Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
EMBO J ; 40(11): e106771, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33909912

RESUMO

Chemical compounds have recently been introduced as alternative and non-integrating inducers of pluripotent stem cell fate. However, chemical reprogramming is hampered by low efficiency and the molecular mechanisms remain poorly characterized. Here, we show that inhibition of spleen tyrosine kinase (Syk) by R406 significantly promotes mouse chemical reprogramming. Mechanistically, R406 alleviates Syk / calcineurin (Cn) / nuclear factor of activated T cells (NFAT) signaling-mediated suppression of glycine, serine, and threonine metabolic genes and dependent metabolites. Syk inhibition upregulates glycine level and downstream transsulfuration cysteine biosynthesis, promoting cysteine metabolism and cellular hydrogen sulfide (H2 S) production. This metabolic rewiring decreased oxidative phosphorylation and ROS levels, enhancing chemical reprogramming. In sum, our study identifies Syk-Cn-NFAT signaling axis as a new barrier of chemical reprogramming and suggests metabolic rewiring and redox homeostasis as important opportunities for controlling cell fates.


Assuntos
Fibroblastos/metabolismo , Sulfeto de Hidrogênio/metabolismo , Quinase Syk/antagonistas & inibidores , Animais , Calcineurina/metabolismo , Células Cultivadas , Cisteína/metabolismo , Fibroblastos/efeitos dos fármacos , Glicina/metabolismo , Camundongos , Fatores de Transcrição NFATC/metabolismo , Oxazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
2.
J Med Virol ; 96(5): e29678, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38751128

RESUMO

Death due to severe influenza is usually a fatal complication of a dysregulated immune response more than the acute virulence of an infectious agent. Although spleen tyrosine kinase (SYK) as a critical immune signaling molecule and therapeutic target plays roles in airway inflammation and acute lung injury, the role of SYK in influenza virus infection is not clear. Here, we investigated the antiviral and anti-inflammatory effects of SYK inhibitor R406 on influenza infection through a coculture model of human alveolar epithelial (A549) and macrophage (THP-1) cell lines and mouse model. The results showed that R406 treatment increased the viability of A549 and decreased the pathogenicity and mortality of lethal influenza virus in mice with influenza A infection, decreased levels of intracellular signaling molecules under the condition of inflammation during influenza virus infection. Combination therapy with oseltamivir further ameliorated histopathological damage in the lungs of mice and further delayed the initial time to death compared with R406 treatment alone. This study demonstrated that phosphorylation of SYK is involved in the pathogenesis of influenza, and R406 has antiviral and anti-inflammatory effects on the treatment of the disease, which may be realized through multiple pathways, including the already reported SYK/STAT/IFNs-mediated antiviral pathway, as well as TNF-α/SYK- and SYK/Akt-based immunomodulation pathway.


Assuntos
Anti-Inflamatórios , Antivirais , Modelos Animais de Doenças , Infecções por Orthomyxoviridae , Oxazinas , Quinase Syk , Animais , Humanos , Quinase Syk/antagonistas & inibidores , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/imunologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Oxazinas/farmacologia , Oxazinas/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Pulmão/patologia , Pulmão/virologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Células A549 , Vírus da Influenza A/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Influenza Humana/tratamento farmacológico , Influenza Humana/imunologia , Células THP-1 , Feminino , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
3.
Pharmacol Res ; 196: 106912, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37696483

RESUMO

Microglia are first responders to acute brain insults and initiate neuroinflammation to drive secondary tissue injury. Yet the key molecular switches in control of the inflammatory activity of microglia remain poorly understood. Intracerebral hemorrhage (ICH) is a devastating stroke subtype whereby a hematoma is formed within the brain parenchyma and associated with high mortality. Using a mouse model of ICH, we found upregulation of CD22 that predominantly occurred in microglia. Antibody blockade of CD22 led to a reduction in neurological deficits, brain lesion and hematoma volume. This was accompanied by reduced inflammatory activity, increased expression of alternative activation markers (CD206 and IL-10) and enhanced phagocytosis activity in microglia after ICH. CD22 blockade also led to an increase of phosphorylated SYK and AKT after ICH. Notably, the benefits of CD22 blockade were ablated in ICH mice subjected to microglial depletion with a colony-stimulating factor 1 receptor inhibitor PLX5622. Additionally, the protective effects of CD22 blockade was diminished in ICH mice receiving a SYK inhibitor R406. Together, our findings highlight CD22 as a key molecular switch to control the detrimental effects of microglia after acute brain injury, and provide a novel strategy to improve the outcome of ICH injury.


Assuntos
Lesões Encefálicas , Microglia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico , Encéfalo/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Hematoma/complicações , Hematoma/metabolismo , Hematoma/patologia , Doenças Neuroinflamatórias , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/antagonistas & inibidores , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Animais , Camundongos
4.
Methods ; 203: 564-574, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34455072

RESUMO

With the gradual increase in the COVID-19 mortality rate, there is an urgent need for an effective drug/vaccine. Several drugs like Remdesivir, Azithromycin, Favirapir, Ritonavir, Darunavir, etc., are put under evaluation in more than 300 clinical trials to treat COVID-19. On the other hand, several vaccines like Pfizer-BioNTech, Moderna, Johnson & Johnson's Janssen, Sputnik V, Covishield, Covaxin, etc., also evolved from the research study. While few of them already gets approved, others show encouraging results and are still under assessment. In parallel, there are also significant developments in new drug development. But, since the approval of new molecules takes substantial time, drug repurposing studies have also gained considerable momentum. The primary agent of the disease progression of COVID-19 is SARS-CoV2/nCoV, which is believed to have ~89% genetic resemblance with SARS-CoV, a coronavirus responsible for the massive outbreak in 2003. With this hypothesis, Human-SARS-CoV protein interactions are used to develop an in-silico Human-nCoV network by identifying potential COVID-19 human spreader proteins by applying the SIS model and fuzzy thresholding by a possible COVID-19 FDA drugs target-based validation. At first, the complete list of FDA drugs is identified for the level-1 and level-2 spreader proteins in this network, followed by applying a drug consensus scoring strategy. The same consensus strategy is involved in the second analysis but on a curated overlapping set of key genes/proteins identified from COVID-19 symptoms. Validation using subsequent docking study has also been performed on COVID-19 potential drugs with the available major COVID-19 crystal structures whose PDB IDs are: 6LU7, 6M2Q, 6W9C, 6M0J, 6M71 and 6VXX. Our computational study and docking results suggest that Fostamatinib (R406 as its active promoiety) may also be considered as one of the potential candidates for further clinical trials in pursuit to counter the spread of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos , Aminopiridinas , Antivirais/farmacologia , Antivirais/uso terapêutico , ChAdOx1 nCoV-19 , Reposicionamento de Medicamentos/métodos , Humanos , Simulação de Acoplamento Molecular , Morfolinas , Pirimidinas , RNA Viral , SARS-CoV-2
5.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35805988

RESUMO

New antithrombotic medications with less effect on haemostasis are needed for the long-term treatment of acute coronary syndromes (ACS). The platelet receptor glycoprotein VI (GPVI) is critical in atherothrombosis, mediating platelet activation at atherosclerotic plaque. The inhibition of spleen tyrosine kinase (Syk) has been shown to block GPVI-mediated platelet function. The aim of our study was to investigate if the Syk inhibitor fostamatinib could be repurposed as an antiplatelet drug, either alone or in combination with conventional antiplatelet therapy. The effect of the active metabolite of fostamatinib (R406) was assessed on platelet activation and function induced by atherosclerotic plaque and a range of agonists in the presence and absence of the commonly used antiplatelet agents aspirin and ticagrelor. The effects were determined ex vivo using blood from healthy volunteers and aspirin- and ticagrelor-treated patients with ACS. Fostamatinib was also assessed in murine models of thrombosis. R406 mildly inhibited platelet responses induced by atherosclerotic plaque homogenate, likely due to GPVI inhibition. The anti-GPVI effects of R406 were amplified by the commonly-used antiplatelet medications aspirin and ticagrelor; however, the effects of R406 were concentration-dependent and diminished in the presence of plasma proteins, which may explain why fostamatinib did not significantly inhibit thrombosis in murine models. For the first time, we demonstrate that the Syk inhibitor R406 provides mild inhibition of platelet responses induced by atherosclerotic plaque and that this is mildly amplified by aspirin and ticagrelor.


Assuntos
Placa Aterosclerótica , Trombose , Aminopiridinas , Animais , Aspirina , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Humanos , Camundongos , Morfolinas , Oxazinas/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico , Piridinas/farmacologia , Pirimidinas , Trombose/tratamento farmacológico , Ticagrelor/farmacologia
6.
Mol Carcinog ; 59(1): 5-14, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31571292

RESUMO

The activation of oncogenic mitogen-activated protein kinase cascade via mutations in BRAF is often observed in human melanomas. Targeted inhibitors of BRAF (BRAFi), alone or as a part of a combination therapy, offer a significant benefit to such patients. Unfortunately, some cases are initially nonresponsive to these drugs, while others become refractory in the course of treatment, underscoring the need to understand and mitigate the underlying resistance mechanisms. We report that interference with polo-like kinase 3 (PLK3) reduces the tolerance of BRAF-mutant melanoma cells to BRAFi, while increased PLK3 expression has the opposite effect. Accordingly, PLK3 expression correlates with tolerance to BRAFi in a panel of BRAF-mutant cell lines and is elevated in a subset of recurring BRAFi-resistant melanomas. In PLK3-expressing cells, R406, a kinase inhibitor whose targets include PLK3, recapitulates the sensitizing effects of genetic PLK3 inhibitors. The findings support a role for PLK3 as a predictor of BRAFi efficacy and suggest suppression of PLK3 as a way to improve the efficacy of targeted therapy.


Assuntos
Antineoplásicos/farmacologia , Melanoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Vemurafenib/farmacologia , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma/genética , Camundongos SCID , Terapia de Alvo Molecular , Mutação/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Supressoras de Tumor , Vemurafenib/uso terapêutico
7.
Int Ophthalmol ; 40(9): 2371-2383, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32462561

RESUMO

PURPOSE: To investigate the effect of spleen tyrosine kinase (Syk) inhibitor R406 on diabetic retinopathy (DR) in diabetic mellitus (DM) rats. METHODS: Rats were randomized into Normal, DM, DM + 5 mg/kg R406 and DM + 10 mg/kg R406 groups. DM rats were established via injection of streptozotocin (STZ). One week after model establishment, rats in treatment groups received 5 mg/kg or 10 mg/kg R406 by gavage administration for 12 weeks consecutively, followed by the detection with hematoxylin-eosin (HE) staining, Evans blue angiography, retinal trypsin digestion assay, Western blotting, immunohistochemistry, TUNEL assay, immunofluorescence assay and quantitative reverse transcriptase real-time polymerase chain reaction (qRT-PCR). RESULTS: The retina of DM rats presented different degree of edema, disordered and loose structure, swollen cells with enlarged intercellular space, and dilated and congested capillaries. Besides, the retinal vessels of DM rats showed high fluorescence leakage. However, R406 alleviated the above-mentioned conditions, which was much better with high concentration of R406 (10 mg/kg). R406 also reversed the down-regulations of occludin, claudin-5, ZO-1 and the up-regulation of and VEGF in retinal tissues of DM rats; inhibited retinal cell apoptosis; strengthened retinal cell proliferation; and reduced expressions of IL-1ß, IL-6, TNF-α and nuclear p65 NF-κB in retinal tissues. The improvement in all these indexes was much more significant in rats of DM + 10 mg/kg R406 group than in rats of DM + 5 mg/kg R406 group. CONCLUSION: Syk inhibitor R406 could attenuate retinal inflammation in DR rats via the repression of NF-κB activation.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Animais , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Ratos , Baço , Quinase Syk
8.
Can J Physiol Pharmacol ; 96(2): 182-190, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29020462

RESUMO

As Pseudomonas aeruginosa infections are characterized by strong inflammation of infected tissues, anti-inflammatory therapies in combination with antibiotics have been considered for the treatment of associated diseases. Syk tyrosine kinase is an important regulator of inflammatory responses, and its specific inhibition was explored as a therapeutic option in several inflammatory conditions; however, this has not been studied in bacterial infections. We used a model of in vitro infection of human monocytic cell line THP-1 and lung epithelial cell line H292 with both wild-type and flagella-deficient mutant of P. aeruginosa strain K, as well as with clinical isolates from cystic fibrosis patients, to study the effect of a small molecule Syk inhibitor R406 on inflammatory responses induced by this pathogen. One-hour pretreatment of THP-1 cells with 10 µmol/L R406 resulted in a significant downregulation of the expression of the adhesion molecule ICAM-1, pro-inflammatory cytokines TNF-α and IL-1ß, and phosphorylated signaling proteins ERK2, JNK, p-38, and IκBα, as well as significantly decreased TNF-α release by infected H292 cells. The results suggest that Syk is involved in the regulation of inflammatory responses to P. aeruginosa, and R406 may potentially be useful in dampening the damage caused by severe inflammation associated with this infection.


Assuntos
Regulação para Baixo , Inflamação/tratamento farmacológico , Modelos Biológicos , Oxazinas/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Piridinas/uso terapêutico , Quinase Syk/antagonistas & inibidores , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Humanos , Inflamação/complicações , Mediadores da Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-1beta/metabolismo , Oxazinas/farmacologia , Fosforilação/efeitos dos fármacos , Infecções por Pseudomonas/complicações , Pseudomonas aeruginosa/efeitos dos fármacos , Piridinas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
9.
Cancer Immunol Immunother ; 66(4): 461-473, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28011996

RESUMO

Small molecules targeting kinases involved in B cell receptor signaling are showing encouraging clinical activity in chronic lymphocytic leukemia (CLL) patients. Fostamatinib (R406) and entospletinib (GS-9973) are ATP-competitive inhibitors designed to target spleen tyrosine kinase (Syk) that have shown clinical activity with acceptable toxicity in trials with CLL patients. Preclinical studies with these inhibitors in CLL have focused on their effect in patient-derived leukemic B cells. In this work we show that clinically relevant doses of R406 and GS-9973 impaired the activation and proliferation of T cells from CLL patients. This effect could not be ascribed to Syk-inhibition given that we show that T cells from CLL patients do not express Syk protein. Interestingly, ζ-chain-associated protein kinase (ZAP)-70 phosphorylation was diminished by both inhibitors upon TCR stimulation on T cells. In addition, we found that both agents reduced macrophage-mediated phagocytosis of rituximab-coated CLL cells. Overall, these results suggest that in CLL patients treated with R406 or GS-9973 T cell functions, as well as macrophage-mediated anti-tumor activity of rituximab, might be impaired. The potential consequences for CLL-treated patients are discussed.


Assuntos
Indazóis/farmacologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Macrófagos/imunologia , Oxazinas/farmacologia , Pirazinas/farmacologia , Piridinas/farmacologia , Quinase Syk/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos , Proteína-Tirosina Quinase ZAP-70/metabolismo , Idoso , Idoso de 80 Anos ou mais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Humanos , Ativação Linfocitária/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Fagocitose/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Rituximab/farmacologia , Linfócitos T/imunologia
10.
Brain ; 139(Pt 9): 2372-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27357347

RESUMO

Tau positron emission tomography ligands provide the novel possibility to image tau pathology in vivo However, little is known about how in vivo brain uptake of tau positron emission tomography ligands relates to tau aggregates observed post-mortem. We performed tau positron emission tomography imaging with (18)F-AV-1451 in three patients harbouring a p.R406W mutation in the MAPT gene, encoding tau. This mutation results in 3- and 4-repeat tau aggregates similar to those in Alzheimer's disease, and many of the mutation carriers initially suffer from memory impairment and temporal lobe atrophy. Two patients with short disease duration and isolated memory impairment exhibited (18)F-AV-1451 uptake mainly in the hippocampus and adjacent temporal lobe regions, correlating with glucose hypometabolism in corresponding regions. One patient died after 26 years of disease duration with dementia and behavioural deficits. Pre-mortem, there was (18)F-AV-1451 uptake in the temporal and frontal lobes, as well as in the basal ganglia, which strongly correlated with the regional extent and amount of tau pathology in post-mortem brain sections. Amyloid-ß ((18)F-flutemetamol) positron emission tomography scans were negative in all cases, as were stainings of brain sections for amyloid. This provides strong evidence that (18)F-AV-1451 positron emission tomography can be used to accurately quantify in vivo the regional distribution of hyperphosphorylated tau protein.


Assuntos
Carbolinas , Demência , Hipocampo , Transtornos da Memória , Tomografia por Emissão de Pósitrons/métodos , Lobo Temporal , Proteínas tau/metabolismo , Idoso , Atrofia/patologia , Demência/diagnóstico por imagem , Demência/metabolismo , Demência/patologia , Feminino , Heterozigoto , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Pessoa de Meia-Idade , Mutação , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/metabolismo , Lobo Temporal/patologia , Proteínas tau/genética
11.
J Neurochem ; 139(4): 624-639, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27569447

RESUMO

In the pathogenesis of tauopathies, genetic and environmental factors have been identified. While familial clustering led to the identification of mutations in MAPT encoding the microtubule-associated protein tau, the high incidence of a sporadic tauopathy endemic in Guadeloupe was linked to the plant-derived mitochondrial complex I inhibitor annonacin. The interaction of both factors was studied in the present work in a realistic paradigm over a period of 12 months. Mice over-expressing either human wild-type tau or R406W mutant tau as well as non-transgenic mice received either regular drinking water or commercially available tropical fruit juice made of soursop (Annona muricata L.) as dietary source of neurotoxins. HPLC-MS analysis of this juice identified several Annonaceous acetogenins, mainly annonacin (16.2 mg/L), and 41 isoquinoline alkaloids (18.0 mg/L, mainly asimilobine and reticuline). After 12 month of juice consumption, several brain regions showed an increased number of neurons with phosphorylated tau in the somatodendritic compartment of R406W mice and, to a much lesser extent, of non-transgenic mice and mice over-expressing human wild-type tau. Moreover, juice drinking was associated with a reduction in synaptophysin immunoreactivity, as well as an increase in 3-nitrotyrosine (3NT) reactivity in all three genotypes. The increase in 3NT suggests that Annona muricata juice promotes the generation of reactive nitrogen species. This study provides first experimental evidence that long-lasting oral ingestion of a widely consumed environmental factor can induce somatodendritic accumulation of hyperphosphorylated tau in mice expressing rodent or human wild-type tau, and can accelerate tau pathology in R406W-MAPT transgenic mice.


Assuntos
Annona , Encéfalo/metabolismo , Sucos de Frutas e Vegetais , Extratos Vegetais/administração & dosagem , Proteínas tau/biossíntese , Animais , Annona/efeitos adversos , Encéfalo/efeitos dos fármacos , Linhagem Celular , Sucos de Frutas e Vegetais/efeitos adversos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Extratos Vegetais/efeitos adversos , Distribuição Aleatória , Proteínas tau/genética
12.
Neurobiol Dis ; 58: 200-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23774255

RESUMO

Epileptic seizures are more common in patients with Alzheimer disease than in the general elderly population. Abnormal forms of hyperphosphorylated tau accumulate in Alzheimer disease and other tauopathies. Aggregates of tau are also found in patients with epilepsy and in experimental models of epilepsy. We report here the analysis of epileptic activity and neuropathological correlates of a transgenic line over-expressing human mutant tau, a model of frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). The FTDP-17 model displays spontaneous epileptic activity and seizures with spike-wave complexes in the EEG, and a higher sensitivity to the GABAA receptor antagonist pentylenetetrazol (PTZ) when compared to age-matched controls, showing a notably increased seizure length and a shorter latency to develop severe seizures. FTDP-17 human tau mutants also display lower convulsive thresholds and higher lethality after PTZ injections. Astrocytosis and activated microglia are prominent in the hippocampus and other brain regions of young FTDP-17 mice where the human mutant tau transgene is expressed, before the appearance of hyperphosphorylated tau aggregates in these structures. FTDP-17 human mutant tau over-expression produces epilepsy and increased GABAA receptor-mediated hyperexcitability in the absence of Aß pathology. Although aggregates of hyperphosphorylated tau have been observed in patients with epilepsy and in different chemically and electrically generated models of epilepsy, the FTDP-17 tau mutant analyzed here is the first model of genetically modified tau that presents with epilepsy. This model may represent a valuable tool to assay novel treatments in order to reduce tau pathology, a potential factor which may be involved in the development of epileptic seizures in dementia and other neurodegenerative diseases.


Assuntos
Epilepsia/etiologia , Demência Frontotemporal/complicações , Demência Frontotemporal/genética , Proteínas tau/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Convulsivantes/toxicidade , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia/induzido quimicamente , Demência Frontotemporal/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Pentilenotetrazol/toxicidade , Proteínas do Grupo Polycomb , Fatores de Transcrição/metabolismo , Gravação em Vídeo
13.
Rheumatology (Oxford) ; 52(9): 1556-62, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23861534

RESUMO

The pathogenesis of RA is a complex and ever-changing landscape but amid the chaos of the disease process we have found effective treatment regimes. However, our current therapeutics, although targeting various components of both the innate and adaptive immune response, do not result in disease remission. Protein kinase inhibitors are attractive targets due to their ability to influence downstream signalling and their oral bioavailability. Fostamatinib (R788) inhibits spleen tyrosine kinase (Syk) and has been in clinical trials involving both MTX inadequate responders (MTX-IRs) and biologic inadequate responders. Studies on the MTX-IR population revealed ACR20 responses of 67-72% at higher doses (150 mg bd and 100 mg bd), ACR50 responses of 43-57% and ACR70 responses of 28-40%. The trial in the biologic non-responder population showed no efficacy, however, post hoc analyses of the data suggested that a further trial in this population is warranted. The most common adverse events included gastrointestinal effects, hypertension, neutropenia and transaminitis. Many adverse effects were dose responsive and hypertension was amenable to treatment. Upper respiratory tract infections were more likely at higher doses, but no serious infections with tuberculosis, fungi or opportunistic infections were reported. The oral availability of these agents makes them attractive treatment options for our patients, although the literature from the oncology field suggests that patients will only choose the oral route if efficacy is equivalent. Long-term follow-up studies are ongoing and will be critical for rare side effects. The role of these agents in our current arsenal is unclear and economic analyses are awaited.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Aminopiridinas , Humanos , Morfolinas , Oxazinas/uso terapêutico , Piridinas/uso terapêutico , Pirimidinas , Quinase Syk , Resultado do Tratamento
14.
Expert Opin Investig Drugs ; 31(3): 291-303, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35130124

RESUMO

INTRODUCTION: Autoimmune diseases (ADs) are disorders induced by multiple inflammatory mediators, in which immune system attacks healthy tissues and triggers tissue injury. Targeted regulation of the activity of kinases that influence inflammation is one of the major therapies for ADs. Recently, investigational spleen tyrosine kinase (SYK) inhibitors have shown encouraging results in the AD therapy. AREAS COVERED: This article provides a background on autoimmune diseases and provides an update on investigational SYK inhibitors. This literature review was conducted by searching publications about investigational SYK inhibitors in the treatment of ADs from experimental to clinical studies. The search terms used were SYK inhibitors, R406, fostamatinib (R788), P505-15 (PRT062607), entospletinib (GS-9973), R112, lanraplenib (GS-9876), cerdulatinib, R343, BAY-61-3606, GSK compound 143 (GSK143), R211, SKI-G-618, SKI-O-85, ER-27319, YM193306, RO9021 in conjunction with autoimmune disease using electronic databases including PubMed, EMBASE, MEDLINE and Google Scholar. EXPERT OPINION: SYK inhibitors are promising drugs with unique advantages and acceptable tolerability and safety for the treatment of ADs. However, the difficulties in developing highly selective SYK inhibitors and the unknown effects are challenges. Long-term and real-world data are essential to determine the risk-benefit ratio and true role of SYK inhibitors in the therapy of ADs.


Assuntos
Doenças Autoimunes , Proteínas Tirosina Quinases , Doenças Autoimunes/tratamento farmacológico , Humanos , Inibidores de Proteínas Quinases/efeitos adversos , Quinase Syk
16.
Oncotarget ; 8(32): 52026-52044, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28881711

RESUMO

Oncogenic FLT3 kinase is a clinically validated target in acute myeloid leukemia (AML), and both multi-targeted and selective FLT3 inhibitors have been developed. Spleen tyrosine kinase (SYK) has been shown to be activated and increased in FLT3-ITD-positive AML patients, and has further been shown to be critical for transformation and maintenance of the leukemic clone in these patients. Further, over-expression of constitutively activated SYK causes resistance to highly selective FLT3 tyrosine kinase inhibitors (TKI). Up to now, the activity of the multi-targeted FLT3 inhibitor, midostaurin, against cells expressing activated SYK has not been explored in the context of leukemia, although SYK has been identified as a target of midostaurin in systemic mastocytosis. We compared the ability of midostaurin to inhibit activated SYK in mutant FLT3-positive AML cells with that of inhibitors displaying dual SYK/FLT3 inhibition, targeted SYK inhibition, and targeted FLT3 inhibition. Our findings suggest that dual FLT3/SYK inhibitors and FLT3-targeted drugs potently kill oncogenic FLT3-transformed cells, while SYK-targeted small molecule inhibition displays minimal activity. However, midostaurin and other dual FLT3/SYK inhibitors display superior anti-proliferative activity when compared to targeted FLT3 inhibitors, such as crenolanib and quizartinib, against cells co-expressing FLT3-ITD and constitutively activated SYK-TEL. Interestingly, additional SYK suppression potentiated the effects of dual FLT3/SYK inhibitors and targeted FLT3 inhibitors against FLT3-ITD-driven leukemia, both in the absence and presence of activated SYK. Taken together, our findings have important implications for the design of drug combination studies in mutant FLT3-positive patients and for the design of future generations of FLT3 inhibitors.

17.
Pharmacol Res Perspect ; 3(5): e00176, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26516588

RESUMO

Fostamatinib is a tyrosine kinase inhibitor with activity against spleen tyrosine kinase which has completed clinical trials for patients with rheumatoid arthritis. In clinical studies fostamatinib treatment was associated with a small elevation of systemic arterial blood pressure (BP), a similar finding to that seen with other kinase inhibitors, especially those that inhibit VEGFR2 signaling. We have investigated the link between fostamatinib-induced blood pressure elevation and plasma levels of the fostamatinib-active metabolite R940406 in conscious rats and found the time course of the BP effect correlated closely with changes in R940406 plasma concentration, indicating a direct pharmacological relationship. Free plasma levels of R940406 produced in these studies (up to 346 nmol/L) span the clinically observed mean peak free plasma concentration of 49 nmol/L. We have demonstrated that the blood pressure elevation induced by fostamatinib dosing can be successfully controlled by a variety of methods, notably simple drug withdrawal or codosing with a range of standard antihypertensive agents such as atenolol, captopril, and nifedipine. These findings support potential methods of maintaining patient safety while on fostamatinib therapy. Furthermore, we have demonstrated, using nifedipine as an example agent, that this blood pressure control was not achieved by reduction in plasma exposure of R940406, suggesting that potential benefits from the pharmacology of the investigational drug can be maintained while blood pressure control is managed by use of standard comedications.

18.
Pharmacol Res Perspect ; 3(5): e00175, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26516587

RESUMO

Off-target pharmacology may contribute to both adverse and beneficial effects of a new drug. In vitro pharmacological profiling is often applied early in drug discovery; there are fewer reports addressing the relevance of broad profiles to clinical adverse effects. Here, we have characterized the pharmacological profile of the active metabolite of fostamatinib, R406, linking an understanding of drug selectivity to the increase in blood pressure observed in clinical studies. R406 was profiled in a broad range of in vitro assays to generate a comprehensive pharmacological profile and key targets were further investigated using functional and cellular assay systems. A combination of traditional literature searches and text-mining approaches established potential mechanistic links between the profile of R406 and clinical side effects. R406 was selective outside the kinase domain, with only antagonist activity at the adenosine A3 receptor in the range relevant to clinical effects. R406 was less selective in the kinase domain, having activity at many protein kinases at therapeutically relevant concentrations when tested in multiple in vitro systems. Systematic literature analyses identified KDR as the probable target underlying the blood pressure increase observed in patients. While the in vitro pharmacological profile of R406 suggests a lack of selectivity among kinases, a combination of classical searching and text-mining approaches rationalized the complex profile establishing linkage between off-target pharmacology and clinically observed effects. These results demonstrate the utility of in vitro pharmacological profiling for a compound in late-stage clinical development.

19.
Exp Hematol Oncol ; 4: 21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26251761

RESUMO

BACKGROUND: Multiple myeloma (MM) is a clonal B cell malignancy characterized by proliferation of malignant plasma cells in the bone marrow. Despite high-dose melphalan therapy with autologous stem cell transplantation (ASCT) and the introduction of immunomodulatory drugs like bortezomib or lenalidomide, that have been associated with improved survival, MM is still incurable and new treatment options are needed. In B cell malignancies such as chronic lymphocytic leukaemia (CLL) or diffuse large B cell lymphoma (DLBCL), Syk (spleen tyrosine kinase) inhibitors have shown promising in vitro and first clinical results. In our study, we analyzed the potential of Syk as a target in MM. METHODS: The MM cell lines AMO-1, U266 and RPMI8226 and primary MM cells were treated with the Syk inhibitors BAY61-3606, R406 or Piceatannol and proliferation, migration and apoptosis induction were analyzed. Effects on involved intracellular signaling cascades were determined by Western blotting. Furthermore, we analyzed synergistic and additive effects of Syk inhibitors in combination with established anti-myeloma drugs and experimental inhibitors (e.g. PI-3-Kinase inhibitor NVP-BEZ235). RESULTS: Incubation of MM cell lines as well as primary MM cells with Syk inhibitors resulted in a reduced proliferation and stromal cell-derived factor-1 alpha (SDF-1 alpha) induced migration that was accompanied by a concentration dependent inhibition of the MAP-Kinase, characterized by reduced phosphorylation of ERK an p38 molecules, and NF-kappaB signalling pathways. Furthermore, Syk inhibition induced apoptosis in MM cells in a dose-dependent manner, characterized by reduced expression of pro-caspase 3, increased PARP-1 cleavage and enhanced release of cytochrome c. In addition combined treatment of MM cells with Syk inhibitors and NVP-BEZ235 (dual PI3-kinase/mTOR inhibitor) or MAPK inhibitors (PD98059, SP600125, U0126, SB203580) resulted in increased apoptotic activity of the drugs. CONCLUSIONS: Our results show that Syk inhibition might represent a promising new treatment option in MM with an increased efficacy when combined with MAP kinase inhibitors. Furthermore, our study strongly underlines the potency of Syk inhibitors as a potential therapeutic treatment option for MM patients.

20.
Br J Pharmacol ; 171(9): 2308-20, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24329544

RESUMO

BACKGROUND AND PURPOSE: Fostamatinib is an inhibitor of spleen tyrosine kinase (TK). In patients, fostamatinib treatment was associated with increased BP. Some TK inhibitors cause BP elevation, by inhibiting the VEGF receptor 2 (VEGFR2). Here, we have assessed the mechanistic link between fostamatinib-induced BP elevation and inhibition of VEGF signalling. EXPERIMENTAL APPROACH: We used conscious rats with automated blood sampling and radio telemetry and anaesthetized rats to measure cardiovascular changes. Rat isolated aorta and isolated hearts, and human resistance vessels in vitro were also used. NO production by human microvascular endothelial cells was measured with the NO-dependent probe, DAF-FM and VEGFR2 phosphorylation was determined in mouse lung, ex vivo. KEY RESULTS: In conscious rats, fostamatinib dose-dependently increased BP. The time course of the BP effect correlated closely with the plasma concentrations of R406 (the active metabolite of fostamatinib). In anaesthetized rats, infusion of R406 increased BP and decreased femoral arterial conductance. Endothelial function was unaffected, as infusion of R406 did not inhibit hyperaemia- or ACh-induced vasodilatation in rats. R406 did not affect contraction of isolated blood vessels. R406 inhibited VEGF-stimulated NO production from human endothelial cells in vitro, and treatment with R406 inhibited VEGFR2 phosphorylation in vivo. R406 inhibited VEGF-induced hypotension in anaesthetized rats. CONCLUSIONS AND IMPLICATIONS: Increased vascular resistance, secondary to reduced VEGF-induced NO release from endothelium, may contribute to BP increases observed with fostamatanib. This is consistent with the elevated BP induced by other drugs inhibiting VEGF signalling, although the contribution of other mechanisms cannot be excluded.


Assuntos
Pressão Sanguínea/fisiologia , Oxazinas/farmacologia , Piridinas/farmacologia , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/biossíntese , Aminopiridinas , Animais , Pressão Sanguínea/efeitos dos fármacos , Células Cultivadas , Humanos , Insetos , Masculino , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Morfolinas , Óxido Nítrico/biossíntese , Técnicas de Cultura de Órgãos , Pirimidinas , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa