Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 23(1): 376, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585506

RESUMO

BACKGROUND: Within the class Enoplea, the earliest-branching lineages in the phylum Nematoda, the relatively highly conserved ancestral mitochondrial architecture of Trichinellida is in stark contrast to the rapidly evolving architecture of Dorylaimida and Mermithida. To better understand the evolution of mitogenomic architecture in this lineage, we sequenced the mitogenome of a fish parasite Pseudocapillaria tomentosa (Trichinellida: Capillariidae) and compared it to all available enoplean mitogenomes. RESULTS: P. tomentosa exhibited highly reduced noncoding regions (the largest was 98 bp), and a unique base composition among the Enoplea. We attributed the latter to the inverted GC skew (0.08) in comparison to the ancestral skew in Trichinellidae (-0.43 to -0.37). Capillariidae, Trichuridae and Longidoridae (Dorylaimida) generally exhibited low negative or low positive skews (-0.1 to 0.1), whereas Mermithidae exhibited fully inverted low skews (0 to 0.05). This is indicative of inversions in the strand replication order or otherwise disrupted replication mechanism in the lineages with reduced/inverted skews. Among the Trichinellida, Trichinellidae and Trichuridae have almost perfectly conserved architecture, whereas Capillariidae exhibit multiple rearrangements of tRNA genes. In contrast, Mermithidae (Mermithida) and Longidoridae (Dorylaimida) exhibit almost no similarity to the ancestral architecture. CONCLUSIONS: Longidoridae exhibited more rearranged mitogenomic architecture than the hypervariable Mermithidae. Similar to the Chromadorea, the evolution of mitochondrial architecture in enoplean nematodes exhibits a strong discontinuity: lineages possessing a mostly conserved architecture over tens of millions of years are interspersed with lineages exhibiting architectural hypervariability. As Longidoridae also have some of the smallest metazoan mitochondrial genomes, they contradict the prediction that compact mitogenomes should be structurally stable. Lineages exhibiting inverted skews appear to represent the intermediate phase between the Trichinellidae (ancestral) and fully derived skews in Chromadorean mitogenomes (GC skews = 0.18 to 0.64). Multiple lines of evidence (CAT-GTR analysis in our study, a majority of previous mitogenomic results, and skew disruption scenarios) support the Dorylaimia split into two sister-clades: Dorylaimida + Mermithida and Trichinellida. However, skew inversions produce strong base composition biases, which can hamper phylogenetic and other evolutionary studies, so enoplean mitogenomes have to be used with utmost care in evolutionary studies.


Assuntos
Genoma Mitocondrial , Nematoides , Animais , Composição de Bases , Cromadoria/genética , Evolução Molecular , Nematoides/genética , Filogenia
2.
J Fish Dis ; 42(10): 1351-1357, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31309582

RESUMO

Pseudocapillaria tomentosa is a pathogenic nematode parasite, causing emaciation and severe inflammatory lesions in the intestines in zebrafish Danio rerio (Hamilton 1822). Emamectin benzoate is commercially available analogue of ivermectin used for treating salmon for sea lice, under the brand name SLICE® , and we have used this for treating zebrafish with the P. tomentosa. Here, SLICE® , 0.2 per cent active emamectin benzoate, was used for oral treatments at 0.35 mg emamectin benzoate/kg fish/day for 14 days starting at 7 days post-exposure (dpe). Another experiment entailed initiating treatment during clinical disease (starting at 28 dpe). Early treatment was very effective, but delaying treatment was less so, presumably due to inappetence in clinically affected fish. We evaluated emamectin benzoate delivered in water, using Lice-Solve™ (mectinsol; 1.4% active emamectin benzoate) in two experiments. Application of four 24-hr treatments, space over 7 days was initiated at 28 dpe at either 0.168 or 0.56 mg emamectin benzoate/L/bath, and both treatments completely eradicated infections. This was 3 or 10 times manufacture's recommended dose, but was not associated with clinical or histological side effects.


Assuntos
Antinematódeos/farmacologia , Infecções por Enoplida/veterinária , Enoplídios/efeitos dos fármacos , Doenças dos Peixes/tratamento farmacológico , Ivermectina/análogos & derivados , Peixe-Zebra , Animais , Relação Dose-Resposta a Droga , Infecções por Enoplida/tratamento farmacológico , Feminino , Ivermectina/farmacologia , Masculino
3.
Zebrafish ; 18(3): 207-220, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33999743

RESUMO

Intestinal neoplasms and preneoplastic lesions are common in zebrafish research facilities. Previous studies have demonstrated that these neoplasms are caused by a transmissible agent, and two candidate agents have been implicated: a Mycoplasma sp. related to Mycoplasma penetrans and the intestinal parasitic nematode, Pseudocapillaria tomentosa, and both agents are common in zebrafish facilities. To elucidate the role of these two agents in the occurrence and severity of neoplasia and other intestinal lesions, we conducted two experimental inoculation studies. Exposed fish were examined at various time points over an 8-month period for intestinal histopathologic changes and the burden of Mycoplasma and nematodes. Fish exposed to Mycoplasma sp. isolated from zebrafish were associated with preneoplastic lesions. Fish exposed to the nematode alone or with the Mycoplasma isolate developed severe lesions and neoplasms. Both inflammation and neoplasm scores were associated with an increase in Mycoplasma burden. These results support the conclusions that P. tomentosa is a strong promoter of intestinal neoplasms in zebrafish and that Mycoplasma alone can also cause intestinal lesions and accelerate cancer development in the context of nematode infection.


Assuntos
Doenças dos Peixes , Infecções por Mycoplasma/veterinária , Infecções por Nematoides , Animais , Doenças dos Peixes/microbiologia , Doenças dos Peixes/parasitologia , Mycoplasma , Nematoides , Infecções por Nematoides/veterinária , Peixe-Zebra/microbiologia , Peixe-Zebra/parasitologia
4.
Microbiome ; 7(1): 10, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30678738

RESUMO

BACKGROUND: Helminth parasites represent a significant threat to the health of human and animal populations, and there is a growing need for tools to treat, diagnose, and prevent these infections. Recent work has turned to the gut microbiome as a utilitarian agent in this regard; components of the microbiome may interact with parasites to influence their success in the gut, meaning that the microbiome may encode new anthelmintic drugs. Moreover, parasite infections may restructure the microbiome's composition in consistent ways, implying that the microbiome may be useful for diagnosing infection. The innovation of these utilities requires foundational knowledge about how parasitic infection, as well as its ultimate success in the gut and impact on the host, relates to the gut microbiome. In particular, we currently possess limited insight into how the microbiome, host pathology, and parasite burden covary during infection. Identifying interactions between these parameters may uncover novel putative methods of disrupting parasite success. RESULTS: To identify interactions between parasite success and the microbiome, we quantified longitudinal associations between an intestinal helminth of zebrafish, Pseudocapillaria tomentosa, and the gut microbiome in 210 4-month-old 5D line zebrafish. Parasite burden and parasite-associated pathology varied in severity throughout the experiment in parasite-exposed fish, with intestinal pathologic changes becoming severe at late time points. Parasite exposure, burden, and intestinal lesions were correlated with gut microbial diversity. Robust generalized linear regression identified several individual taxa whose abundance predicted parasite burden, suggesting that gut microbiota may influence P. tomentosa success. Numerous associations between taxon abundance, burden, and gut pathologic changes were also observed, indicating that the magnitude of microbiome disruption during infection varies with infection severity. Finally, a random forest classifier accurately predicted a fish's exposure to the parasite based on the abundance of gut phylotypes, which underscores the potential for using the gut microbiome to diagnose intestinal parasite infection. CONCLUSIONS: These experiments demonstrate that P. tomentosa infection disrupts zebrafish gut microbiome composition and identifies potential interactions between the gut microbiota and parasite success. The microbiome may also provide a diagnostic that would enable non-destructive passive sampling for P. tomentosa and other intestinal pathogens in zebrafish facilities.


Assuntos
Bactérias/classificação , Disbiose/parasitologia , Microbioma Gastrointestinal/fisiologia , Nematoides/classificação , Infecções por Nematoides/veterinária , Peixe-Zebra/microbiologia , Peixe-Zebra/parasitologia , Animais , Feminino , Masculino , Interações Microbianas/fisiologia
5.
Zebrafish ; 16(5): 460-468, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31216245

RESUMO

Pseudocapillaria tomentosa is an important pathogen in zebrafish facilities. We investigated heat, ultraviolet (UV) light, chlorine, iodine, and dessciation for killing the parasite's eggs. Eggs released with feces larvate in about 5-10 days, and treatments were evaluated by exposing fresh eggs and subsequently comparing larvation to untreated eggs as an indication of survival. Collectively, untreated eggs in all trials showed high levels of survival. Eggs were exposed to elevated temperatures (40°C, 45°C and 50°C) for 1, 8, or 24 h, which resulted in substantial reduction in viability of eggs. UV radiation was effective, with no larvation at 50-300 mWs/cm2 and <2% at 20 mWs/cm2. Three chlorine products (JT Baker, Clorox®, and Bi-Mart) were tested at 25, 50, 100, 500, and 3,000 ppm (pH 7.0-7.3) with 10 min exposure. All were effective at 500 or 1,000 ppm. There was variability between three products and trials at lower concentrations, but overall chlorine was not very effective at 25-100 ppm except for Bi-Mart brand at 100 ppm. Povidone-iodine was not effective at 25 or 50 ppm for 10 min, but was effective at 200 ppm for 1 h. Desiccation was effective, and no eggs larvated after 2 h drying.


Assuntos
Cloro/farmacologia , Iodo/farmacologia , Nematoides/efeitos dos fármacos , Nematoides/efeitos da radiação , Óvulo/efeitos dos fármacos , Óvulo/efeitos da radiação , Animais , Sobrevivência Celular/efeitos dos fármacos , Desinfetantes/farmacologia , Temperatura Alta , Raios Ultravioleta , Água , Peixe-Zebra
6.
Zebrafish ; 15(2): 188-201, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29369747

RESUMO

Cryopreservation is a common method used to preserve the sperm of various animal species, and it is widely used with zebrafish (Danio rerio). As with other animals, there is a possibility of paternal pathogen transmission through sperm. We evaluated the ability of five common and important pathogens of zebrafish to survive cryopreservation as used with zebrafish sperm and freezing without cryopreservant. We evaluated Mycobacterium chelonae, Mycobacterium marinum, and Edwardsiella ictaluri, each originally isolated from zebrafish, eggs of Pseuodocapillaria tomentosa, and spores of Pseudoloma neurophilia. Each mycobacterial isolate showed relatively minimal reduction in survival after freezing and thawing, particularly when subjected to cryopreservation. E. ictaluri also showed survival after cryopreservation, but exhibited a several log reduction after freezing at -80°C without cryopreservant. With P. neurophilia, two separate experiments conducted 3 years apart yielded very similar results, showing some, but reduced, survival of spores by using three different viability assays: SYTOX stain, Fungi-Fluor stain, and presence of a spore vacuole. Eggs of P. tomentosa showed no survival based on larvation of eggs when subjected to either freezing method. Given that four of the five pathogens exhibited survival after cryopreservation, we recommend that sperm samples or donor male zebrafish fish be tested for pathogens when sperm are to be stored by using cryopreservation.


Assuntos
Criopreservação/métodos , Doenças dos Peixes/microbiologia , Doenças dos Peixes/parasitologia , Microsporídios/crescimento & desenvolvimento , Mycobacterium marinum/crescimento & desenvolvimento , Peixe-Zebra/microbiologia , Peixe-Zebra/parasitologia , Animais , Masculino , Microsporidiose/microbiologia , Microsporidiose/transmissão , Microsporidiose/veterinária , Infecções por Mycobacterium não Tuberculosas/microbiologia , Infecções por Mycobacterium não Tuberculosas/transmissão , Infecções por Mycobacterium não Tuberculosas/veterinária , Espermatozoides/microbiologia , Espermatozoides/parasitologia , Peixe-Zebra/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa