Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Plant J ; 118(5): 1528-1549, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38507319

RESUMO

Rapid alkalinization factors (RALFs), belonging to a family of small secreted peptides, have been considered as important signaling molecules in diverse biological processes, including immunity. Current studies on RALF-modulated immunity mainly focus on Arabidopsis, but little is reported in crop plants. The rice immune receptor XA21 confers immunity to the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae (Xoo). Here, we pursued functional characterization of rice RALF26 (OsRALF26) up-regulated by Xoo during XA21-mediated immune response. When applied exogenously as a recombinant peptide, OsRALF26 induced a series of immune responses, including pathogenesis-related genes (PRs) induction, reactive oxygen species (ROS) production, and callose deposition in rice and/or Arabidopsis. Transgenic rice and Arabidopsis overexpressing OsRALF26 exhibited significantly enhanced resistance to Xoo and Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), respectively. In yeast two-hybrid, pull-down assays, and co-immunoprecipitation analyses, rice FER-like receptor 1 (OsFLR1) was identified as a receptor of OsRALF26. Transient expression of OsFLR1 in Nicotiana benthamiana leaves displayed significantly increased ROS production and callose deposition after OsRALF26 treatment. Together, we propose that OsRALF26 induced by Xoo in an XA21-dependent manner is perceived by OsFLR1 and may play a novel role in the enforcement of XA21-mediated immunity.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Oryza , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio , Xanthomonas , Oryza/genética , Oryza/microbiologia , Oryza/imunologia , Oryza/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Xanthomonas/fisiologia , Xanthomonas/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Espécies Reativas de Oxigênio/metabolismo , Resistência à Doença/genética , Glucanos/metabolismo , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/fisiologia
2.
Appl Microbiol Biotechnol ; 108(1): 357, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822872

RESUMO

Bacterial plant diseases are difficult to control as the durability of deployed control measures is thwarted by continuous and rapid changing of bacterial populations. Although application of copper compounds to plants is the most widespread and inexpensive control measure, it is often partially efficacious for the frequent appearance of copper-resistant bacterial strains and it is raising concerns for the harmful effects of copper on environment and human health. Consequently, European Community included copper compounds in the list of substances candidates for substitution. Nanotechnologies and the application of nanoparticles seem to respond to the need to find new very effective and durable measures. We believe that Argirium-SUNCs®, silver ultra nanoclusters with an average size of 1.79 nm and characterized by rare oxidative states (Ag2+/3+), represent a valid candidate as a nano-bactericide in the control of plant bacterial diseases. Respect to the many silver nanoparticles described in the literature, Argirium-SUNCs have many strengths due to the reproducibility of the synthesis method, the purity and the stability of the preparation, the very strong (less than 1 ppm) antimicrobial, and anti-biofilm activities. In this mini-review, we provide information on this nanomaterial and on the possible application in agriculture. KEY POINTS: • Argirium-SUNCs have strong antimicrobial activities against phytopathogenic bacteria. • Argirium-SUNCs are a possible plant protection product. • Argirium-SUNCs protect tomato plants against bacterial speck disease.


Assuntos
Nanopartículas Metálicas , Doenças das Plantas , Prata , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Prata/farmacologia , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Cobre/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento
3.
Mol Plant Microbe Interact ; 36(6): 359-371, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36802868

RESUMO

Eicosapolyenoic fatty acids are integral components of oomycete pathogens that can act as microbe-associated molecular patterns to induce disease resistance in plants. Defense-inducing eicosapolyenoic fatty acids include arachidonic acid (AA) and eicosapentaenoic acid and are strong elicitors in solanaceous plants, with bioactivity in other plant families. Similarly, extracts of a brown seaweed, Ascophyllum nodosum, used in sustainable agriculture as a biostimulant of plant growth, may also induce disease resistance. A. nodosum, similar to other macroalgae, is rich in eicosapolyenoic fatty acids, which comprise as much as 25% of total fatty acid composition. We investigated the response of roots and leaves from AA or a commercial A. nodosum extract (ANE) on root-treated tomatoes via RNA sequencing, phytohormone profiling, and disease assays. AA and ANE significantly altered transcriptional profiles relative to control plants, inducing numerous defense-related genes with both substantial overlap and differences in gene expression patterns. Root treatment with AA and, to a lesser extent, ANE also altered both salicylic acid and jasmonic acid levels while inducing local and systemic resistance to oomycete and bacterial pathogen challenge. Thus, our study highlights overlap in both local and systemic defense induced by AA and ANE, with potential for inducing broad-spectrum resistance against pathogens. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Oomicetos , Alga Marinha , Solanum lycopersicum , Solanum lycopersicum/genética , Ácidos Graxos , Resistência à Doença , Plantas , Extratos Vegetais , Doenças das Plantas/microbiologia
4.
Plant Mol Biol ; 112(3): 161-177, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37226022

RESUMO

Plants defend themselves against pathogens using a two-layered immune system. The first response, pattern-triggered immunity (PTI), is activated upon recognition of microbe-associated molecular patterns (MAMPs). Virulent bacteria such as Pseudomonas syringae pv. tomato (Pst), deliver effector proteins into the plant cell to promote susceptibility. However, some plants possess resistance (R) proteins that recognize specific effectors leading to the activation of the second response, effector-triggered immunity (ETI). Resistant tomatoes such as Río Grande-PtoR recognize two Pst effectors (AvrPto and AvrPtoB) through the host Pto/Prf complex and activate ETI. We previously showed that the transcription factors (TF) WRKY22 and WRKY25 are positive regulators of plant immunity against bacterial and potentially non-bacterial pathogens in Nicotiana benthamiana. Here, the CRISPR-Cas9 technique was used to develop three knockout tomato lines for either one or both TFs. The single and double mutants were all compromised in Pto/Prf-mediated ETI and had a weaker PTI response. The stomata apertures in all of the mutant lines did not respond to darkness or challenge with Pst DC3000. The WRKY22 and WRKY25 proteins both localize in the nucleus, but we found no evidence of a physical interaction between them. The WRKY22 TF was found to be involved in the transcriptional regulation of WRKY25, supporting the idea that they are not functionally redundant. Together, our results indicate that both WRKY TFs play a role in modulating stomata and are positive regulators of plant immunity in tomato.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Pseudomonas syringae/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Plantas/metabolismo , Mutação , Imunidade Vegetal/genética , Doenças das Plantas/microbiologia
5.
J Exp Bot ; 74(9): 2891-2911, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36723875

RESUMO

Climate change has intensified the infection of tomato plants by pathogens such as Pseudomonas syringae pv. tomato (Pst). Rootstocks may increase plant tolerance to leaf phytopathogens. The aim of this study was to evaluate the effects of the tolerant Poncho Negro (R) tomato rootstock on physiological defence and the role of hydrogen sulfide (H2S) in susceptible Limachino (L) tomato plant responses to Pst attack. Ungrafted (L), self-grafted (L/L), and grafted (L/R) plants were infected with Pst. Rootstock increased the concentration of antioxidant compounds including ascorbate in the scion. Tolerant rootstock induced an increase of H2S in the scion, which correlated with enhanced expression of the SlAPX2 gene. A high accumulation of salicylic acid was observed in Pst-inoculated grafted L/L and L/R plants, but this was higher in L/R plants. The increase of H2S during Pst infection was associated with a reduction of ethylene in L/R plants. Our study indicates that the Poncho Negro rootstock reduced the symptoms of bacterial speck disease in the Limachino tomato plants, conferring tolerance to Pst infection. This study provides new knowledge about the impact of rootstock in the defence of tomato plants against leaf pathogens that could be used in sustainable management of tomato cultivation.


Assuntos
Pseudomonas syringae , Solanum lycopersicum , Solanum lycopersicum/genética , Plantas , Folhas de Planta/fisiologia , Doenças das Plantas/microbiologia
6.
Appl Microbiol Biotechnol ; 107(11): 3801-3815, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37074382

RESUMO

The biology and biotechnology of bacteriophages have been extensively studied in recent years to explore new and environmentally friendly methods of controlling phytopathogenic bacteria. Pseudomonas syringae pv. tomato (Pst) is responsible for bacterial speck disease in tomato plants, leading to decreased yield. Disease management strategies rely on the use of copper-based pesticides. The biological control of Pst with the use of bacteriophages could be an alternative environmentally friendly approach to diminish the detrimental effects of Pst in tomato cultivations. The lytic efficacy of bacteriophages can be used in biocontrol-based disease management strategies. Here, we report the isolation and complete characterization of a bacteriophage, named Medea1, which was also tested in planta against Pst, under greenhouse conditions. The application of Medea1 as a root drenching inoculum or foliar spraying reduced 2.5- and fourfold on average, respectively, Pst symptoms in tomato plants, compared to a control group. In addition, it was observed that defense-related genes PR1b and Pin2 were upregulated in the phage-treated plants. Our research explores a new genus of Pseudomonas phages and explores its biocontrol potential against Pst, by utilizing its lytic nature and ability to trigger the immune response of plants. KEY POINTS: • Medea1 is a newly reported bacteriophage against Pseudomonas syringae pv. tomato having genomic similarities with the phiPSA1 bacteriophage • Two application strategies were reported, one by root drenching the plants with a phage-based solution and one by foliar spraying, showing up to 60- and 6-fold reduction of Pst population and disease severity in some cases, respectively, compared to control • Bacteriophage Medea1 induced the expression of the plant defense-related genes Pin2 and PR1b.


Assuntos
Bacteriófagos , Solanum lycopersicum , Pseudomonas syringae , Bacteriófagos/genética , Doenças das Plantas/prevenção & controle , Plantas
7.
Appl Microbiol Biotechnol ; 107(14): 4519-4531, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37289240

RESUMO

The main measure worldwide adopted to manage plant bacterial diseases is based on the application of copper compounds, which are often partially efficacious for the frequent appearance of copper-resistant bacterial strains and have raised concerns for their toxicity to the environment and humans. Therefore, there is an increasing need to develop new environmentally friendly, efficient, and reliable strategies for controlling plant bacterial diseases, and among them, the use of nanoparticles seems promising. The present study aimed to evaluate the feasibility of protecting plants against attacks of gram-negative and gram-positive phytopathogenic bacteria by using electrochemically synthesized silver ultra nanoclusters (ARGIRIUM­SUNCs®) with an average size of 1.79 nm and characterized by rare oxidative states (Ag2+/3+). ARGIRIUM­SUNCs strongly inhibited the in vitro growth (effective concentration, EC50, less than 1 ppm) and biofilm formation of Pseudomonas syringae pv. tomato and of quarantine bacteria Xanthomonas vesicatoria, Xylella fastidiosa subsp. pauca, and Clavibacter michiganensis subsp. michiganensis. In addition, treatments with ARGIRIUM­SUNCs also provoked the eradication of biofilm for P. syringae pv. tomato, X. vesicatoria, and C. michiganensis subsp. michiganensis. Treatment of tomato plants via root absorption with ARGIRIUM­SUNCs (10 ppm) is not phytotoxic and protected (80%) the plants against P. syringae pv. tomato attacks. ARGIRIUM­SUNCs at low doses induced hormetic effects on P. syringae pv. tomato, X. vesicatoria, and C. michiganensis subsp. michiganensis as well as on tomato root growth. The use of ARGIRIUM­SUNCs in protecting plants against phytopathogenic bacteria is a possible alternative control measure. KEY POINTS: • ARGIRIUM­SUNC has strong antimicrobial activities against phytopathogenic bacteria; • ARGIRIUM­SUNC inhibits biofilm formation at low doses; • ARGIRIUM­SUNC protects tomato plants against bacterial speck disease.


Assuntos
Cobre , Prata , Humanos , Prata/farmacologia , Cobre/farmacologia , Clavibacter , Estresse Oxidativo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
8.
New Phytol ; 233(3): 1274-1288, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34797591

RESUMO

Phytopathogens can manipulate plant hormone signaling to counteract immune responses; however, the underlying mechanism is mostly unclear. Here, we report that Pseudomonas syringae pv tomato (Pst) DC3000 induces expression of C2H2 zinc finger transcription factor ZAT18 in a jasmonic acid (JA)-signaling-dependent manner. Biochemical assays further confirmed that ZAT18 is a direct target of MYC2, which is a very important regulator in JA signaling. CRISPR/Cas9-generated zat18-cr mutants exhibited enhanced resistance to Pst DC3000, while overexpression of ZAT18 resulted in impaired disease resistance. Genetic characterization of ZAT18 mutants demonstrated that ZAT18 represses defense responses by inhibiting the accumulation of the key plant immune signaling molecule salicylic acid (SA), which is dependent on its EAR motif. ZAT18 exerted this inhibitory effect by directly repressing the transcription of Enhanced Disease Susceptibility 1 (EDS1), which is the key signaling component of pathogen-induced SA accumulation. Overexpression of ZAT18 resulted in decreased SA content, while loss of function of ZAT18 showed enhanced SA accumulation upon pathogen infection. Furthermore, enhanced resistance and SA content in zat18-cr mutants was abolished by the mutation in EDS1. Our data indicate that pathogens induce ZAT18 expression to repress the transcription of EDS1, further antagonising SA accumulation for bacterial infection.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Infecções Bacterianas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Ácido Salicílico/metabolismo
9.
Plant Dis ; 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36040229

RESUMO

Control of plant pathogens using chemical and synthetic pesticides raises a major safety concern for humans and the environment. Despite the ongoing exploration of sustainable alternative methods, management practices for pathogens, especially bacteria, have remained almost unchanged over decades, whereby long-term uses of copper and antibiotics has led to widespread bacterial resistance in the field. Antimicrobial photodynamic inactivation (aPDI) of bacteria is emerging as an alternative strategy to combat resistant plant pathogens. aPDI utilizes light-sensitive molecules (photosensitizers) that upon illumination produce reactive oxygen species able to kill pathogens. Here we explore the potential of an anionic semisynthetic water-soluble derivative of chlorophyl (Sodium Magnesium Chlorophyllin: Mg-chl), as an antibacterial agent in planta, by simulating processes naturally occurring in the field. Mg-chl in combination with Na2EDTA (cell wall permeabilizing agent) was able to effectively inhibit Pseudomonas syringae pv. tomato DC3000 in vitro and in planta in both tomato and N. benthamiana. Notably, Mg-chl in combination with Na2EDTA and the common surfactant Morwet D-400 significantly reduced Xanthomonas hortorum pv. gardneri and Xanthomonas fragarie, respectively, in a commercial greenhouse trial against bacterial spot disease in tomato and in field experiments against angular leaf spot disease in strawberries.

10.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292941

RESUMO

Accessions of one plant species may show significantly different levels of susceptibility to stresses. The Arabidopsis thaliana accessions Col-0 and C24 differ significantly in their resistance to the pathogen Pseudomonas syringae pv. tomato (Pst). To help unravel the underlying mechanisms contributing to this naturally occurring variance in resistance to Pst, we analyzed changes in transcripts and compounds from primary and secondary metabolism of Col-0 and C24 at different time points after infection with Pst. Our results show that the differences in the resistance of Col-0 and C24 mainly involve mechanisms of salicylic-acid-dependent systemic acquired resistance, while responses of jasmonic-acid-dependent mechanisms are shared between the two accessions. In addition, arginine metabolism and differential activity of the biosynthesis pathways of aliphatic glucosinolates and indole glucosinolates may also contribute to the resistance. Thus, this study highlights the difference in the defense response strategies utilized by different genotypes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , Transcriptoma , Glucosinolatos/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Pseudomonas syringae/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Indóis/farmacologia , Indóis/metabolismo , Arginina/metabolismo , Resistência à Doença/genética , Ácido Salicílico/metabolismo
11.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498851

RESUMO

The importance of E3 ubiquitin ligases from different families for plant immune signaling has been confirmed. Plant RING-type E3 ubiquitin ligases are members of the E3 ligase superfamily and have been shown to play positive or negative roles during the regulation of various steps of plant immunity. Here, we present Arabidopsis RING-type E3 ubiquitin ligases AtRDUF1 and AtRDUF2 which act as positive regulators of flg22- and SA-mediated defense signaling. Expression of AtRDUF1 and AtRDUF2 is induced by pathogen-associated molecular patterns (PAMPs) and pathogens. The atrduf1 and atrduf2 mutants displayed weakened responses when triggered by PAMPs. Immune responses, including oxidative burst, mitogen-activated protein kinase (MAPK) activity, and transcriptional activation of marker genes, were attenuated in the atrduf1 and atrduf2 mutants. The suppressed activation of PTI responses also resulted in enhanced susceptibility to bacterial pathogens. Interestingly, atrduf1 and atrduf2 mutants showed defects in SA-mediated or pathogen-mediated PR1 expression; however, avirulent Pseudomonas syringae pv. tomato DC3000-induced cell death was unaffected. Our findings suggest that AtRDUF1 and AtRDUF2 are not just PTI-positive regulators but are also involved in SA-mediated PR1 gene expression, which is important for resistance to P. syringae.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Reconhecimento da Imunidade Inata , Imunidade Vegetal , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Pseudomonas syringae , Ácido Salicílico/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
Plant Mol Biol ; 105(1-2): 65-82, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32909182

RESUMO

KEY MESSAGE: NbWRKY22 and NbWRKY25 are required for full activation of bacteria-associated pattern- and effector-triggered immunity as well as for the response to other non-bacterial defense elicitors. Plants defend themselves against pathogens using a two-layered immune system. Pattern-triggered immunity (PTI) can be activated upon recognition of epitopes from flagellin including flg22. Pseudomonas syringae pv. tomato (Pst) delivers effector proteins into the plant cell to promote host susceptibility. However, some plants express resistance (R) proteins that recognize specific effectors leading to the activation of effector-triggered immunity (ETI). Resistant tomato lines such as Rio Grande-PtoR (RG-PtoR) recognize two Pst effectors, AvrPto and AvrPtoB, and activate ETI through the Pto/Prf protein complex. Using RNA-seq, we identified two tomato WRKY transcription factor genes, SlWRKY22 and SlWRKY25, whose expression is increased during Pst-induced ETI. Silencing of the WRKY25/22 orthologous genes in Nicotiana benthamiana led to a delay in programmed cell death normally associated with AvrPto recognition or several non-bacterial effector/R protein pairs. An increase in disease symptoms was observed in silenced plants infiltrated with Pseudomonas syringae pv. tabaci expressing AvrPto or HopQ1-1. Expression of both tomato WRKY genes is also induced upon treatment with flg22 and callose deposition and cell death suppression assays in WRKY25/22-silenced N. benthamiana plants supported their involvement in PTI. Our results reveal an important role for two WRKYs as positive regulators of plant immunity against bacterial and potentially non-bacterial pathogens.


Assuntos
Nicotiana/genética , Nicotiana/metabolismo , Imunidade Vegetal/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Apoptose , Arabidopsis/genética , Proteínas de Arabidopsis , Morte Celular , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas/genética , Solanum lycopersicum/genética , Filogenia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Proteínas de Plantas/classificação , Pseudomonas syringae/patogenicidade , Fatores de Transcrição/classificação
13.
New Phytol ; 229(5): 2827-2843, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33206385

RESUMO

Atmospheric CO2 concentrations exert a strong influence on the susceptibility of plants to pathogens. However, the mechanisms involved in the CO2 -dependent regulation of pathogen resistance are largely unknown. Here we show that the expression of tomato (Solanum lycopersicum) ß-CARBONIC ANHYDRASE 3 (ßCA3) is induced by the virulent pathogen Pseudomonas syringae pv. tomato DC3000. The role of ßCA3 in the high CO2 -mediated response in tomato and two other Solanaceae crops is distinct from that in Arabidopsis thaliana. Using ßCA3 knock-out and over-expression plants, we demonstrate that ßCA3 plays a positive role in the activation of basal immunity, particularly under high CO2 . ßCA3 is transcriptionally activated by the transcription factor NAC43 and is also post-translationally regulated by the receptor-like kinase GRACE1. The ßCA3 pathway of basal immunity is independent on stomatal- and salicylic-acid-dependent regulation. Global transcriptome analysis and cell wall metabolite measurement implicate cell wall metabolism/integrity in ßCA3-mediated basal immunity under both CO2 conditions. These data not only highlight the importance of ßCA3 in plant basal immunity under high CO2 in a well-studied susceptible crop-pathogen system, but they also point to new targets for disease management strategies in a changing climate.


Assuntos
Anidrases Carbônicas , Imunidade Vegetal , Solanum lycopersicum , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Doenças das Plantas , Pseudomonas syringae/metabolismo
14.
Plant Dis ; 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34931890

RESUMO

In Chile, tomato is one of the most widely cultivated vegetables, with around 5,000 ha for fresh market and 8,000 ha for processing industry. During recent years, symptoms of bacterial speck caused by Pseudomonas syringae pv. tomato, have been observed more frequently in tomato plants in different regions of Chile. This pathogen was first identified in Chile in 1987 (Latorre & Lolas, 1988) and the presence of an apparent new variant was reported in 2004 (Besoain et al. 2004). To characterize the pathogen that was affecting this crop, samples of diseased tomato plants were taken in three regions of Chile. The samples were collected in 2016 in Northern Chile in Lluta Valley from the Arica y Parinacota Region, and in Central Chile, in 2014 in Limache from Valparaíso Region and in 2015 in Pichidegua from O´Higgins Region. Affected tomato plants exhibited dark brown to black lesions surrounded by yellow halos in the leaves, and dark brown to black lesions in the stems, pedicels, and peduncles. Plants tissues were macerated, and the suspension was spread on King's B medium, resulting in fluorescent colonies visualized under 366 nm UV light. LOPAT tests results of three selected isolates from different Regions, were: levan production (+), oxidase reaction (-), potato soft rot (-), arginine dihydrolase production (-), and tobacco hypersensitivity (+) (Lelliot et al. 1966). Molecular identification was carried out by amplification and sequence analysis of housekeeping genes cts, encoding citrate synthase, gyrB, encoding DNA gyrase B, and rpoD, encoding sigma factor 70 (Hwang et al. 2005; Sarkar & Guttmann 2004) (GenBank Accessions No. OK001658-OK001666). BLAST analysis of cts and rpoD genes of the three isolates resulted in a match with a 100% identity (919 bp and 491 bp respectively) with Pseudomonas syringae pv. tomato strain B13-200 (GenBank: CP019871.1). BLAST analysis of gyrB gene of two isolates resulted in a match with a 100% identity (684 bp) and one isolate with 99.85% (683 bp) with Pseudomonas syringae pv. tomato strain B13-200. To identify the race 1, each strain was inoculated in five tomato plants cv. San Pedro, susceptible to both races of P. syringae pv. tomato, and cv. Rio Grande, resistant to race 0. The tomato plants were slightly wounded with a metal sponge and then sprayed with the bacterial suspension (108 CFU mL-1) of each isolate, including the reference strain DC3000 (race 0). Negative controls were sprayed with water. The plants inoculated with Chilean strains in both cv. San Pedro and cv. Rio Grande, showed symptoms of bacterial speck after 7 days. Plants inoculated with DC3000 strain showed symptoms only in cv. San Pedro, whereas control plants remained asymptomatic. Strains were re-isolated from symptomatic plants and identified by gene sequence analyses as Pseudomonas syryngae pv. tomato. This is the first report of Pseudomonas syryngae pv. tomato race 1 in Chile. Race 1 was previously reported in Canada (Lawton and MacNeill. 1986), in Italy (Buonaurio et al. 1996), in California (Arredondo and Davis 2000), in Portugal (Cruz et al. 2010), and in other states in the USA and countries in South America, Europe, Africa, and Australia, becoming the most commonly isolated race today (Cai et al 2011). These results will be the base for future studies of epidemiology, characterization, and virulence in order to explain the outbreak of this disease and the severity of symptoms observed.

15.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768971

RESUMO

The intrinsic defense mechanisms of plants toward pathogenic bacteria have been widely investigated for years and are still at the center of interest in plant biosciences research. This study investigated the role of the AtbZIP62 gene encoding a transcription factor (TF) in the basal defense and systemic acquired resistance in Arabidopsis using the reverse genetics approach. To achieve that, the atbzip62 mutant line (lacking the AtbZIP62 gene) was challenged with Pseudomonas syringae pv. tomato (Pst DC3000) inoculated by infiltration into Arabidopsis leaves at the rosette stage. The results indicated that atbzip62 plants showed an enhanced resistance phenotype toward Pst DC3000 vir over time compared to Col-0 and the susceptible disease controls, atgsnor1-3 and atsid2. In addition, the transcript accumulation of pathogenesis-related genes, AtPR1 and AtPR2, increased significantly in atbzip62 over time (0-72 h post-inoculation, hpi) compared to that of atgsnor1-3 and atsid2 (susceptible lines), with AtPR1 prevailing over AtPR2. When coupled with the recorded pathogen growth (expressed as a colony-forming unit, CFU mL-1), the induction of PR genes, associated with the salicylic acid (SA) defense signaling, in part explained the observed enhanced resistance of atbzip62 mutant plants in response to Pst DC3000 vir. Furthermore, when Pst DC3000 avrB was inoculated, the expression of AtPR1 was upregulated in the systemic leaves of Col-0, while that of AtPR2 remained at a basal level in Col-0. Moreover, the expression of AtAZI (a systemic acquired resistance -related) gene was significantly upregulated at all time points (0-24 h post-inoculation, hpi) in atbzip62 compared to Col-0 and atgsnor1-3 and atsid2. Under the same conditions, AtG3DPH exhibited a high transcript accumulation level 48 hpi in the atbzip62 background. Therefore, all data put together suggest that AtPR1 and AtPR2 coupled with AtAZI and AtG3DPH, with AtAZI prevailing over AtG3DPH, would contribute to the recorded enhanced resistance phenotype of the atbzip62 mutant line against Pst DC3000. Thus, the AtbZIP62 TF is proposed as a negative regulator of basal defense and systemic acquired resistance in plants under Pst DC3000 infection.


Assuntos
Arabidopsis/genética , Arabidopsis/microbiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Pseudomonas syringae/patogenicidade , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas , Fenótipo , Plantas Geneticamente Modificadas , Mapas de Interação de Proteínas/genética , Genética Reversa
16.
Plant Cell Physiol ; 61(8): 1507-1516, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32467981

RESUMO

In Arabidopsis thaliana, a mitogen-activated protein kinase pathway, MEKK1-MKK1/MKK2-MPK4, is important for basal resistance and disruption of this pathway results in dwarf, autoimmune phenotypes. To elucidate the complex mechanisms activated by the disruption of this pathway, we have previously developed a mutant screening system based on a dwarf autoimmune line that overexpressed the N-terminal regulatory domain of MEKK1. Here, we report that the second group of mutants, smn2, had defects in the SMN2 gene, encoding a DEAD-box RNA helicase. SMN2 is identical to HEN2, whose function is vital for the nuclear RNA exosome because it provides non-ribosomal RNA specificity for RNA turnover, RNA quality control and RNA processing. Aberrant SMN1/RPS6 transcripts were detected in smn2 and hen2 mutants. Disease resistance against Pseudomonas syringae pv. tomato DC3000 (hopA1), which is conferred by SMN1/RPS6, was decreased in smn2 mutants, suggesting a functional connection between SMN1/RPS6 and SMN2/HEN2. We produced double mutants mekk1smn2 and mpk4smn2 to determine whether the smn2 mutations suppress the dwarf, autoimmune phenotypes of the mekk1 and mpk4 mutants, as the smn1 mutations do. As expected, the mekk1 and mpk4 phenotypes were suppressed by the smn2 mutations. These results suggested that SMN2 is involved in the proper function of SMN1/RPS6. The Gene Ontology enrichment analysis using RNA-seq data showed that defense genes were downregulated in smn2, suggesting a positive contribution of SMN2 to the genome-wide expression of defense genes. In conclusion, this study provides novel insight into plant immunity via SMN2/HEN2, an essential component of the nuclear RNA exosome.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , RNA Helicases DEAD-box/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/fisiologia , Estudo de Associação Genômica Ampla
17.
J Exp Bot ; 71(20): 6684-6696, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32865553

RESUMO

Copper is essential for many metabolic processes but must be sequestrated by copper chaperones. It is well known that plant copper chaperones regulate various physiological processes. However, the functions of copper chaperones in the plant nucleus remain largely unknown. Here, we identified a putative copper chaperone induced by pathogens (CCP) in Arabidopsis thaliana. CCP harbors a classical MXCXXC copper-binding site (CBS) at its N-terminus and a nuclear localization signal (NLS) at its C-terminus. CCP mainly formed nuclear speckles in the plant nucleus, which requires the NLS and CBS domains. Overexpression of CCP induced PR1 expression and enhanced resistance against Pseudomonas syringae pv. tomato DC3000 compared with Col-0 plants. Conversely, two CRISPR/Cas9-mediated ccp mutants were impaired in plant immunity. Further biochemical analyses revealed that CCP interacted with the transcription factor TGA2 in vivo and in vitro. Moreover, CCP recruits TGA2 to the PR1 promoter sequences in vivo, which induces defense gene expression and plant immunity. Collectively, our results have identified a putative nuclear copper chaperone required for plant immunity and provided evidence for a potential function of copper in the salicylic pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cobre , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Imunidade Vegetal , Pseudomonas syringae/metabolismo , Ácido Salicílico
18.
Plant Dis ; 104(8): 2225-2232, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32452750

RESUMO

Pseudomonas syringae pv. tomato is a seedborne pathogen that causes bacterial speck disease in tomato. P. syringae pv. tomato is typically detected in tomato seed using quantitative real-time PCR (qPCR) but the inability of qPCR to distinguish between viable and nonviable cells might lead to an overestimation of viable P. syringae pv. tomato cells. In the present study, a strategy involving a propidium monoazide (PMA) pretreatment followed by a qPCR (PMA-qPCR) assay was developed for quantifying viable P. syringae pv. tomato cells in contaminated tomato seed. PMA could selectively bind to the chromosomal DNA of dead bacterial cells and, therefore, block DNA amplification of qPCR. The primer pair Pst3F/Pst3R was designed based on gene hrpZ to specifically amplify and quantify P. syringae pv. tomato by qPCR. The PMA pretreatment protocol was optimized for selectively detecting viable P. syringae pv. tomato cells, and the optimal PMA concentration and light exposure time were 10 µmol liter-1 and 10 min, respectively. In the sensitivity test, the detection limit of PMA-qPCR for detecting viable cells in bacterial suspension and artificially contaminated tomato seed was 102 CFU ml-1 and 11.86 CFU g-1, respectively. For naturally contaminated tomato seed, viable P. syringae pv. tomato cells were quantified in 6 of the 19 samples, with infestation levels of approximately 102 to 104 CFU g-1. The results indicated that the PMA-qPCR assay is a suitable tool for quantifying viable P. syringae pv. tomato cells in tomato seed, which could be useful for avoiding the potential risks of primary inoculum sources from contaminated seed.


Assuntos
Solanum lycopersicum , Azidas , Propídio/análogos & derivados , Pseudomonas syringae , Reação em Cadeia da Polimerase em Tempo Real , Sementes
19.
Plant Cell Physiol ; 60(4): 778-787, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590768

RESUMO

Mitogen-activated protein kinase (MAPK) pathways have a pivotal role in innate immunity signaling in plants. In Arabidopsis, the MAPK pathway that consists of MEKK1, MKK1/MKK2 and MPK4 is involved in pattern-triggered immunity signaling upstream of defense gene expression. This pathway is partly guarded by SUMM2, a nucleotide-binding domain leucine-rich repeat (NLR) protein, which is activated by disruption of the MAPK pathway. To identify other components required for the guard mechanism, here we developed a new mutant screening system utilizing a dwarf autoimmune line that overexpressed the N-terminal regulatory domain of MEKK1. Mutants with suppression of the dwarf, autoimmune phenotypes were identified, and one locus responsible for the phenotype was designated as suppressor of MEKK1N overexpression-induced dwarf 1 (SMN1). MutMap analysis revealed that SMN1 encodes the Toll/Interleukin-1 receptor (TIR)-class NLR protein RPS6, a previously identified resistant protein against bacterial pathogen Pseudomonas syringae pv. tomato expressing the HopA1 effector. Importantly, mutations in SMN1/RPS6 also partially suppressed the dwarf, autoimmune phenotypes of mekk1 and mpk4 plants. Our results suggest that the two structurally distinct NLR proteins, SMN1/RPS6 and SUMM2, monitor integrity of the MEKK1-MKK1/MKK2-MPK4 pathway.


Assuntos
Autoimunidade/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Autoimunidade/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas NLR/genética , Proteínas NLR/metabolismo , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Proteínas Serina-Treonina Quinases/genética , Pseudomonas syringae/patogenicidade , Transdução de Sinais
20.
Plant J ; 89(2): 250-263, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27618493

RESUMO

Plant cell walls undergo dynamic structural and chemical changes during plant development and growth. Floral organ abscission and lateral root emergence are both accompanied by cell-wall remodeling, which involves the INFLORESCENCE DEFICIENT IN ABSCISSION (IDA)-derived peptide and its receptors, HAESA (HAE) and HAESA-LIKE2 (HSL2). Plant cell walls also act as barriers against pathogenic invaders. Thus, the cell-wall remodeling during plant development could have an influence on plant resistance to phytopathogens. Here, we identified IDA-like 6 (IDL6), a gene that is prominently expressed in Arabidopsis leaves. IDL6 expression in Arabidopsis leaves is significantly upregulated when the plant is suffering from attacks of the bacterial Pseudomonas syringae pv. tomato (Pst) DC3000. IDL6 overexpression and knockdown lines respectively decrease and increase the Arabidopsis resistance to Pst DC3000, indicating that the gene promotes the Arabidopsis susceptibility to Pst DC3000. Moreover, IDL6 promotes the expression of a polygalacturonase (PG) gene, ADPG2, and increases PG activity in Arabidopsis leaves, which in turn reduces leaf pectin content and leaf robustness. ADPG2 overexpression restrains Arabidopsis resistance to Pst DC3000, whereas ADPG2 loss-of-function mutants increase the resistance to the bacterium. Pst DC3000 infection elevates the ADPG2 expression partially through HAE and HSL2. Taken together, our results suggest that IDL6-HAE/HSL2 facilitates the ingress of Pst DC3000 by promoting pectin degradation in Arabidopsis leaves, and Pst DC3000 might enhance its infection by manipulating the IDL6-HAE/HSL2-ADPG2 signaling pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Pectinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Pseudomonas syringae/patogenicidade , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Folhas de Planta/genética , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Poligalacturonase/genética , Poligalacturonase/metabolismo , Proteínas Serina-Treonina Quinases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa