Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256237

RESUMO

R2R3-MYB represents a substantial gene family that plays diverse roles in plant development. In this study, 102 SmR2R3-MYB genes were identified from eggplant fruit and classified into 31 subfamilies. Analysis indicated that segmental duplication events played a pivotal role in the expansion of the SmR2R3-MYB gene family. Furthermore, the prediction of miRNAs targeting SmR2R3-MYB genes revealed that 60 SmR2R3-MYBs are targeted by 57 miRNAs, with specific miRNAs displaying varying numbers of target genes, providing valuable insights into the regulatory functions of miRNAs in plant growth, development, and responses to stress conditions. Through expression profile analysis under various treatment conditions, including low temperature (4 °C), plant hormone (ABA, Abscisic acid), and drought stress (PEG, Polyethylene glycol), diverse and complex regulatory mechanisms governing SmR2R3-MYB gene expression were elucidated. Notably, EGP21875.1 and EGP21874.1 exhibited upregulation in expression under all treatment conditions. Transcriptome and metabolome analyses demonstrated that, apart from anthocyanins (delphinidin-3-O-glucoside, cyanidin-3-O-(6-O-p-coumaroyl)-glucoside, and malvidin-3-O-(6-O-p-coumaroyl)-glucoside), overexpression of SmMYB75 could also elevate the content of various beneficial compounds, such as flavonoids, phenolic acids, and terpenes, in eggplant pulp. This comprehensive study enhances our understanding of SmR2R3-MYB gene functions and provides a strong basis for further research on their roles in regulating anthocyanin synthesis and improving eggplant fruit quality.


Assuntos
MicroRNAs , Solanum melongena , Genes myb , Antocianinas/genética , Solanum melongena/genética , Frutas/genética , Glucosídeos , MicroRNAs/genética
2.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686270

RESUMO

The R2R3-MYB genes in plants play an essential role in the drought-responsive signaling pathway. Plenty of R2R3-MYB S21 and S22 subgroup genes in Arabidopsis have been implicated in dehydration conditions, yet few have been covered in terms of the role of the S21 and S22 subgroup genes in poplar under drought. PdMYB2R089 and PdMYB2R151 genes, respectively belonging to the S21 and S22 subgroups of NL895 (Populus deltoides × P. euramericana cv. 'Nanlin895'), were selected based on the previous expression analysis of poplar R2R3-MYB genes that are responsive to dehydration. The regulatory functions of two target genes in plant responses to drought stress were studied and speculated through the genetic transformation of Arabidopsis thaliana. PdMYB2R089 and PdMYB2R151 could promote the closure of stomata in leaves, lessen the production of malondialdehyde (MDA), enhance the activity of the peroxidase (POD) enzyme, and shorten the life cycle of transgenic plants, in part owing to their similar conserved domains. Moreover, PdMYB2R089 could strengthen root length and lateral root growth. These results suggest that PdMYB2R089 and PdMYB2R151 genes might have the potential to improve drought adaptability in plants. In addition, PdMYB2R151 could significantly improve the seed germination rate of transgenic Arabidopsis, but PdMYB2R089 could not. This finding provides a clue for the subsequent functional dissection of S21 and S22 subgroup genes in poplar that is responsive to drought.


Assuntos
Arabidopsis , Populus , Arabidopsis/genética , Desidratação , Secas , Genes myb , Dissecação , Populus/genética
3.
New Phytol ; 234(3): 827-836, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35122280

RESUMO

Legumes usually have compound inflorescences, where flowers/pods develop from secondary inflorescences (I2), formed laterally at the primary inflorescence (I1). Number of flowers per I2, characteristic of each legume species, has important ecological and evolutionary relevance as it determines diversity in inflorescence architecture; moreover, it is also agronomically important for its potential impact on yield. Nevertheless, the genetic network controlling the number of flowers per I2 is virtually unknown. Chickpea (Cicer arietinum) typically produces one flower per I2 but single flower (sfl) mutants produce two (double-pod phenotype). We isolated the SFL gene by mapping the sfl-d mutation and identifying and characterising a second mutant allele. We analysed the effect of sfl on chickpea inflorescence ontogeny with scanning electron microscopy and studied the expression of SFL and meristem identity genes by RNA in situ hybridisation. We show that SFL corresponds to CaRAX1/2a, which codes a MYB transcription factor specifically expressed in the I2 meristem. Our findings reveal SFL as a central factor controlling chickpea inflorescence architecture, acting in the I2 meristem to regulate the length of the period for which it remains active, and therefore determining the number of floral meristems that it can produce.


Assuntos
Cicer , Inflorescência , Cicer/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Inflorescência/genética , Meristema/genética , Mutação/genética , Fatores de Transcrição/genética
4.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681950

RESUMO

The MYB transcription factor family is one of the largest families in plants, and its members have various biological functions. R2R3-MYB genes are involved in the synthesis of pigments that yield petal colors. Liriodendron plants are widely cultivated as ornamental trees owing to their peculiar leaves, tulip-like flowers, and colorful petals. However, the mechanism underlying petal coloring in this species is unknown, and minimal information about MYB genes in Liriodendron is available. Herein, this study aimed to discern gene(s) involved in petal coloration in Liriodendron via genome-wide identification, HPLC, and RT-qPCR assays. In total, 204 LcMYB superfamily genes were identified in the Liriodendron chinense genome, and 85 R2R3-MYB genes were mapped onto 19 chromosomes. Chromosome 4 contained the most (10) R2R3-MYB genes, and chromosomes 14 and 16 contained the fewest (only one). MEME analysis showed that R2R3-MYB proteins in L. chinense were highly conserved and that their exon-intron structures varied. The HPLC results showed that three major carotenoids were uniformly distributed in the petals of L. chinense, while lycopene and ß-carotene were concentrated in the orange band region in the petals of Liriodendron tulipifera. Furthermore, the expression profiles via RT-qPCR assays revealed that four R2R3-MYB genes were expressed at the highest levels at the S3P/S4P stage in L. tulipifera. This result combined with the HPLC results showed that these four R2R3-MYB genes might participate in carotenoid synthesis in the petals of L. tulipifera. This work laid a cornerstone for further functional characterization of R2R3-MYB genes in Liriodendron plants.


Assuntos
Carotenoides/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes myb , Genoma de Planta , Liriodendron/genética , Proteínas de Plantas/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Liriodendron/crescimento & desenvolvimento , Liriodendron/metabolismo , Filogenia , Pigmentação , Proteínas de Plantas/genética , RNA-Seq , Fatores de Transcrição
5.
Int J Biol Macromol ; 271(Pt 1): 132627, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38797290

RESUMO

Melanins are dark-brown to black-colored biomacromolecules which have been thoroughly studied in animals and microorganisms. However, the biochemical and molecular basis of plant melanins are poorly understood. We first characterized melanin from the black radish (Raphanus sativus var. niger) 'HLB' through spectroscopic techniques. p-Coumaric acid was identified as the main precursor of radish melanin. Moreover, a joint analysis of transcriptome and coexpression network was performed for the two radish accessions with black and white cortexes, 'HLB' and '55'. A set of R2R3-type RsMYBs and enzyme-coding genes exhibited a coexpression pattern, and were strongly correlated with melanin formation in radish. Transient overexpression of two phenol oxidases RsLAC7 (laccase 7) or RsPOD22-1 (peroxidase 22-1) resulted in a deeper brown color around the infiltration sites and a significant increase in the total phenol content. Furthermore, co-injection of the transcriptional activator RsMYB48/RsMYB97 with RsLAC7 and/or RsPOD22-1, markedly increased the yield of black extracts. Spectroscopic analyses revealed that these extracts are similar to the melanin found in 'HLB'. Our findings advance the understanding of structural information and the transcriptional regulatory mechanism underlying melanin formation in radish.


Assuntos
Regulação da Expressão Gênica de Plantas , Melaninas , Monofenol Mono-Oxigenase , Raphanus , Raphanus/genética , Raphanus/metabolismo , Melaninas/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Ácidos Cumáricos/metabolismo
6.
Plants (Basel) ; 12(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36840234

RESUMO

The R2R3-MYB sub-family proteins are composed of most members of MYB (v-Myb avian myeloblastosis viral oncogene homolog) protein, a plant-specific transcription factor (TF) that is classified into four classes depending on the number of MYB repeats. R2R3-MYB TFs are involved in physiological and biochemical processes. However, the functions of the Brassica napus R2R3-MYB genes are still mainly unknown. In this study, 35 Brassica napus MYB (BnaMYB) genes were screened in the genome of Brassica napus, and details about their physical and chemical characteristics, evolutionary relationships, chromosome locations, gene structures, three-dimensional protein structures, cis-acting promoter elements, and gene duplications were uncovered. The BnaMYB genes have undergone segmental duplications and positive selection pressure, according to evolutionary studies. The same subfamilies have similar intron-exon patterns and motifs, according to the genes' structure and conserved motifs. Additionally, through cis-element analysis, many drought-responsive and other stress-responsive cis-elements have been found in the promoter regions of the BnaMYB genes. The expression of the BnaMYB gene displays a variety of tissue-specific patterns. Ten lignin-related genes were chosen for drought treatment. Our research screened four genes that showed significant upregulation under drought stress, and thus may be important drought-responsive genes. The findings lay a new foundation for understanding the complex mechanisms of BnaMYB in multiple developmental stages and pathways related to drought stress in rapeseed.

7.
Gene ; 855: 147124, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36539045

RESUMO

The R2R3-MYB transcription factors are widely involved in the regulation of plant growth, biotic and abiotic stress responses. Meanwhile, seed germination, which is stimulated by internal and external environments, is a critical stage in the plant life cycle. However, the identification, characterization, and expression profiling of the Populus euphratica R2R3-MYB family in drought response during seed germination have been unknown. Our study attempted to identify and characterize the R2R3-MYB genes in P. euphratica (PeR2R3-MYBs) and explore how R2R3-MYBs trigger the drought and abscisic acid (ABA) response mechanism in its seedlings. Based on the analysis of comparative genomics, 174 PeR2R3-MYBs were identified and expanded driven by whole genome duplication or segment duplication events. The analysis of Ka/Ks ratios showed that, in contrast to most PeR2R3-MYBs, the other PeR2R3-MYBs were subjected to positive selection in P. euphratica. Further, the expression data of PeR2R3-MYBs under drought stress and ABA treatment, together with available functional data for Arabidopsis thaliana MYB genes, supported the hypothesis that PeR2R3-MYBs involved in response to drought are dependent or independent on ABA signaling pathway during seed germination, especially PeR2R3-MYBs with MYB binding sites (MBS) cis-element and/or tandem duplication. This study is the first report on the genome-wide analysis of PeR2R3-MYBs, as well as the other two Salicaceae species. The duplication events and differential expressions of PeR2R3-MYBs play important roles in enhancing the adaptation to drought desert environment. Our results provide a reference for prospective functional studies of R2R3-MYBs of poplars and lay the foundation for new breeding strategies to improve the drought tolerance of P. euphratica.


Assuntos
Arabidopsis , Populus , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Populus/genética , Populus/metabolismo , Genes myb , Proteínas de Plantas/metabolismo , Secas , Estudos Prospectivos , Melhoramento Vegetal , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia
8.
Front Plant Sci ; 12: 822198, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35237281

RESUMO

Brown cotton fiber (BCF) is a unique raw material of naturally colored cotton (NCC). But characteristics of the regulatory gene network and metabolic components related to the proanthocyanidins biosynthesis pathway at various stages of its fiber development remain unclear. Here, the dynamic changes in proanthocyanidins biosynthesis components and transcripts in the BCF variety "Zong 1-61" and its white near-isogenic lines (NILs) "RT" were characterized at five fiber developmental stages (0, 5, 10, 15, and 20 days post-anthesis; DPA). Enrichment analysis of differentially expressed genes (DEGs), comparison of metabolome differences, and pathway enrichment analysis of a weighted gene correlation network analysis together revealed the dominant gene expression of flavonoid biosynthesis (FB), phenylpropanoid metabolisms, and some carbohydrate metabolisms at 15 or 20 DPA than white cotton. Eventually, 63 genes were identified from five modules putatively related to FB. Three R2R3-MYB and two bHLH transcription factors were predicted as the core genes. Further, GhANS, GhANR1, and GhUFGT2 were preliminarily regulated by GhMYB46, GhMYB6, and GhMYB3, respectively, according to yeast one-hybrid assays in vitro. Our findings provide an important transcriptional regulatory network of proanthocyanidins biosynthesis pathway and dynamic flavonoid metabolism profiles.

9.
Front Plant Sci ; 12: 702160, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527006

RESUMO

The strawberry (Fragaria × ananassa) is an economically important fruit throughout the world. The large R2R3-MYB gene family participates in a variety of plant functions, including anthocyanin biosynthesis. The present study is the first genome-wide analysis of the MYB gene family in the octoploid strawberry and describes the identification and characterization of the family members using the recently sequenced F. × ananassa genome. Specifically, we aimed to identify the key MYBs involved in petal coloration in the pink-flowered strawberry, which increases its ornamental value. A comprehensive, genome-wide analysis of F. × ananassa R2R3-FaMYBs was performed, investigating gene structures, phylogenic relationships, promoter regions, chromosomal locations, and collinearity. A total of 393 R2R3-FaMYB genes were identified in the F. × ananassa genome and divided into 36 subgroups based on phylogenetic analysis. Most genes with similar functions in the same subgroup exhibited similar exon-intron structures and motif compositions. These R2R3-FaMYBs were unevenly distributed over 28 chromosomes. The expansion of the R2R3-FaMYB gene family in the F. × ananassa genome was found to be caused mainly by segmental duplication. The Ka/Ks analysis indicated that duplicated R2R3-FaMYBs mostly experienced purifying selection and showed limited functional divergence after the duplication events. To elucidate which R2R3-FaMYB genes were associated with anthocyanin biosynthesis in the petals of the pink-flowered strawberry, we compared transcriptional changes in different flower developmental stages using RNA-seq. There were 131 differentially expressed R2R3-FaMYB genes identified in the petals, of which three genes, FaMYB28, FaMYB54, and FaMYB576, appeared likely, based on the phylogenetic analysis, to regulate anthocyanin biosynthesis. The qRT-PCR showed that these three genes were more highly expressed in petals than in other tissues (fruit, leaf, petiole and stolon) and their expressions were higher in red compared to pink and white petals. These results facilitate the clarification on the roles of the R2R3-FaMYB genes in petal coloration in the pink-flowered strawberry. This work provides useful information for further functional analysis on the R2R3-FaMYB gene family in F. × ananassa.

10.
Front Plant Sci ; 12: 633227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897722

RESUMO

Flavonoids, carotenoids, betalains, and chlorophylls are the plant pigments responsible for floral color. Anthocyanins, a class of flavonoids, are largely responsible for the red, purple, pink, and blue colors. R2R3-MYB genes belonging to subgroup 6 (SG6) are the upstream regulatory factors of the anthocyanin biosynthetic pathway. The canonical members of these genes in Arabidopsis include AtMYB75, AtMYB90, AtMYB113, and AtMYB114. The Aristolochiaceae is an angiosperm lineage with diverse floral groundplans and perianth colors. Saruma henryi exhibits a biseriate perianth with green sepals and yellow petals. All other genera have sepals only, with colors ranging from green (in Lactoris) to a plethora of yellow to red and purple mixtures. Here, we isolated and reconstructed the SG6 R2R3-MYB gene lineage evolution in angiosperms with sampling emphasis in Aristolochiaceae. We found numerous species-specific duplications of this gene lineage in core eudicots and local duplications in Aristolochiaceae for Saruma and Asarum. Expression of SG6 R2R3-MYB genes examined in different developmental stages and plant organs of four Aristolochiaceae species, largely overlaps with red and purple pigments, suggesting a role in anthocyanin and flavonoid synthesis and accumulation. A directed RNA-seq analysis corroborated our RT-PCR analyses, by showing that these structural enzymes activate during perianth development in Aristolochia fimbriata and that the regulatory genes are expressed in correlation with color phenotype. Finally, the reconstruction of the flavonoid and anthocyanin metabolic pathways using predicted peptides from transcriptomic data show that all pivotal enzymes are present in the analyzed species. We conclude that the regulatory genes as well as the biosynthetic pathway are largely conserved across angiosperms. In addition, the Aristolochiaceae emerges as a remarkable group to study the genetic regulatory network for floral color, as their members exhibit an outstanding floral diversity with elaborate color patterns and the genetic complement for SG6 R2R3-MYB genes is simpler than in core eudicot model species.

11.
Front Plant Sci ; 9: 738, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30042769

RESUMO

The MYB transcription factor (TF) is one of the largest gene families in plants and involved to multiple biological processes. However, little is known about the MYB family and its functional role in the genome of moso bamboo. In the present study, a total of 114 R2R3MYB genes were first identified from moso bamboo genome and full-length non-chimeric (FLNC) reads. Phylogenetic analysis coupled with gene structure analysis and motif determination resulted in the division of these PheR2R3MYBs into 17 subgroups. The position of eight proteins along an external branch in the phylogenetic tree suggested their relatively ancient origin. The genes in this group were all substituted by (Met, M)/(Arg, R) at conservative W residues in both R2 and R3 repeats, and half were found to possess no transcriptional activation activity. The analysis of evolutionary patterns and divergence suggests that the expansion of PheMYBs was mainly attributable to whole genome duplication (WGD) under different selection pressures. Expressional analysis based on microarray and qRT-PCR data performed diverse expression patterns of R2R3MYBs in response to both various abiotic stimuli and flower development. Furthermore, the co-expression analysis of R2R3MYBs suggested an intricate interplay of growth- and stress-related responses. Finally, we found a hub gene, PheMYB4, was involved in a complex proteins interaction network. Further functional analysis indicated that ectopic overexpression of its homologous gene, PheMYB4-1, could increase tolerance to cold treatment and sensitivity to drought and salt treatment of transgenic Arabidopsis seedlings. These findings provide comprehensive insights into the MYB family members in moso bamboo and offer candidate MYB genes for further studies on their roles in stress resistance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa