Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Nano Lett ; 24(4): 1392-1398, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38227481

RESUMO

Nanoparticle sintering has long been a major challenge in developing catalytic systems for use at elevated temperatures. Here we report an in situ electron microscopy study of the extraordinary sinter resistance of a catalytic system comprised of sub-2 nm Pt nanoparticles on a Se-decorated carbon support. When heated to 700 °C, the average size of the Pt nanoparticles only increased from 1.6 to 2.2 nm, while the crystal structure, together with the {111} and {100} facets, of the Pt nanoparticles was well retained. Our electron microscopy analyses suggested that the superior resistance against sintering originated from the Pt-Se interaction. Confirmed by energy-dispersive X-ray elemental mapping and electron energy loss spectra, the Se atoms surrounding the Pt nanoparticles could survive the heating. This work not only offers an understanding of the physics behind the thermal behavior of this catalytic material but also sheds light on the future development of sinter-resistant catalytic systems.

2.
Mikrochim Acta ; 191(8): 464, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007936

RESUMO

Rapid and high-sensitive Salmonella detection in milk is important for preventing foodborne disease eruption. To overcome the influence of the complex ingredients in milk on the sensitive detection of Salmonella, a dual-signal reporter red fluorescence nanosphere (RNs)-Pt was designed by combining RNs and Pt nanoparticles. After being equipped with antibodies, the immune RNs-Pt (IRNs-Pt) provide an ultra-strong fluorescence signal when excited by UV light. With the assistance of the H2O2/TMB system, a visible color change appeared that was attributed to the strong peroxidase-like catalytic activity derived from Pt nanoparticles. The IRNs-Pt in conjunction with immune magnetic beads can realize that Salmonella typhimurium (S. typhi) was captured, labeled, and separated effectively from untreated reduced-fat pure milk samples. Under the optimal experimental conditions, with the assay, as low as 50 CFU S. typhi can be converted to detectable fluorescence and absorbance signals within 2 h, suggesting the feasibility of practical application of the assay. Meanwhile, dual-signal modes of quantitative detection were realized. For fluorescence signal detection (emission at 615 nm), the linear correlation between signal intensity and the concentration of S. typhi was Y = 83C-3321 (R2 = 0.9941), ranging from 103 to 105 CFU/mL, while for colorimetric detection (absorbamce at 450 nm), the relationship between signal intensity and the concentration of S. typhi was Y = 2.9logC-10.2 (R2 = 0.9875), ranging from 5 × 103 to 105 CFU/mL. For suspect food contamination by foodborne pathogens, this dual-mode signal readout assay is promising for achieving the aim of convenient preliminary screening and accurate quantification simultaneously.


Assuntos
Colorimetria , Leite , Salmonella typhimurium , Leite/microbiologia , Leite/química , Salmonella typhimurium/isolamento & purificação , Colorimetria/métodos , Animais , Nanopartículas Metálicas/química , Limite de Detecção , Platina/química , Peróxido de Hidrogênio/química , Fluorescência , Nanosferas/química , Microbiologia de Alimentos/métodos , Contaminação de Alimentos/análise , Espectrometria de Fluorescência/métodos
3.
Mikrochim Acta ; 191(6): 330, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744738

RESUMO

In view of a large number of people infected with Helicobacter pylori (H. pylori) with great harm followed, there is an urgent need to develop a non-invasive, easy-to-operate, and rapid detection method, and to identify effective sterilization strategies. In this study, highly specific nanoprobes with nanozyme activity, Ag@Pt nanoparticles (NPs) with the antibody, were utilized as a novel lateral flow immunoassay (LFIA). The optical label (Ag@Pt NPs) was enhanced by the introduction of the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) and compared with a gold nanoparticles (Au NPs) optical label. Under the optimal condition, Ag@Pt-LFIA and TMB-enhanced Ag@Pt-LFIA for H. pylori were successfully established, two of which were over twofold and 100-fold more sensitive than conventional visual Au NP-based LFIA, respectively. Furthermore, Ag@Pt NPs with the antibody irradiated with NIR laser (808 nm) at a power intensity of 550 mW/cm2 for 5 min exhibited a remarkable antibacterial effect. The nanoprobes could close to bacteria through effective interactions between antibodies and bacteria, thereby benefiting photothermal sterilization. Overall, Ag@Pt NPs provide promising applications in pathogen detection and therapeutic applications.


Assuntos
Ligas , Helicobacter pylori , Nanopartículas Metálicas , Platina , Prata , Helicobacter pylori/efeitos da radiação , Helicobacter pylori/efeitos dos fármacos , Prata/química , Nanopartículas Metálicas/química , Platina/química , Ligas/química , Antibacterianos/farmacologia , Antibacterianos/química , Imunoensaio/métodos , Benzidinas/química , Ouro/química , Humanos , Esterilização/métodos , Limite de Detecção
4.
Mikrochim Acta ; 191(4): 176, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438573

RESUMO

A sensitive electrochemical strategy for carcinoembryonic antigen 15-3 (CA15-3) detection is reported using CTAB-Co-MOFs@AuPt NPs as signal probes. The electrochemical strategy was designed as follows: First, the graphene aerogel@gold nanoparticles (GA@Au NPs) nanocomposites were employed to modify the sensing surface for promoting electron transfer rate and primary antibody (Ab1) immobilization due to GA possesses a large specific surface area, eminent conductivity, and a 3D network structure. Cobalt metal-organic frameworks (CTAB-Co-MOFs) synthesized were then used as a carrier for AuPt NPs and secondary antibody (Ab2) immobilization (notes: labelled-Ab2). With sandwich immunoreaction, the labelled-Ab2 was captured on the surface of the GA@Au NPs nanocomposites. Finally, differential pulse voltammetry (DPV) was employed to register the electrochemical signal of the immunosensor at the potential of - 0.85 V (vs SCE) in phosphate buffer saline (PBS) containing 2.5 mM H2O2. It was verified that the electrochemical reduction signal from Co3+ to Co2+ was recorded. The AuPt NPs could catalyze the reaction of H2O2 oxidizing Co2+ to Co3+, resulting in the amplification of the electrochemical signal. Under the selected conditions, the immunosensor can detect CA15-3 in the range 10 µU/mL to 250 U/mL with a low detection limit of 1.1 µU/mL. In the designed strategy, the CTAB-Co-MOFs were not only employed as carriers for AuPt NPs, but also acted as signal probes. The CTAB-Co-MOFs were investigated including SEM, TEM, XPS, and XRD. The application ability of the immunosensor was evaluated using serum sample, demonstrating the immunosensor can be applied to clinic serum analysis.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Antígeno Carcinoembrionário , Cetrimônio , Ouro , Peróxido de Hidrogênio , Imunoensaio , Anticorpos
5.
Nano Lett ; 23(5): 1858-1864, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36848293

RESUMO

The evolution of Pt nanoparticles in proton-exchanged membrane fuel cells is monitored before and after electrochemical potential cycling, using 2D and 3D identical location aberration-corrected transmission electron microscopy. This work demonstrates that 2D images might be a challenge to interpret due to the 3D nature of the carbon support. Thus, it is critical to combine both 2D and 3D observations to be able to fully understand the mechanisms associated with the durability of Pt catalyst nanoparticles. In particular, this investigation reveals that the mechanism of particle migration followed by coalescence is operative mainly across short distances (<0.5 nm). This work also shows that new Pt particles appear on the carbon support, as the result of Pt dissolution, followed by the formation of clusters, which grow by Ostwald ripening. This mechanism of Ostwald ripening is also responsible for changes in shape and particle growth, which later may result in coalescence.

6.
Nano Lett ; 23(1): 344-352, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36574277

RESUMO

A Pt-nanoparticle-decorated 1T-MoS2 layer is designed as a sacrificial electrocatalyst by carbothermal shock (CTS) treatment to improve the energy efficiency and lifespan of seawater batteries. The phase transition of MoS2 crystals from 2H to metallic 1T─induced by the simple but potent CTS treatment─improves the oxygen-reduction-reaction (ORR) activity in seawater catholyte. In particular, the MoS2-based sacrificial catalyst effectively decreases the overpotential during charging via edge oxidation of MoS2, enhancing the cycling stability of the seawater battery. Furthermore, Pt nanoparticles are deposited onto CTS-MoS2 via an additional CTS treatment. The resulting specimen exhibits a significantly low charge/discharge potential gap of Δ0.39 V, high power density of 6.56 mW cm-2, and remarkable cycling stability up to ∼200 cycles (∼800 h). Thus, the novel strategy reported herein for the preparation of Pt-decorated 1T-MoS2 by CTS treatment could facilitate the development of efficient bifunctional electrocatalysts for fabricating seawater batteries with long service life.

7.
Small ; : e2305333, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857587

RESUMO

The fabrication of a highly selective and ultrasensitive sulfite nanobiosensor based on a layered architectural fabrication aided by the encapsulation of sulfite oxidase (SOx) in Nafion (Naf) matrix on a multiwalled carbon nanotubes-polypyrrole (MWCNTs-PPy) composite decorated with platinum nanoparticles (PtNPs) is described. The MWCNTs are deposited in the inner layer on a Pt electrode during electropolymerization of pyrrole (Py), followed by decoration with a PtNPs layer and subsequent encapsulation of SOx with Naf in the third layer capped with a fourth thin PtNPs layer. Images obtained by field emission scanning electron microscopy (FESEM) reveal that high-density PtNPs are deposited onto the 3D nanostructured inner MWCNTs-PPy layer and the electrochemical behavior is investigated. A large surface area provided by the incorporation of MWCNTs in the composite and decoration with PtNPs enables increased SOx loading, SOx retention, and substantial improvement in sensing performance. The resulting layered PtNPs/SOx-Naf/PtNPs/MWCNTs-PPy nanobiosensor exhibits a fast response time (within 3 s), a linear calibration range of 20 nmm - 6 m with an excellent sensitivity of 71 µA mm-1  cm-2 and a detection limit of 5.4 nm. The nanobiosensor  was effective in discriminating against common interferants and  was successfully applied to sulfite determination in real samples.

8.
Small ; 19(46): e2304076, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37464549

RESUMO

Plasma treatment and reduction are used to synthesize Pt nanoparticles (NPs) on nitrogen-doped carbon nanotubes (p-Pt/p-NCNT) with a low Pt content. In particular, the plasma treatment is used to treat the NCNT to give it with more surface defects, facilitating a better growth of the Pt NPs, while the plasma reduction produces the Pt NPs with a reduced fraction of the surface atoms at the high oxidation states, increasing the catalytic activities of the p-Pt@p-NCNT. Even at the low Pt content (7.8 wt.%), the p-Pt@p-NCNT shows superior catalytic activities and good stabilities for methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR). The density functional theory (DFT) calculations indicate that the defects generated in the plasma treatment can help the growth of the Pt NPs on the NCNTs, leading to the stronger electronic coupling between Pt and NCNT and the increased stability of the catalyst. The plasma reduction can give the Pt NPs with optimized surface oxidation states, decreasing the energy barriers of the rate-determining steps for MOR and ORR. When used as the anode and cathode catalysts for the direct methanol fuel cells (DMFCs), the p-Pt@p-NCNT exhibits a higher maximum power density of 81.9 mW cm-2  at 80 °C and shows good durability.

9.
Small ; 19(33): e2302158, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37162441

RESUMO

This work demonstrates the utilization of short-time Fourier transform (STFT), and continuous wavelet transform (CWT) electrochemical impedance spectroscopy (EIS) for time-resolved analysis of stochastic collision events of platinum nanoparticles (NPs) onto gold ultramicroelectrode (UME). The enhanced electrocatalytic activity is observed in both chronoamperometry (CA) and EIS. CA provides the impact moment and rough estimation of the size of NPs. The quantitative information such as charge transfer resistance (Rct ) relevant to the exchange current density of a single Pt NP is estimated from EIS. The CWT analysis of the phase angle parameter is better for NP collision detection in terms of time resolution compared to the STFT method.

10.
Small ; 19(29): e2205885, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36950754

RESUMO

Platinum is one of the best-performing catalysts for the hydrogen evolution reaction (HER). However, high cost and scarcity severely hinder the large-scale application of Pt electrocatalysts. Constructing highly dispersed ultrasmall Platinum entities is thereby a very effective strategy to increase Pt utilization and mass activities, and reduce costs. Herein, highly dispersed Pt entities composed of a mixture of Pt single atoms, clusters, and nanoparticles are synthesized on mesoporous N-doped carbon nanospheres. The presence of Pt single atoms, clusters, and nanoparticles is demonstrated by combining among others aberration-corrected annular dark-field scanning transmission electron microscopy, X-ray absorption spectroscopy, and electrochemical CO stripping. The best catalyst exhibits excellent geometric and Pt HER mass activity, respectively ≈4 and 26 times higher than that of a commercial Pt/C reference and a Pt catalyst supported on nonporous N-doped carbon nanofibers with similar Pt loadings. Noteworthily, after optimization of the geometrical Pt electrode loading, the best catalyst exhibits ultrahigh Pt and catalyst mass activities (56 ± 3 A mg-1 Pt and 11.7 ± 0.6 A mg-1 Cat at -50 mV vs. reversible hydrogen electrode), which are respectively ≈1.5 and 58 times higher than the highest Pt and catalyst mass activities for Pt single-atom and cluster-based catalysts reported so far.

11.
Chemistry ; 29(56): e202301596, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37497808

RESUMO

Liquid exfoliation can be considered as a viable approach for the scalable production of 2D materials due to its various benefits, although the polydispersity in the obtained nanosheet size hinders their straightforward incorporation. Size-separation can help alleviate these concerns, however a correlation between nanosheet size and property needs to be established to bring about size-specific applicability. Herein, size-selected aqueous nanosheet dispersions have been obtained via centrifugation-based protocols, and their chemical activity in the spontaneous reduction of chloroplatinic acid is investigated. Growth of ultrasmall Pt nanoparticles was achieved on nanosheet surfaces without a need for reducing agents, and stark differences in the nanoparticle coverage were observed as a function of nanosheet size. Defects in the nanosheets were probed via Raman spectroscopy, and correlated to the observed size-activity. Additionally, the effect of reaction temperature during synthesis was investigated. The electrochemical activity of the ultrasmall Pt nanoparticle decorated MoS2 nanosheets was evaluated for the hydrogen evolution reaction, and enhancement in performance was observed with nanosheet size, and nanoparticle decoration density. These findings shine light on the significance of nanosheet size in controlling spontaneous reduction reactions, and provide a deeper insight to intrinsic properties of liquid exfoliated nanosheets.

12.
Anal Bioanal Chem ; 415(4): 649-658, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36443450

RESUMO

High levels of uric acid (UA) in humans can cause a range of diseases, and traditional assays that rely on uric acid enzymes to break down uric acid are limited by the inherent deficiencies of natural enzymes. Fortunately, the rapid development of nanozymes in recent years is expected to solve the above-mentioned problems. Hence, we used a host-guest strategy to synthesize a platinum nanoparticle confined in a metal-organic framework (Pt NPs@ZIF) that can sensitively detect UA levels in human serum. Unlike previously reported free radical-catalyzed oxidation systems, its unique electron transfer mechanism confers excellent peroxidase-like activity to Pt NPs@ZIF. In addition, UA can selectively inhibit the chromogenic reaction of TMB, thus reducing the absorbance of the system. Therefore, using the peroxidase-like activity of Pt NPs@ZIF and using TMB as a chromogenic substrate, UA can be detected directly without relying on natural enzymes. The results showed a relatively wide detection range (10-1000 µM) and a low detection limit (0.2 µM). Satisfactory results were also obtained for UA in human serum. This study with simple operation and rapid detection offers a promising method for efficiently detecting UA in serum.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Humanos , Peroxidase , Ácido Úrico , Platina , Peroxidases , Corantes , Colorimetria/métodos , Peróxido de Hidrogênio
13.
Mikrochim Acta ; 190(4): 114, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36877272

RESUMO

In situ enzymatic generation of bimetallic nanoparticles, mainly Au/Pt, overcomes the drawbacks (continuous absorbance drift, modest LOQ, and long-time reaction) observed when AuNP alone are produced. In this study, Au/Pt nanoparticles have been characterized by EDS, XPS, and HRTEM images using the enzymatic determination of tyramine with tyramine oxidase (TAO) as a model. Under experimental conditions, the Au/Pt NPs show an absorption maximum at 580 nm which can be related to the concentration of tyramine in the range 1.0 × 10-6M to 2.5 × 10-4M with a RSD of 3.4% (n = 5, using 5 × 10-6M tyramine). The Au/Pt system enables low LOQ (1.0 × 10-6 M), high reduction of the absorbance drift, and a significant shortening of the reaction time (i.e., from 30 to 2 min for a [tyramine] = 1 × 10-4M); additionally, a better selectivity is also obtained. The method has been applied to tyramine determination in cured cheese and no significant differences were obtained compared to a reference method (HRP:TMB). The effect of Pt(II) seems to involve the previous reduction of Au(III) to Au(I) and NP generation from this oxidation state. Finally, a three-step (nucleation-growth-aggregation) kinetic model for the generation of NPs is proposed; this has enabled us to obtain a mathematical equation which explains the experimentally observed variation of the absorbance with time.

14.
Small ; 18(32): e2203471, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35843876

RESUMO

MAX phases are frequently dominated as precursors for the preparation of the star material MXene, but less eye-dazzling by their own potential applications. In this work, the electrocatalytic hydrogen evolution reaction (HER) activity of MAX phase is investigated. The MAX-derived electrocatalysts are prepared by a two-step in situ electrosynthesis process, an electrochemical etching step followed by an electrochemical deposition step. First, a Mo2 TiAlC2 MAX phase is electrochemically etched in 0.5 m H2 SO4 electrolyte. Just several hours, electrochemical dealloy etching of Mo2 TiAlC2 MAX powders by applying anode current can acquire a moderated HER performance, outperforming most of reported pure MXene. It is speculated that in situ superficially architecting endogenous MAX/amorphous carbide (MAC) improves its intrinsic catalytic activity. Subsequently, highly active metallic Pt nanoparticles immobilized on MAC (MAC@Pt) shows a transcendental overpotential of 40 mV versus RHE in 0.5 m H2 SO4 and 79 mV in 1.0 m KOH at the current density of 10 mA cm-2 without iR correction. Ultrahigh mass activity of MAC@Pt (1.5 A mgpt -1 ) at 100 mV overpotential is also achieved, 29-folds than those of commercial PtC catalysts.

15.
Environ Res ; 206: 112622, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34958781

RESUMO

The critical environmental issues of antibiotic resistance and renewable energies supply urge researching materials synthesis and catalyst activity on hydrogen production processes. Aiming to analyse the antibacterial effect of platinum-silver (Ag-Pt) nanoparticles (NPs) and the catalyst effect on NaBH4 hydrolysis that can be used for hydrogen generation technology, in this work, Ag-Pt NPs were prepared using aqueous propolis extract. Various methods were used for the characterization (Uv-vis Spectroscopy, Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM) and X-ray diffraction Spectroscopy (XRD)). The antimicrobial activity of Ag-Pt bimetallic nanoparticles was evaluated in vitro by the microdilution method against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae, Staphylococcus epidermidis, and Serratia marcescens. The results confirmed the antimicrobial activity of bimetallic NPs Ag-Pt concentrations of (25, 50, and 100 µg/ml). A concentration of 100 µg/ml showed low bacterial viability varying between 22.58% and 29.67% for the six tested bacteria. For the catalyst activity on NaBH4 hydrolysis, the results showed high turnover factor (TOF) and low activation energy of 1208.57 h-1 and 25.61 kJ/mol, respectively, with high hydrogen yield under low temperature. Synthesized Ag-Pt NPs can have great potential for biological and hydrogen storage applications.


Assuntos
Nanopartículas Metálicas , Própole , Antibacterianos/química , Antibacterianos/farmacologia , Hidrólise , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais , Própole/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
16.
Chemistry ; 27(22): 6706-6712, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33403705

RESUMO

The nanostructural design of heterogeneous catalysts has often been demanded for assessing synergetic effects, which should be developed further by using high-surface-area porous metal oxide supports. However, such opportunities have been undermined by the poor stability of ordered mesoporous structures. Herein, rational design is demonstrated to obtain nanocomposite catalysts showing improved NOx storage properties owing to the presence of Ba species over a well-designed mesoporous alumina (Al2 O3 ) support. It is found that Ba species are impregnated successfully only after the stabilization of the mesoporous structure by full crystallization of Al2 O3 frameworks to the γ-phase, with the formation of Pt nanoparticles coinciding with complete removal of organic components. All the insights during this synthetic procedure are essential for designing high-performance catalysts to purify and recover NOx molecules, and are applied for designing a variety of cutting-edge mesoporous nanocomposite catalysts.

17.
Mikrochim Acta ; 189(1): 13, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34870756

RESUMO

A H2O2-free colorimetric protocol based on urchin-like Au@Pt nanoparticles (Au@Pt NPs) has been developed for the sensitive and selective determination of cysteine (Cys). We verified the intrinsic oxidase-like activity of the Au@Pt NPs. They can act as artificial mimic oxidases to catalyse the oxidization of 3,3',5,5'-tetramethylbenzidine (TMB) with the assistance of dissolved oxygen, avoiding the use of H2O2 in the colorimetric determination of Cys. In addition, the discrimination of Cys from the other two biothiol analogues, homocysteine and glutathione, can be easily realized through a simple ageing process. HNO3 is added to this colorimetric system to terminate the reaction by oxidizing ox-TMB (oxidized form of TMB) to diphenoquinone (DPQ), thus generating a characteristic absorption peak of DPQ at 450 nm. By recording the absorbance at 450 nm, interference from the aggregated Au@Pt NPs (absorption peak at 670 nm) when 650 nm (the characteristic absorption peak of ox-TMB) is used as the absorption wavelength can be eliminated. We investigated this H2O2-free colorimetric protocol and obtained high sensitivity, with a detection limit of 1.5 nM and relatively high selectivity. The analytical performance for real samples was further explored. The Au@Pt NP-based H2O2-free colorimetric protocol is of great significance for the sensitive and selective determination of Cys in practical samples in different scenarios.

18.
Mikrochim Acta ; 188(11): 361, 2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34601637

RESUMO

A Janus cargo has been developed via the combination of magnetic mesoporous silica (MMS) with asymmetric decoration of Pt nanoparticles (PtNPs). Mesoporous morphology of MMS provides plenty of space for loading photosensitizers and targeting agents; the magnetic feature endows the as-formed nanospheres with satisfactory isolation function in removal of low abundant target cells. The excellent catalytic ability of PtNPs can effectively alleviate the hypoxia condition of tumor microenvironment via the decomposition of hydrogen peroxide (H2O2), as well as an O2-drived nanomotor for highly efficient drug release. Using CCRF-CEM as the model target cell, the Janus cargo is demonstrated to possess significantly improved performance in cell capture and photodynamic therapy. Specially, owing to the patchy Pt decoration, the loaded photosensitizers exhibit a more efficient release behavior. More importantly, asymmetric O2-emission from one side of the nanocargo acts as a driving force, which could effectively accelerate the motion ability of cargo in cell media, thus leading to an enhanced therapeutic effect compared with the traditionally symmetric nanocargo. This Janus cargo would offer a new paradigm to design highly efficient drug carrier for gaining an improved photodynamic therapy in hypoxic cancer cells.


Assuntos
Dióxido de Silício
19.
Sensors (Basel) ; 21(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807891

RESUMO

Because the oxides of nitrogen (NOx) cause detrimental effects on not only the environment but humans, developing a high-performance NO2 gas sensor is a crucial issue for real-time monitoring. To this end, metal oxide semiconductors have been employed for sensor materials. Because in general, semiconductor-type gas sensors require a high working temperature, photoactivation has emerged as an alternative method for realizing the sensor working at room temperature. In this regard, titanium dioxide (TiO2) is a promising material for its photocatalytic ability with ultraviolet (UV) photonic energy. However, TiO2-based sensors inevitably encounter a problem of recombination of photogenerated electron-hole pairs, which occurs in a short time. To address this challenge, in this study, TiO2 nanorods (NRs) and Pt nanoparticles (NPs) under a UV-LED were used as an NO2 gas sensor to utilize the Schottky barrier formed at the TiO2-Pt junction, thereby capturing the photoactivated electrons by Pt NPs. The separation between the electron-hole pairs might be further enhanced by plasmonic effects. In addition, it is reported that annealing TiO2 NRs can achieve noteworthy improvements in sensing performance. Elucidation of the performance enhancement is suggested with the investigation of the X-ray diffraction patterns, which implies that the crystallinity was improved by the annealing process.

20.
Angew Chem Int Ed Engl ; 60(49): 25766-25770, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34585481

RESUMO

Platinum (Pt) is the most effective bench-marked catalyst for producing renewable and clean hydrogen energy by electrochemical water splitting. There is demand for high HER catalytic activity to achieve efficient utilization and minimize the loading of Pt in catalysts. In this work, we significantly boost the HER mass activity of Pt nanoparticles in Ptx /Co to 8.3 times higher than that of commercial Pt/C by using Co/NC heterojunctions as a heterogeneous version of electron donors. The highly coupled interfaces between Co/NC and Pt metal enrich the electron density of Pt nanoparticles to facilitate the adsorption of H+ , the dissociation of Pt-H bonds and H2 release, giving the lowest HER overpotential of 6.9 mV vs. RHE at 10 mA cm-2 in acid among reported HER electrocatalysts. Given the easy scale-up synthesis due to the stabilization of ultrafine Pt nanoparticles by Co/NC solid ligands, Ptx /Co can even be a promising substitute for commercial Pt/C for practical applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa