Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(3): e2311245121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194448

RESUMO

Psychoactive mushrooms in the genus Psilocybe have immense cultural value and have been used for centuries in Mesoamerica. Despite the recent surge of interest in these mushrooms due to the psychotherapeutic potential of their natural alkaloid psilocybin, their phylogeny and taxonomy remain substantially incomplete. Moreover, the recent elucidation of the psilocybin biosynthetic gene cluster is known for only five of ~165 species of Psilocybe, four of which belong to only one of two major clades. We set out to improve the phylogeny of Psilocybe using shotgun sequencing of fungarium specimens, from which we obtained 71 metagenomes including from 23 types, and conducting phylogenomic analysis of 2,983 single-copy gene families to generate a fully supported phylogeny. Molecular clock analysis suggests the stem lineage of Psilocybe arose ~67 mya and diversified ~56 mya. We also show that psilocybin biosynthesis first arose in Psilocybe, with 4 to 5 possible horizontal transfers to other mushrooms between 40 and 9 mya. Moreover, predicted orthologs of the psilocybin biosynthetic genes revealed two distinct gene orders within the biosynthetic gene cluster that corresponds to a deep split within the genus, possibly a signature of two independent acquisitions of the cluster within Psilocybe.


Assuntos
Agaricales , Psilocybe , Psilocybe/genética , Agaricales/genética , Filogenia , Psilocibina/genética , Família Multigênica/genética
2.
Chembiochem ; 24(21): e202300511, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37614035

RESUMO

Psilocybe "magic mushrooms" are chemically well understood for their psychotropic tryptamines. However, the diversity of their other specialized metabolites, in particular terpenoids, has largely remained an open question. Yet, knowledge on the natural product background is critical to understand if other compounds modulate the psychotropic pharmacological effects. CubA, the single clade II sesquiterpene synthase of P. cubensis, was heterologously produced in Escherichia coli and characterized in vitro, complemented by in vivo product formation assays in Aspergillus niger as a heterologous host. Extensive GC-MS analyses proved a function as multi-product synthase and, depending on the reaction conditions, cubebol, ß-copaene, δ-cadinene, and germacrene D were detected as the major products of CubA. In addition, mature P. cubensis carpophores were analysed chromatographically which led to the detection of ß-copaene and δ-cadinene. Enzymes closely related to CubA are encoded in the genomes of various Psilocybe species. Therefore, our results provide insight into the metabolic capacity of the entire genus.


Assuntos
Alquil e Aril Transferases , Psilocybe , Sesquiterpenos , Psilocybe/metabolismo , Sesquiterpenos/química , Alquil e Aril Transferases/genética
3.
Appl Environ Microbiol ; 88(24): e0149822, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36445079

RESUMO

The mushroom genus Psilocybe is best known as the core group of psychoactive mushrooms, yet basic information on their diversity, taxonomy, chemistry, and general biology is still largely lacking. In this study, we reexamined 94 Psilocybe fungarium specimens, representing 18 species, by DNA barcoding, evaluated the stability of psilocybin, psilocin, and their related tryptamine alkaloids in 25 specimens across the most commonly vouchered species (Psilocybe cubensis, Psilocybe cyanescens, and Psilocybe semilanceata), and explored the metabolome of cultivated P. cubensis. Our data show that, apart from a few well-known species, the taxonomic accuracy of specimen determinations is largely unreliable, even at the genus level. A substantial quantity of poor-quality and mislabeled sequence data in public repositories, as well as a paucity of sequences derived from types, further exacerbates the problem. Our data also support taxon- and time-dependent decay of psilocybin and psilocin, with some specimens having no detectable quantities of them. We also show that the P. cubensis metabolome possibly contains thousands of uncharacterized compounds, at least some of which may be bioactive. Taken together, our study undermines commonly held assumptions about the accuracy of names and presence of controlled substances in fungarium specimens identified as Psilocybe spp. and reveals that our understanding of the chemical diversity of these mushrooms is largely incomplete. These results have broader implications for regulatory policies pertaining to the storage and sharing of fungarium specimens as well as the use of psychoactive mushrooms for recreation and therapy. IMPORTANCE The therapeutic use of psilocybin, the active ingredient in "magic mushrooms," is revolutionizing mental health care for a number of conditions, including depression, posttraumatic stress disorder (PTSD), and end-of-life care. This has spotlighted the current state of knowledge of psilocybin, including the organisms that endogenously produce it. However, because of international regulation of psilocybin as a controlled substance (often included on the same list as cocaine and heroin), basic research has lagged far behind. Our study highlights how the poor state of knowledge of even the most fundamental scientific information can impact the use of psilocybin-containing mushrooms for recreational or therapeutic applications and undermines critical assumptions that underpin their regulation by legal authorities. Our study shows that currently available chemical studies are mainly inaccurate, irreproducible, and inconsistent, that there exists a high rate of misidentification in museum collections and public databases rendering even names unreliable, and that the concentration of psilocybin and its tryptamine derivatives in three of the most commonly collected Psilocybe species (P. cubensis, P. cyanescens, and P. semilanceata) is highly variable and unstable in museum specimens spanning multiple decades, and our study generates the first-ever insight into the highly complex and largely uncharacterized metabolomic profile for the most commonly cultivated magic mushroom, P. cubensis.


Assuntos
Agaricales , Psilocybe , Psilocibina/análise , Psilocibina/metabolismo , Agaricales/genética , Agaricales/metabolismo , Psilocybe/genética , Triptaminas/metabolismo , DNA/metabolismo
4.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430546

RESUMO

Since not only psilocybin (PSB) but also PSB-containing mushrooms are used for psychedelic therapy and microdosing, it is necessary to know their concentration variability in wild-grown mushrooms. This article aimed to determine the PSB, psilocin (PS), baeocystin (BA), norbaeocystin (NB), and aeruginascin (AE) concentrations in a large sample set of mushrooms belonging to genera previously reported to contain psychotropic tryptamines. Ultra-high performance liquid chromatography coupled with tandem mass spectrometry was used to quantify tryptamine alkaloids in the mushroom samples. Most mushroom collections were documented by fungarium specimens and/or ITS rDNA/LSU/EF1-α sequencing. Concentrations of five tryptamine alkaloids were determined in a large sample set of 226 fruiting bodies of 82 individual collections from seven mushroom genera. For many mushroom species, concentrations of BA, NB, and AE are reported for the first time. The highest PSB/PS concentrations were found in Psilocybe species, but no tryptamines were detected in the P. fuscofulva and P. fimetaria collections. The tryptamine concentrations in mushrooms are extremely variable, representing a problem for mushroom consumers due to the apparent risk of overdose. The varied cocktail of tryptamines in wild mushrooms could influence the medicinal effect compared to therapy with chemically pure PSB, posing a serious problem for data interpretation.


Assuntos
Agaricales , Alcaloides , Agaricales/genética , Agaricales/química , Triptaminas , Alcaloides/análise
5.
Metab Eng ; 60: 25-36, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32224264

RESUMO

Psilocybin is a tryptamine-derived psychoactive alkaloid found mainly in the fungal genus Psilocybe, among others, and is the active ingredient in so-called "magic mushrooms". Although its notoriety originates from its psychotropic properties and popular use as a recreational drug, clinical trials have recently recognized psilocybin as a promising candidate for the treatment of various psychological and neurological afflictions. In this work, we demonstrate the de novo biosynthetic production of psilocybin and related tryptamine derivatives in Saccharomyces cerevisiae by expression of a heterologous biosynthesis pathway sourced from Psilocybe cubensis. Additionally, we achieve improved product titers by supplementing the pathway with a novel cytochrome P450 reductase from P. cubensis. Further rational engineering resulted in a final production strain producing 627 ± 140 mg/L of psilocybin and 580 ± 276 mg/L of the dephosphorylated degradation product psilocin in triplicate controlled fed-batch fermentations in minimal synthetic media. Pathway intermediates baeocystin, nor norbaeocystin as well the dephosphorylated baeocystin degradation product norpsilocin were also detected in strains engineered for psilocybin production. We also demonstrate the biosynthetic production of natural tryptamine derivative aeruginascin as well as the production of a new-to-nature tryptamine derivative N-acetyl-4-hydroxytryptamine. These results lay the foundation for the biotechnological production of psilocybin in a controlled environment for pharmaceutical applications, and provide a starting point for the biosynthetic production of other tryptamine derivatives of therapeutic relevance.


Assuntos
Engenharia Metabólica/métodos , Psilocibina/análogos & derivados , Psilocibina/biossíntese , Saccharomyces cerevisiae/metabolismo , Triptaminas/biossíntese , Escherichia coli/metabolismo , Fermentação , NADPH-Ferri-Hemoproteína Redutase/biossíntese , NADPH-Ferri-Hemoproteína Redutase/genética , Psilocybe/genética , Psilocybe/metabolismo , Psilocibina/metabolismo , Triptofano/metabolismo
6.
Microb Pathog ; 143: 104138, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32173495

RESUMO

Mushrooms have an important role in sustainability since they have long been used as valuable food source and traditional medicine around the world. Regrettably, they are among the most rigorously affected populations, along with several plants and animals, due to the destructive activities of mankind. Thus the authentication and conservation of mushroom species are constantly needed to exploit the remarkable potential in them. In this perspective, an attempt has been made to identify and assess the biological attributes of psychedelic mushrooms collected from Kodaikanal, Tamil Nadu, India. The macromorphological features of the psychedelic mushroom DPT1 helped its presumptive identification and the molecular characters depicted by DNA marker revealed its close relationship with the genus Psilocybe. Accordingly, the psychedelic mushroom was identified as Psilocybe cubensis DPT1 and its crude ethyl acetate extract on analysis revealed the occurrence of phytoconstituents like alkaloids, flavonoids, tannins, saponins and carbohydrates. Moreover, it exhibited 80% larvicidal activity against Culex quinquefasciatus mosquito at 800 ppm concentration and an array of antibacterial effects with utmost susceptibility of Proteus vulgaris, and the identification of bioactive compounds by different analytical techniques substantiate that the bioactivities might be due to the presence of phytochemicals. The results of the study indicated that the extract of P. cubensis DPT1 having notable antibacterial and mosquito larvicidal efficacies which could be probed further for the isolation of medicinally important as well as bio-control compounds.


Assuntos
Antibacterianos/farmacologia , Culex , Inseticidas/farmacologia , Psilocybe/química , Animais , DNA Fúngico/genética , Cromatografia Gasosa-Espectrometria de Massas , Larva , Testes de Sensibilidade Microbiana , Filogenia , Proteus vulgaris/efeitos dos fármacos , Psilocybe/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
7.
Sci Justice ; 59(1): 102-108, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30654963

RESUMO

In nature, there are >200 species of fungi with hallucinogenic properties. These fungi are classified as Psilocybe, Gymnopilus, and Panaeolus which contain active principles with hallucinogenic properties such as ibotenic acid, psilocybin, psilocin, or baeocystin. In Chile, fungi seizures are mainly of mature specimens or spores. However, clandestine laboratories have been found that process fungus samples at the mycelium stage. In this transient stage of growth (mycelium), traditional taxonomic identification is not feasible, making it necessary to develop a new method of study. Currently, DNA analysis is the only reliable method that can be used as an identification tool for the purposes of supporting evidence, due to the high variability of DNA between species. One way to identify the species of a distinctive DNA fragment is to study PCR products analyzed by real time PCR and sequencing. One of the most popular sequencing methods of forensic interest at the generic and intra-generic levels in plants is internal transcribed spacer (ITS). With real time PCR it is possible to distinguish PCR products by differential analysis of their melting temperature (Tm) curves. This paper describes morphological, chemical, and genetic analysis of mycelia of psychedelic fungi collected from a clandestine laboratory. The fungus species were identified using scanning electron microscopy (SEM), mass spectrometry, HRM analysis, and ITS sequencing. The sporological studies showed a generally smooth surface and oval shape, with maximum length 10.1 µm and width 6.4 µm. The alkaloid Psilocyn was identified by mass spectrometry, while HRM analysis and ITS sequencing identified the species as Psilocybe cubensis. A genetic match was confirmed between the HRM curves obtained from the mycelia (evidence) and biological tissue extracted from the fruiting bodies. Mycelia recovered from the evidence and fruiting bodies (control) were genetically indistinguishable.


Assuntos
Alucinógenos/análise , Micélio/genética , Psilocybe/classificação , Psilocibina/análogos & derivados , Chile , DNA Fúngico/análise , Tráfico de Drogas , Genética Forense , Cromatografia Gasosa-Espectrometria de Massas , Microscopia Eletrônica de Varredura , Psilocibina/análise , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Análise de Sequência de RNA , Esporos/genética
8.
J Asian Nat Prod Res ; 19(4): 333-338, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27400271

RESUMO

Chemical investigation on the cultures of the fungus Psilocybe merdaria resulted in the first isolation of 10 compounds including two new ones 11,14-dihydroxylneoechinulin E (1) and (S)-4-(4-methylpent-3-en-1-yl)-butyrolactone (2). Their structures were elucidated from the analysis of 1D and 2D NMR and MS data. Among them, compound 7 showed inhibitory activity against AChE with 20% percentage at a concentration of 50 µg/ml.


Assuntos
4-Butirolactona/análogos & derivados , Inibidores da Colinesterase/isolamento & purificação , Alcaloides Indólicos/química , Psilocybe/química , 4-Butirolactona/química , 4-Butirolactona/isolamento & purificação , 4-Butirolactona/farmacologia , Acetilcolinesterase/efeitos dos fármacos , China , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Fungos/metabolismo , Alcaloides Indólicos/isolamento & purificação , Alcaloides Indólicos/farmacologia , Concentração Inibidora 50 , Estrutura Molecular
9.
Neurologia ; 30(1): 42-9, 2015.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-21893367

RESUMO

INTRODUCTION: The American continent is very rich in psychoactive plants and fungi, and many pre-Columbian Mesoamerican cultures used them for magical, therapeutic and religious purposes. OBJECTIVES: The archaeological, ethno-historical and ethnographic evidence of the use of hallucinogenic substances in Mesoamerica is reviewed. RESULTS: Hallucinogenic cactus, plants and mushrooms were used to induce altered states of consciousness in healing rituals and religious ceremonies. The Maya drank balché (a mixture of honey and extracts of Lonchocarpus) in group ceremonies to achieve intoxication. Ritual enemas and other psychoactive substances were also used to induce states of trance. Olmec, Zapotec, Maya and Aztec used peyote, hallucinogenic mushrooms (teonanacatl: Psilocybe spp) and the seeds of ololiuhqui (Turbina corymbosa), that contain mescaline, psilocybin and lysergic acid amide, respectively. The skin of the toad Bufo spp contains bufotoxins with hallucinogenic properties, and was used since the Olmec period. Jimson weed (Datura stramonium), wild tobacco (Nicotiana rustica), water lily (Nymphaea ampla) and Salvia divinorum were used for their psychoactive effects. Mushroom stones dating from 3000 BC have been found in ritual contexts in Mesoamerica. Archaeological evidence of peyote use dates back to over 5000 years. Several chroniclers, mainly Fray Bernardino de Sahagún, described their effects in the sixteenth century. CONCLUSIONS: The use of psychoactive substances was common in pre-Columbian Mesoamerican societies. Today, local shamans and healers still use them in ritual ceremonies in Mesoamerica.


Assuntos
Comportamento Ritualístico , Alucinógenos/história , Religião/história , Arte/história , Fungos/classificação , Fungos/metabolismo , Alucinógenos/administração & dosagem , Alucinógenos/efeitos adversos , História Antiga , História Medieval , Humanos , México , Plantas Medicinais/efeitos adversos , Plantas Medicinais/classificação , Religião e Medicina
10.
Mycologia ; 116(5): 821-834, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38953774

RESUMO

Two new Psilocybe species (Hymenogastraceae), P. ingeli and P. maluti, are described from southern Africa. Morphology and phylogeny were used to separate the two novel fungi from their closest relatives in the genus. Psilocybe ingeli was found fruiting on bovine manure-enriched grasslands in the Kwa-Zulu Natal Province of South Africa and differs from its closest relative P. keralensis and others in the internal transcribed spacer ITS1-5.8S-ITS2, partial 28S nuc rDNA, and translation elongation factor 1-alpha regions, distribution, and having larger basidiospores. Similarly, P. maluti was collected from the Free State Province of South Africa and observed in the Kingdom of Lesotho, growing on bovine manure. A secotioid pileus, geographic distribution, and differences in the same DNA regions distinguish P. maluti from its closest relative P. chuxiongensis. Furthermore, the spore dispersal and traditional, spiritualistic use of P. maluti are discussed here.


Assuntos
DNA Fúngico , DNA Espaçador Ribossômico , Filogenia , Psilocybe , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Animais , África do Sul , Psilocybe/genética , Bovinos , Análise de Sequência de DNA , DNA Ribossômico/genética , Esporos Fúngicos , África Austral , Esterco/microbiologia , RNA Ribossômico 28S/genética , Fator 1 de Elongação de Peptídeos/genética , Carpóforos , RNA Ribossômico 5,8S/genética , Agaricales/classificação , Agaricales/genética , Agaricales/isolamento & purificação
11.
J Psychoactive Drugs ; : 1-13, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39257234

RESUMO

Psilocybin, a major indole alkaloid found in magic mushrooms (Psilocybe cubensis), has recently drawn attention as a breakthrough therapy to treat major depressive disorder. This review aimed to summarize and identify knowledge gaps concerning their pharmacokinetic characteristics of psilocybin and its active metabolite, psilocin. Original studies related to pharmacokinetics of psilocybin conducted in vitro, animals, and humans were systematically collected from PubMed, Scopus, and ScienceDirect, from their inceptions to November 2023. Twenty articles were included in this work and assessed for study quality. A comprehensive review of the pharmacokinetics of psilocybin and psilocin in both animals and humans was performed. Psilocybin is considered a prodrug that is dephosphorylated to psilocin by alkaline phosphatase. Following ingestion, the peak psilocin plasma and brain levels were rapidly achieved in a dose-dependent manner. Psilocin is metabolized primarily through both Phase I and Phase II processes with the half-life of 2-3 hours. This review also identified lack of some pharmacokinetic related information and limitations of available research that may help direct future investigations to better understand the pharmacokinetics and improve study design including dose selection and dosage optimization.

12.
Fungal Biol ; 128(1): 1590-1595, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38341264

RESUMO

Psychedelic fungi have experienced a surge in interest in recent years. Most notably, the fungal secondary metabolite psilocybin has shown tremendous promise in the treatment of various psychiatric disorders. The mushroom species that produce this molecule are poorly understood. Here we sought to examine for the first time, the response of a psilocybin-producing species Psilocybe cubensis to casing (peat moss and vermiculite) and supplementation with gypsum (calcium sulfate dihydrate), two common practices in commercial mushroom cultivation. Mycelial samples of genetically authenticated P. cubensis were used to inoculate popcorn grain bags. The fully colonized bags of popcorn grain (0.15 kg) were transferred to bins of 0.85 kg pasteurized horse manure, with or without 1 cm thick layer of casing and/or 5 % gypsum. Our results indicate that the use of a casing layer significantly increases the biological efficiency (161.5 %), by approximately four fold, in comparison to control (40.5 %), albeit with a slight delay (∼2 days) for obtaining fruiting bodies and a somewhat reduced total tryptamine content (0.85 %) as gauged by High Performance Liquid Chromatography measurements. Supplementation with both casing and gypsum, however, appears to promote maximal yields (896.6 g/kg of dried substrate), with a biological efficiency of 89.6 %, while also maintaining high total tryptamine expressions (0.95 %). These findings, revealing methods for maximizing yield of harvest and expressions of psychoactive tryptamines, may prove useful for both home growers and commercial cultivators of this species, and ultimately support the growth of a robust industry with high quality natural products.


Assuntos
Agaricales , Psilocybe , Psilocibina , Humanos , Animais , Cavalos , Psilocibina/análise , Sulfato de Cálcio , Vocalização Animal , Triptaminas , Agaricales/química
13.
J Psychoactive Drugs ; 55(5): 570-580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37594163

RESUMO

The pharmacological treatment of depression consists of taking antidepressant drugs for prolonged periods; its modest therapeutic effect can often be associated with significant adverse effects, while its discontinuation can lead to relapses. Psilocybin is today a novel and breakthrough therapy for major depression. It is a natural alkaloid in Psilocybe mushrooms, which are endemic to Mexico. Research on a larger scale is lacking in various populations, including the Mexican people. This proposal contemplates the experimental design of a preclinical (toxicity and pharmacological evaluation of an extract in mice) and clinical study by including the chemical analysis of a species of Psilocybe cubensis mushroom to characterize its main constituents. The clinical study will consider the safety evaluation by exploring tolerated doses of Psilocybe cubensis by measuring pharmacokinetic parameters after oral administration in healthy adults and an open trial on a sample of patients with major depressive disorder to assess the safety and efficacy of fully characterized Psilocybe cubensis in a two-single doses treatment, (with assisted psychotherapy), compared with the traditional care model at the Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz in Mexico City. This report presents the design of a research project with preclinical and clinical experimental components.


Assuntos
Agaricales , Transtorno Depressivo Maior , Alucinógenos , Psilocybe , Humanos , Animais , Camundongos , Psilocybe/química , Transtorno Depressivo Maior/tratamento farmacológico , Psilocibina , Agaricales/química
14.
Comput Biol Chem ; 104: 107854, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36990027

RESUMO

Nearly all mushrooms of the Psilocybe genus contain the natural product psilocybin, which is a psychoactive alkaloid derived from l-tryptophan. Considering their use in ancient times, as well as their psychedelic properties, these mushrooms have re-emerged with psychotherapeutic potential for treating depression, which has triggered increased pharmaceutical interest. However, the psilocybin biosynthesis pathway was only recently defined and, as such, little exists in the way of structural data. Accordingly, the aim of this study was to structurally characterize this pathway by generating homology models for the four Psilocybe cubensis enzymes involved in psilocybin biosynthesis (PsiD, a decarboxylase; PsiH, a monooxygenase; PsiK, a phosphotransferase; PsiM, a methyltransferase). Following initial model generation and alignment with the identified structural templates, repeated refinement of the models was carried out using secondary structure prediction, geometry evaluation, energy minimization, and molecular dynamics simulations in water. The final models were then evaluated using molecular docking interactions with their substrates, i.e., psilocybin precursors (l-tryptophan, tryptamine, 4-hydroxytryptamine, and norbaeocystin/baeocystin), all of which generated feasible binding modes for the expected biotransformation. Further plausibility of the psilocybin → aeruginascin, 4-hydroxytryptamine → norpsilocin, and tryptamine → N,N-dimethyltryptamine conversions, all mediated by the generated model for PsiM, suggests valid routes of formation for these key secondary metabolites. The structural characterization of these enzymes and their binding modes which emerged from this study can lead to a better understanding of psilocybin synthesis, thereby paving the way for the development of novel substrates and selective inhibitors, as well as improved biotechnological manipulation and production of psilocybin in vitro.


Assuntos
Agaricales , Psilocibina , Psilocibina/química , Psilocibina/metabolismo , Triptofano , Serotonina/metabolismo , Simulação de Acoplamento Molecular , Triptaminas/metabolismo
15.
Biotechnol Adv ; 69: 108247, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37659744

RESUMO

Psychedelic mushrooms containing psilocybin and related tryptamines have long been used for ethnomycological purposes, but emerging evidence points to the potential therapeutic value of these mushrooms to address modern neurological, psychiatric health, and related disorders. As a result, psilocybin containing mushrooms represent a re-emerging frontier for mycological, biochemical, neuroscience, and pharmacology research. This work presents crucial information related to traditional use of psychedelic mushrooms, as well as research trends and knowledge gaps related to their diversity and distribution, technologies for quantification of tryptamines and other tryptophan-derived metabolites, as well as biosynthetic mechanisms for their production within mushrooms. In addition, we explore the current state of knowledge for how psilocybin and related tryptamines are metabolized in humans and their pharmacological effects, including beneficial and hazardous human health implications. Finally, we describe opportunities and challenges for investigating the production of psychedelic mushrooms and metabolic engineering approaches to alter secondary metabolite profiles using biotechnology integrated with machine learning. Ultimately, this critical review of all aspects related to psychedelic mushrooms represents a roadmap for future research efforts that will pave the way to new applications and refined protocols.


Assuntos
Agaricales , Alucinógenos , Humanos , Alucinógenos/uso terapêutico , Alucinógenos/farmacologia , Psilocibina/farmacologia , Psilocibina/uso terapêutico , Agaricales/metabolismo , Triptaminas/metabolismo , Biotecnologia , Biologia
16.
Fungal Biol Biotechnol ; 10(1): 14, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400920

RESUMO

BACKGROUND: The terphenylquinones represent an ecologically remarkable class of basidiomycete natural products as they serve as central precursors of pigments and compounds that impact on microbial consortia by modulating bacterial biofilms and motility. This study addressed the phylogenetic origin of the quinone synthetases that assemble the key terphenylquinones polyporic acid and atromentin. RESULTS: The activity of the Hapalopilus rutilans synthetases HapA1, HapA2 and of Psilocybe cubensis PpaA1 were reconstituted in Aspergilli. Liquid chromatography and mass spectrometry of the culture extracts identified all three enzymes as polyporic acid synthetases. PpaA1 is unique in that it features a C-terminal, yet catalytically inactive dioxygenase domain. Combined with bioinformatics to reconstruct the phylogeny, our results demonstrate that basidiomycete polyporic acid and atromentin synthetases evolved independently, although they share an identical catalytic mechanism and release structurally very closely related products. A targeted amino acid replacement in the substrate binding pocket of the adenylation domains resulted in bifunctional synthetases producing both polyporic acid and atromentin. CONCLUSIONS: Our results imply that quinone synthetases evolved twice independently in basidiomycetes, depending on the aromatic α-keto acid substrate. Furthermore, key amino acid residues for substrate specificity were identified and changed which led to a relaxed substrate profile. Therefore, our work lays the foundation for future targeted enzyme engineering.

17.
Front Fungal Biol ; 4: 1295223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094868

RESUMO

Psilocybe mushrooms, otherwise known as "magic" mushrooms, owe their psychedelic effect to psilocin, a serotonin subtype 2A (5-HT2A) receptor agonist and metabolite of psilocybin, the primary indole alkaloid found in Psilocybe species. Metabolomics is an advanced fingerprinting tool that can be utilized to identify the differences among fungal life stages that may otherwise be unaccounted for. In this study, by using targeted and untargeted (metabolomic) multivariate analysis, we demonstrate that the chemical composition of Psilocybe differs among mycelia, grain mycelia, and fruiting bodies. The preferential accumulation of psilocybin, baeocystin, tryptophan, ergothioneine, and phenylethylamine in fruiting bodies differentiated them from mycelia; however, the levels of alpha-glycerylphosphorylcholine (α-GPC), N-acetylglucosamine, and trimethylglycine were found to be proportionally higher in mycelia than in fruiting bodies based on Pareto-scaled data. Considering the wealth of compounds with therapeutic potential that have been isolated from various fungal genera, it would be pertinent to study the compounds found in Psilocybe mycelia as potential naturally derived therapeutic targets.

18.
Pharmaceuticals (Basel) ; 16(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36678537

RESUMO

Psychedelics are used for various pathologies of the central nervous system and are currently the subject of much research, some of which relates to the compounds contained in various Psilocybe-type hallucinogenic mushrooms. It is difficult, however, to obtain and purify sufficient quantities of these compounds from fungi to carry out biological studies, hence the need to develop simple and efficient synthetic routes. We review here the various syntheses used to obtain these molecules, focusing first on the classic historical syntheses, then the use of more recent metallo-catalyzed couplings and finally the known biocatalytic methods for obtaining these molecules. Other access routes are certainly possible and should be the subject of future research given the therapeutic interest of these compounds.

19.
Forensic Sci Res ; 7(3): 490-497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353314

RESUMO

Hallucinogenic mushroom is a kind of toxic strain containing psychoactive tryptamine substances such as psilocybin, psilocin and ibotenic acid, etc. The mushrooms containing hallucinogenic components are various, widely distributed and lack of standard to define, which made a great challenge to identification. Traditional identification methods, such as morphology and toxicology analysis, showed shortcomings in old or processed samples, while the DNA-based identification of hallucinogenic mushrooms would allow to identify these samples due to the stability of DNA. In this paper, four primer sets are designed to target Psilocybe cubensis DNA for increasing resolution of present identification method, and the target markers include largest subunit of RNA polymerase II (marked as PC-R1), psilocybin-related phosphotransferase gene (marked as PC-PT), glyceraldehyde 3-phosphate dehydrogenase (marked as PC-3) and translation EF1α (marked as PC-EF). Real-time PCR with high-resolution melting (HRM) assay were used for the differentiation of the fragments amplified by these primer sets, which were tested for specificity, reproducibility, sensitivity, mixture analysis and multiplex PCR. It was shown that the melting temperatures of PC-R1, PC-PT, PC-3 and PC-EF of P. cubensis were (87.93 ± 0.12) °C, (82.21 ± 0.14) °C, (79.72 ± 0.12) °C and (80.11 ± 0.19) °C in our kinds of independent experiments. Significant HRM characteristic can be shown with a low concentration of 62.5 pg/µL DNA sample, and P. cubensis could be detected in mixtures with Homo sapiens or Cannabis sativa. In summary, the method of HRM analysis can quickly and specifically distinguish P. cubensis from other species, which could be utilized for forensic science, medical diagnosis and drug trafficking cases. Supplemental data for this article are available online at https://doi.org/10.1080/20961790.2021.1875580.

20.
J Inflamm Res ; 14: 3729-3738, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385833

RESUMO

PURPOSE: During a pathological inflammation, macrophages are activated to produce accumulation of inflammatory mediators such as induced-cyclooxygenase-2 (COX-2), 15-lipoxygenase (15-LOX) and pro-inflammatory cytokines. Pathological inflammation is a significant problem in many chronic diseases. As a result, more research into natural remedies with anti-inflammatory potential is crucial. Since ancient times, psilocybin-containing mushrooms, also known as magic mushrooms, were used for mind healing and also to advance the quality of life. However, not much is known about their anti-inflammatory potential. This study aimed at investigating the anti-inflammatory effects of four psilocybin-containing mushrooms (Panaeolus cyanescens, Psilocybe natalensis, Psilocybe cubensis and Psilocybe cubensis leucistic A+ strain) from genus Panaeolus and Psilocybe for the first time in vitro on 15-LOX activity and also on lipopolysaccharide (LPS)-induced inflammation in human U937 macrophage cells. METHODS: Mushrooms were grown and extracted with boiling hot water. Effects of the four water extracts on 15-LOX activity were determined. Confluent human U937 cells were differentiated with phorbol 12-myristate 13-acetate and treated with the hot-water extracts (25 and 50 µg/mL) 2 hours before being stimulated with 1 µg/mL LPS over 24 hours. Quercetin was used as a positive control. Control cells were differentiated but not LPS-induced nor treated. Tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, and IL-10 concentrations were measured. Levels of COX-2 and mitochondrial activity were also determined. RESULTS: The four water extracts had poor 15-LOX inhibition activity with IC50 > 250 µg/mL. Extracts were safe at the concentration studied and inhibited the LPS-induced production of pro-inflammatory mediators, TNF-α and IL-1ß significantly and lowered IL-6 and COX-2 concentrations in treated human U937 macrophage cells. Water extracts also increased percentage viability of treated cells and levels of anti-inflammatory IL-10 non-significantly. CONCLUSION: The study suggested that the hot-water extracts of the four psilocybin-containing magic mushrooms have potential anti-inflammatory effects executed by down-regulating pro-inflammatory mediators.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa