence TDA production. In co-culture, the metabolome was dominated by Pseudoalteromonas features indicating that production of other Phaeobacter compounds besides TDA was reduced. In conclusion, co-existence of two antibiotic-producing bacteria may be allowed by one causing reduction in the antagonistic potential of the other. The reduction (here of TDA) was not caused by degradation but by a yet uncharacterized mechanism allowing Pseudoalteromonas to reduce expression of the TDA biosynthetic pathway.IMPORTANCEThe drug potential of antimicrobial secondary metabolites has been the main driver of research into these compounds. However, in recent years, their natural role in microbial systems and microbiomes has become important to determine the assembly and development of microbiomes. Herein, we demonstrate that two potent antibiotic-producing bacteria can co-exist, and one mechanism allowing the co-existence is the specific reduction of antibiotic production in one bacterium by the other. Understanding the molecular mechanisms in complex interactions provides insights for applied uses, such as when developing TDA-producing bacteria for use as biocontrol in aquaculture.


Assuntos
Antibacterianos , Pseudoalteromonas , Tropolona , Pseudoalteromonas/metabolismo , Pseudoalteromonas/genética , Tropolona/análogos & derivados , Tropolona/metabolismo , Tropolona/farmacologia , Antibacterianos/farmacologia , Antibacterianos/biossíntese , Rhodobacteraceae/metabolismo , Rhodobacteraceae/genética , Regulação Bacteriana da Expressão Gênica , Técnicas de Cocultura
4.
Antonie Van Leeuwenhoek ; 117(1): 84, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809302

RESUMO

Pseudoalteromonas piscicida 2515, isolated from Litopenaeus vannamei culture water, is a potential marine probiotic with broad anti-Vibrio properties. However, genomic information on P. piscicida 2515 is scarce. In this study, the general genomic characteristics and probiotic properties of the P. piscicida 2515 strain were analysed. In addition, we determined the antibacterial mechanism of this bacterial strain by scanning electron microscopy (SEM). The results indicated that the whole-genome sequence of P. piscicida 2515 contained one chromosome and one plasmid, including a total length of 5,541,406 bp with a G + C content of 43.24%, and 4679 protein-coding genes were predicted. Various adhesion-related genes, amino acid and vitamin metabolism and biosynthesis genes, and stress-responsive genes were found with genome mining tools. The presence of genes encoding chitin, bromocyclic peptides, lantibiotics, and sactipeptides showed the strong antibacterial activity of the P. piscicida 2515 strain. Moreover, in coculture with Vibrio anguillarum, P. piscicida 2515 displayed vesicle/pilus-like structures located on its surface that possibly participated in its bactericidal activity, representing an antibacterial mechanism. Additionally, 16 haemolytic genes and 3 antibiotic resistance genes, including tetracycline, fluoroquinolone, and carbapenem were annotated, but virulence genes encoding enterotoxin FM (entFM), cereulide (ces), and cytotoxin K were not detected. Further tests should be conducted to confirm the safety characteristics of P. piscicida 2515, including long-term toxicology tests, ecotoxicological assessment, and antibiotic resistance transfer risk assessment. Our results here revealed a new understanding of the probiotic properties and antibacterial mechanism of P. piscicida 2515, in addition to theoretical information for its application in aquaculture.


Assuntos
Genoma Bacteriano , Probióticos , Pseudoalteromonas , Vibrio , Sequenciamento Completo do Genoma , Pseudoalteromonas/genética , Vibrio/genética , Vibrio/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Penaeidae/microbiologia , Filogenia , Composição de Bases
5.
Artigo em Inglês | MEDLINE | ID: mdl-39237464

RESUMO

Brown algae are one of the most abundant biomasses on Earth. To recycle them as blue carbon sources, an effective decomposition system is necessary. This study focused on microorganisms present in seawater that decompose brown algae which contain laminarin and alginate. Where Undaria and Sargassum spp. were present, genera Psychromonas, Psychrobacter, and Pseudoalteromonas were predominant in seawater, while genera Arcobacter and Fusobacterium increased in abundance during the process of decomposition. The inoculation of Undaria samples into laminarin-minimal media led to a predominance of Pseudoalteromonas species. A Pseudoalteromonas isolate, identified as Pseudoalteromonas distincta, possesses genes encoding a putative laminarinase, polysaccharide lyase family 6 (PL6) alginate lyases, and a PL7 alginate lyase. The culture media of P. distincta contained no monosaccharides, suggesting the rapid conversion of polysaccharides to metabolites. These findings indicated that Pseudoalteromonas species play a major role in the decomposition of brown algae and affect the microbiota associated with them.

6.
Microb Cell Fact ; 22(1): 179, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689719

RESUMO

BACKGROUND: Alginate oligosaccharides (AOs) are the degradation products of alginate, a natural polysaccharide abundant in brown algae. AOs generated by enzymatic hydrolysis have diverse bioactivities and show broad application potentials. AOs production via enzymolysis is now generally with sodium alginate as the raw material, which is chemically extracted from brown algae. In contrast, AOs production by direct degradation of brown algae is more advantageous on account of its cost reduction and is more eco-friendly. However, there have been only a few attempts reported in AOs production from direct degradation of brown algae. RESULTS: In this study, an efficient Laminaria japonica-decomposing strain Pseudoalteromonas agarivorans A3 was screened. Based on the secretome and mass spectrum analyses, strain A3 showed the potential as a cell factory for AOs production by secreting alginate lyases to directly degrade L. japonica. By using the L. japonica roots, which are normally discarded in the food industry, as the raw material for both fermentation and enzymatic hydrolysis, AOs were produced by the fermentation broth supernatant of strain A3 after optimization of the alginate lyase production and hydrolysis parameters. The generated AOs mainly ranged from dimers to tetramers, among which trimers and tetramers were predominant. The degradation efficiency of the roots reached 54.58%, the AOs production was 33.11%, and the AOs purity was 85.03%. CONCLUSION: An efficient, cost-effective and green process for AOs production directly from the underutilized L. japonica roots by using strain A3 was set up, which differed from the reported processes in terms of the substrate and strain used for fermentation and the AOs composition. This study provides a promising platform for scalable production of AOs, which may have application potentials in industry and agriculture.


Assuntos
Alginatos , Laminaria , Análise Custo-Benefício , Oligossacarídeos
7.
Appl Microbiol Biotechnol ; 107(7-8): 2469-2481, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36912903

RESUMO

The Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) is considered an interesting alternative host for the recombinant protein production, that can be explored when the conventional bacterial expression systems fail. Indeed, the manufacture of all the difficult-to-express proteins produced so far in this bacterial platform gave back soluble and active products. Despite these promising results, the low yield of recombinant protein production achieved is hampering the wider and industrial exploitation of this psychrophilic cell factory. All the expression plasmids developed so far in PhTAC125 are based on the origin of replication of the endogenous pMtBL plasmid and are maintained at a very low copy number. In this work, we set up an experimental strategy to select mutated OriR sequences endowed with the ability to establish recombinant plasmids at higher multiplicity per cell. The solution to this major production bottleneck was achieved by the construction of a library of psychrophilic vectors, each containing a randomly mutated version of pMtBL OriR, and its screening by fluorescence-activated cell sorting (FACS). The selected clones allowed the identification of mutated OriR sequences effective in enhancing the plasmid copy number of approximately two orders of magnitude, and the production of the recombinant green fluorescent protein was increased up to twenty times approximately. Moreover, the molecular characterization of the different mutant OriR sequences allowed us to suggest some preliminary clues on the pMtBL replication mechanism that deserve to be further investigated in the future. KEY POINTS: • Setup of an electroporation procedure for Pseudoalteromonas haloplanktis TAC125. • Two order of magnitude improvement of OriR-derived psychrophilic expression systems. • Almost twenty times enhancement in Green fluorescent protein production.


Assuntos
Variações do Número de Cópias de DNA , Pseudoalteromonas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Recombinantes/metabolismo , Plasmídeos/genética , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo
8.
Int J Mol Sci ; 24(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37686367

RESUMO

Understanding marine bacterioplankton composition and distribution is necessary for improving predictions of ecosystem responses to environmental change. Here, we used 16S rRNA metabarcoding to investigate marine bacterioplankton diversity and identify potential pathogenic bacteria in seawater samples collected in March, May, September, and December 2013 from two sites near Jeju Island, South Korea. We identified 1343 operational taxonomic units (OTUs) and observed that community diversity varied between months. Alpha- and Gamma-proteobacteria were the most abundant classes, and in all months, the predominant genera were Candidatus Pelagibacter, Leisingera, and Citromicrobium. The highest number of OTUs was observed in September, and Vibrio (7.80%), Pseudoalteromonas (6.53%), and Citromicrobium (6.16%) showed higher relative abundances or were detected only in this month. Water temperature and salinity significantly affected bacterial distribution, and these conditions, characteristic of September, were adverse for Aestuariibacter but favored Citromicrobium. Potentially pathogenic bacteria, among which Vibrio (28 OTUs) and Pseudoalteromonas (six OTUs) were the most abundant in September, were detected in 49 OTUs, and their abundances were significantly correlated with water temperature, increasing rapidly in September, the warmest month. These findings suggest that monthly temperature and salinity variations affect marine bacterioplankton diversity and potential pathogen abundance.


Assuntos
Alteromonadaceae , Pseudoalteromonas , Rhodobacteraceae , Sphingomonadaceae , Ecossistema , RNA Ribossômico 16S/genética , Água do Mar , Água , República da Coreia , Organismos Aquáticos , Pseudoalteromonas/genética
9.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108636

RESUMO

The outer membrane protein (OMP) is a kind of biofilm matrix component that widely exists in Gram-negative bacteria. However, the mechanism of OMP involved in the settlement of molluscs is still unclear. In this study, the mussel Mytilus coruscus was selected as a model to explore the function of ompR, a two-component system response regulator, on Pseudoalteromonas marina biofilm-forming capacity and the mussel settlement. The motility of the ΔompR strain was increased, the biofilm-forming capacity was decreased, and the inducing activity of the ΔompR biofilms in plantigrades decreased significantly (p < 0.05). The extracellular α-polysaccharide and ß-polysaccharide of the ΔompR strain decreased by 57.27% and 62.63%, respectively. The inactivation of the ompR gene decreased the ompW gene expression and had no impact on envZ expression or c-di-GMP levels. Adding recombinant OmpW protein caused the recovery of biofilm-inducing activities, accompanied by the upregulation of exopolysaccharides. The findings deepen the understanding of the regulatory mechanism of bacterial two-component systems and the settlement of benthic animals.


Assuntos
Biofilmes , Mytilus , Animais , Mytilus/genética , Mytilus/microbiologia , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
10.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901726

RESUMO

Multipartite bacteria have one chromosome and one or more chromid. Chromids are believed to have properties that enhance genomic flexibility, making them a favored integration site for new genes. However, the mechanism by which chromosomes and chromids jointly contribute to this flexibility is not clear. To shed light on this, we analyzed the openness of chromosomes and chromids of the two bacteria, Vibrio and Pseudoalteromonas, both which belong to the Enterobacterales order of Gammaproteobacteria, and compared the genomic openness with that of monopartite genomes in the same order. We applied pangenome analysis, codon usage analysis and the HGTector software to detect horizontally transferred genes. Our findings suggest that the chromids of Vibrio and Pseudoalteromonas originated from two separate plasmid acquisition events. Bipartite genomes were found to be more open compared to monopartite. We found that the shell and cloud pangene categories drive the openness of bipartite genomes in Vibrio and Pseudoalteromonas. Based on this and our two recent studies, we propose a hypothesis that explains how chromids and the chromosome terminus region contribute to the genomic plasticity of bipartite genomes.


Assuntos
Gammaproteobacteria , Genoma Bacteriano , Plasmídeos , Bactérias/genética , Uso do Códon , Transferência Genética Horizontal
11.
Int J Mol Sci ; 24(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36835570

RESUMO

Advances in the computational annotation of genomes and the predictive potential of current metabolic models, based on more than thousands of experimental phenotypes, allow them to be applied to identify the diversity of metabolic pathways at the level of ecophysiology differentiation within taxa and to predict phenotypes, secondary metabolites, host-associated interactions, survivability, and biochemical productivity under proposed environmental conditions. The significantly distinctive phenotypes of members of the marine bacterial species Pseudoalteromonas distincta and an inability to use common molecular markers make their identification within the genus Pseudoalteromonas and prediction of their biotechnology potential impossible without genome-scale analysis and metabolic reconstruction. A new strain, KMM 6257, of a carotenoid-like phenotype, isolated from a deep-habituating starfish, emended the description of P. distincta, particularly in the temperature growth range from 4 to 37 °C. The taxonomic status of all available closely related species was elucidated by phylogenomics. P. distincta possesses putative methylerythritol phosphate pathway II and 4,4'-diapolycopenedioate biosynthesis, related to C30 carotenoids, and their functional analogues, aryl polyene biosynthetic gene clusters (BGC). However, the yellow-orange pigmentation phenotypes in some strains coincide with the presence of a hybrid BGC encoding for aryl polyene esterified with resorcinol. The alginate degradation and glycosylated immunosuppressant production, similar to brasilicardin, streptorubin, and nucleocidines, are the common predicted features. Starch, agar, carrageenan, xylose, lignin-derived compound degradation, polysaccharide, folate, and cobalamin biosynthesis are all strain-specific.


Assuntos
Pseudoalteromonas , Pseudoalteromonas/genética , Genômica , Carotenoides/metabolismo , Glicosilação , Fenótipo , Filogenia
12.
Biochem Biophys Res Commun ; 590: 177-183, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-34990892

RESUMO

Gram-negative bacteria usually use acyl-homoserine lactones (AHLs)-mediated LuxI/LuxR-type quorum sensing (QS) systems for cell-cell cooperation and/or bacteria-environment communication. LuxI and LuxR are AHLs synthase and receptor, respectively. These two parts could form a positive regulatory feedback loop, controlling various types of group behaviors. However, the autoregulation mechanisms between them are fragmented and could be highly differentiated in different bacteria. Here, we clarified the autoregulation mechanism between LuxI and LuxR in Pseudoalteromonas sp. R3. YasI (LuxI in strain R3) synthesizes two types of AHLs, C8-HSL and 3-OH-C8-HSL. It is worth noting that YasR (LuxR in strain R3) only responds to C8-HSL rather than 3-OH-C8-HSL. YasR-C8HSL can activate the yasI transcription by recognizing "lux box" at yasI upstream. Interestingly, YasR can directly promote the yasR expression with AHL-independent manner, but AHL absence caused by the yasI-deficiency led to the significant decrease in the yasR expression. Further study demonstrated that the yasI-deficiency can result in the decrease in the yasR mRNA stability. Notably, both yasI-deficiency and yasR-deficiency led to the significant decrease in the expression of hfq encoding RNA chaperone. Therefore, it was speculated that not only YasR itself can directly regulate the yasR transcription, but YasR-C8HSL complex indirectly affects the yasR mRNA stability by regulating Hfq.


Assuntos
Proteínas de Bactérias/metabolismo , Homeostase , Pseudoalteromonas/fisiologia , Percepção de Quorum , Acil-Butirolactonas/metabolismo , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Pseudoalteromonas/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
13.
Appl Environ Microbiol ; 88(22): e0116422, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36326244

RESUMO

Organisms need sufficient intracellular iron to maintain biological processes. However, cells can be damaged by excessive iron-induced oxidation stress. Therefore, iron homeostasis must be strictly regulated. In general, bacteria have evolved complex mechanisms to maintain iron homeostasis. In this study, we showed that Pseudoalteromonas sp. R3 has four sets of iron uptake systems. Among these, the siderophore pyoverdine-dependent iron uptake system and the ferrous iron transporter Feo system are more important for iron uptake and prodiginine biosynthesis. Stringent starvation protein SspA positively controls iron uptake and iron-dependent prodiginine biosynthesis by regulating the expression of all iron uptake systems. In turn, the expression of SspA can be induced and repressed by extracellular iron deficiency and excess, respectively. Interestingly, extracytoplasmic function sigma factor PvdS also regulates iron uptake and prodiginine production and responds to extracellular iron levels, exhibiting a similar phenomenon as SspA. Notably, not only do SspA and PvdS function independently, but they can also compensate for each other, and their expression can be affected by the other. All of these findings demonstrate that SspA and PvdS coordinate iron homeostasis and prodiginine biosynthesis in strain R3. More importantly, our results also showed that SspA and PvdS homologs in Pseudomonas aeruginosa PAO1 have similar functions in iron uptake to their counterparts in Pseudoalteromonas, suggesting that coordination between SspA and PvdS on iron homeostasis could be conserved in typical Gram-negative bacteria. Since master regulation of iron homeostasis is extremely important for cell survival, this cross talk between SspA and PvdS may be environmentally significant. IMPORTANCE Both deficiency and excess of intracellular iron can be harmful, and thus, the iron homeostasis needs to be tightly regulated in organisms. At present, the ferric uptake regulator (Fur) is the best-characterized regulator involved in bacterial iron homeostasis, while other regulators of iron homeostasis remain to be further explored. Here, we demonstrated that the stringent starvation protein SspA and the extracytoplasmic function sigma factor PvdS coordinate iron uptake and iron-dependent prodiginine biosynthesis in Pseudoalteromonas sp. R3. These two regulators work independently, but their functions can compensate for the other and their expression can be affected by the other. Moreover, their expression can be activated and repressed by extracellular iron deficiency and excess, respectively. Notably, SspA and PvdS homologs in Pseudomonas aeruginosa PAO1 exhibit similar functions in iron uptake to their counterparts in Pseudoalteromonas, suggesting that this novel fine-tuned mode of iron homeostasis could be conserved in typical Gram-negative bacteria.


Assuntos
Pseudoalteromonas , Fator sigma , Fator sigma/genética , Fator sigma/metabolismo , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Ferro/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/metabolismo
14.
Int Microbiol ; 25(2): 285-295, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34668088

RESUMO

The marine bacterial exopolysaccharides (EPS) have transfigured the biotech sector with their myriad applications and prospects. This work was carried out to characterize and analyze the functional and biochemical properties of an EPS (EPS-DR3A) produced by a marine bacterium, Pseudoalteromonas sp. YU16-DR3A. The bacterium was cultured in Zobell marine broth for the production of EPS. The extracted EPS designated as EPS-DR3A was composed of 69% carbohydrates and 7.6% proteins with a molecular weight of 20 kDa. FT-IR spectra showed the presence of different functional groups. The monosaccharide analysis performed using GC-MS showed the presence of fucose, erythrotetrose, ribose, and glucose as monomers. EPS-DR3A showed excellent emulsifying activity against the tested hydrocarbons and food oils with stable emulsions. Rheological analysis of EPS-DR3A revealed the pseudoplastic behavior. The EPS-DR3A displayed good thermal stability with a degradation temperature of 249 °C and a melting point at 322 °C. Further, it had the ability to scavenge DPPH and nitric oxide free radicals with good total antioxidant activity. The in vitro biocompatibility study of EPS-DR3A showed high degree of biocompatibility with human dermal fibroblast cells at the tested concentrations. Taken together, the findings such as thermostability, emulsifying activity, pseudoplasticity, antioxidant activity, and biocompatibility of EPS-DR3A make this biomolecule an important candidate for a wide range of biomedical applications.


Assuntos
Antioxidantes , Polissacarídeos Bacterianos , Antioxidantes/farmacologia , Emulsões , Humanos , Peso Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Microb Cell Fact ; 21(1): 211, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36242022

RESUMO

BACKGROUND: A significant fraction of the human proteome is still inaccessible to in vitro studies since the recombinant production of several proteins failed in conventional cell factories. Eukaryotic protein kinases are difficult-to-express in heterologous hosts due to folding issues both related to their catalytic and regulatory domains. Human CDKL5 belongs to this category. It is a serine/threonine protein kinase whose mutations are involved in CDKL5 Deficiency Disorder (CDD), a severe neurodevelopmental pathology still lacking a therapeutic intervention. The lack of successful CDKL5 manufacture hampered the exploitation of the otherwise highly promising enzyme replacement therapy. As almost two-thirds of the enzyme sequence is predicted to be intrinsically disordered, the recombinant product is either subjected to a massive proteolytic attack by host-encoded proteases or tends to form aggregates. Therefore, the use of an unconventional expression system can constitute a valid alternative to solve these issues. RESULTS: Using a multiparametric approach we managed to optimize the transcription of the CDKL5 gene and the synthesis of the recombinant protein in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 applying a bicistronic expression strategy, whose generalization for recombinant expression in the cold has been here confirmed with the use of a fluorescent reporter. The recombinant protein largely accumulated as a full-length product in the soluble cell lysate. We also demonstrated for the first time that full-length CDKL5 produced in Antarctic bacteria is catalytically active by using two independent assays, making feasible its recovery in native conditions from bacterial lysates as an active product, a result unmet in other bacteria so far. Finally, the setup of an in cellulo kinase assay allowed us to measure the impact of several CDD missense mutations on the kinase activity, providing new information towards a better understanding of CDD pathophysiology. CONCLUSIONS: Collectively, our data indicate that P. haloplanktis TAC125 can be a valuable platform for both the preparation of soluble active human CDKL5 and the study of structural-functional relationships in wild type and mutant CDKL5 forms. Furthermore, this paper further confirms the more general potentialities of exploitation of Antarctic bacteria to produce "intractable" proteins, especially those containing large intrinsically disordered regions.


Assuntos
Proteoma , Pseudoalteromonas , Regiões Antárticas , Temperatura Baixa , Síndromes Epilépticas , Humanos , Peptídeo Hidrolases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteoma/metabolismo , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Proteínas Recombinantes , Serina , Espasmos Infantis , Treonina/metabolismo
16.
Fish Shellfish Immunol ; 131: 229-243, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36210003

RESUMO

This study aimed to characterise and evaluate the probiotic properties of a newly isolated marine bacterium, strain S6031. The isolated strain was identified as Pseudoalteromonas ruthenica. In vivo experiments were conducted with P. ruthenica-immersed larvae and P. ruthenica-enriched Artemia fed to adult zebrafish. Disease tolerance of larval zebrafish against Edwardsiella piscicida was demonstrated by 66.34% cumulative per cent survival (CPS) in the P. ruthenica-exposed group, which was higher than the CPS of the control (46.67%) at 72 h post challenge (hpc). Heat-stressed larvae had 55% CPS in the P. ruthenica-immersed group, while the control had 30% CPS at 60 hpc. Immune-stress response gene transcripts (muc5.1, muc5.2, muc5.3, alpi2, alpi3, hsp70, and hsp90a) were induced, while pro-inflammatory genes (tnfα, il1b, and il6) were downregulated in P. ruthenica-immersed larvae compared to the control. This trend was confirmed by low pro-inflammatory and high stress-responsive protein expression levels in P. ruthenica-exposed larvae. Adult zebrafish had higher CPS (27.2%) in the P. ruthenica-fed group than the control (9.52%) upon E. piscicida challenge, suggesting increased disease tolerance. Histological analysis demonstrated modulation of goblet cell density and average villus height in the P. ruthenica-supplemented group. Metagenomics analysis clearly indicated modulation of alpha diversity indices and the relative abundance of Proteobacteria in the P. ruthenica-supplemented zebrafish gut. Furthermore, increased Firmicutes colonisation and reduced Bacteroidetes abundance in the gut were observed upon P. ruthenica supplementation. Additionally, this study confirmed the concentration-dependent increase of colony dispersion and macrophage uptake upon mucin treatment. In summary, P. ruthenica possesses remarkable functional properties as a probiotic that enhances host defence against diseases and thermal stress.


Assuntos
Microbioma Gastrointestinal , Probióticos , Animais , Peixe-Zebra , Probióticos/farmacologia , Antibacterianos/farmacologia
17.
Mar Drugs ; 20(3)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35323464

RESUMO

Chitooligosaccharides (COSs) have been widely used in agriculture, medicine, cosmetics, and foods, which are commonly prepared from chitin with chitinases. So far, while most COSs are prepared from colloidal chitin, chitinases used in preparing COSs directly from natural crystalline chitin are less reported. Here, we characterize three chitinases, which were identified from the marine bacterium Pseudoalteromonas flavipulchra DSM 14401T, with an ability to degrade crystalline chitin into (GlcNAc)2 (N,N'-diacetylchitobiose). Strain DSM 14401 can degrade the crystalline α-chitin in the medium to provide nutrients for growth. Genome and secretome analyses indicate that this strain secretes six chitinolytic enzymes, among which chitinases Chia4287, Chib0431, and Chib0434 have higher abundance than the others, suggesting their importance in crystalline α-chitin degradation. These three chitinases were heterologously expressed, purified, and characterized. They are all active on crystalline α-chitin, with temperature optima of 45-50 °C and pH optima of 7.0-7.5. They are all stable at 40 °C and in the pH range of 5.0-11.0. Moreover, they all have excellent salt tolerance, retaining more than 92% activity after incubation in 5 M NaCl for 10 h at 4 °C. When acting on crystalline α-chitin, the main products of the three chitinases are all (GlcNAc)2, which suggests that chitinases Chia4287, Chib0431, and Chib0434 likely have potential in direct conversion of crystalline chitin into (GlcNAc)2.


Assuntos
Proteínas de Bactérias/química , Quitina/química , Quitinases/química , Dissacarídeos/química , Pseudoalteromonas/enzimologia , Proteínas de Bactérias/isolamento & purificação , Quitinases/isolamento & purificação , Genoma Bacteriano , Pseudoalteromonas/genética , Cloreto de Sódio/química
18.
Mar Drugs ; 20(3)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35323458

RESUMO

Alginate oligosaccharides (AOS) have many biological activities and significant applications in prebiotics, nutritional supplements, and plant growth development. Alginate lyases have unique advantages in the preparation of AOS. However, only a limited number of alginate lyases have been so far reported to have potentials in the preparation of AOS with specific degrees of polymerization. Here, an alginate-degrading strain Pseudoalteromonasarctica M9 was isolated from Sargassum, and five alginate lyases were predicted in its genome. These putative alginate lyases were expressed and their degradation products towards sodium alginate were analyzed. Among them, AlyM2 mainly generated trisaccharides, which accounted for 79.9% in the products. AlyM2 is a PL6 lyase with low sequence identity (≤28.3%) to the characterized alginate lyases and may adopt a distinct catalytic mechanism from the other PL6 alginate lyases based on sequence alignment. AlyM2 is a bifunctional endotype lyase, exhibiting the highest activity at 30 °C, pH 8.0, and 0.5 M NaCl. AlyM2 predominantly produces trisaccharides from homopolymeric M block (PM), homopolymeric G block (PG), or sodium alginate, with a trisaccharide production of 588.4 mg/g from sodium alginate, indicating its promising potential in preparing trisaccharides from these polysaccharides.


Assuntos
Alginatos/química , Proteínas de Bactérias , Polissacarídeo-Liases , Pseudoalteromonas/enzimologia , Sargassum/microbiologia , Trissacarídeos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genoma Bacteriano , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Pseudoalteromonas/genética , Pseudoalteromonas/isolamento & purificação , RNA Ribossômico 16S
19.
Mar Drugs ; 20(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35447921

RESUMO

The genomic and carbohydrate metabolic features of Pseudoalteromonas agarivorans Hao 2018 (P. agarivorans Hao 2018) were investigated through pan-genomic and transcriptomic analyses, and key enzyme genes that may encode the process involved in its extracellular polysaccharide synthesis were screened. The pan-genome of the P. agarivorans strains consists of a core-genome containing 2331 genes, an accessory-genome containing 956 genes, and a unique-genome containing 1519 genes. Clusters of Orthologous Groups analyses showed that P. agarivorans harbors strain-specifically diverse metabolisms, probably representing high evolutionary genome changes. The Kyoto Encyclopedia of Genes and Genomes and reconstructed carbohydrate metabolic pathways displayed that P. agarivorans strains can utilize a variety of carbohydrates, such as d-glucose, d-fructose, and d-lactose. Analyses of differentially expressed genes showed that compared with the stationary phase (24 h), strain P. agarivorans Hao 2018 had upregulated expression of genes related to the synthesis of extracellular polysaccharides in the logarithmic growth phase (2 h), and that the expression of these genes affected extracellular polysaccharide transport, nucleotide sugar synthesis, and glycosyltransferase synthesis. This is the first investigation of the genomic and metabolic features of P. agarivorans through pan-genomic and transcriptomic analyses, and these intriguing discoveries provide the possibility to produce novel marine drug lead compounds with high biological activity.


Assuntos
Pseudoalteromonas , Transcriptoma , Carboidratos , Genoma Bacteriano/genética , Genômica , Filogenia , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo
20.
Molecules ; 27(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431814

RESUMO

The bioenzymatic production of selenium oligosaccharides addresses the problems resulting from high molecular weight and poor water solubility of κ-selenocarrageenan, and lays foundation for its application as adjuvant drugs for cancer treatment and food additive. κ-selenocarrageenase extracted from Pseudoalteromonas sp. Xi13 can degrade κ-selenocarrageenan to selenium oligosaccharides. The maximum optimized κ-selenocarrageenase activity using Response Surface Methodology (RSM) was increased by 1.4 times, reaching 8.416 U/mL. To expand applications of the κ-selenocarrageenase in industry, the preparation conditions of it in either lyophilized or immobilized form were investigated. The activity recovery rate of the lyophilized enzyme was >70%, while that of the immobilized enzyme was 62.83%. However, the immobilized κ-selenocarrageenase exhibits good stability after being reused four times, with 58.28% of residual activity. The selenium content of κ-selenocarrageenan oligosaccharides degraded by the immobilized κ-selenocarrageenase was 47.06 µg/g, 8.3% higher than that degraded by the lyophilized enzyme. The results indicate that the immobilized κ-selenocarrageenase is suitable for industrial applications and has commercial potential.


Assuntos
Compostos Organosselênicos , Pseudoalteromonas , Selênio , Carragenina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa