Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
1.
Mol Cell ; 83(11): 1856-1871.e9, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267906

RESUMO

The pentameric FERRY Rab5 effector complex is a molecular link between mRNA and early endosomes in mRNA intracellular distribution. Here, we determine the cryo-EM structure of human FERRY. It reveals a unique clamp-like architecture that bears no resemblance to any known structure of Rab effectors. A combination of functional and mutational studies reveals that while the Fy-2 C-terminal coiled-coil acts as binding region for Fy-1/3 and Rab5, both coiled-coils and Fy-5 concur to bind mRNA. Mutations causing truncations of Fy-2 in patients with neurological disorders impair Rab5 binding or FERRY complex assembly. Thus, Fy-2 serves as a binding hub connecting all five complex subunits and mediating the binding to mRNA and early endosomes via Rab5. Our study provides mechanistic insights into long-distance mRNA transport and demonstrates that the particular architecture of FERRY is closely linked to a previously undescribed mode of RNA binding, involving coiled-coil domains.


Assuntos
Proteínas de Transporte Vesicular , Proteínas rab5 de Ligação ao GTP , Humanos , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/análise , Proteínas rab5 de Ligação ao GTP/metabolismo , Endossomos/genética , Endossomos/metabolismo
2.
Mol Cell ; 83(11): 1839-1855.e13, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267905

RESUMO

Localized translation is vital to polarized cells and requires precise and robust distribution of different mRNAs and ribosomes across the cell. However, the underlying molecular mechanisms are poorly understood and important players are lacking. Here, we discovered a Rab5 effector, the five-subunit endosomal Rab5 and RNA/ribosome intermediary (FERRY) complex, that recruits mRNAs and ribosomes to early endosomes through direct mRNA-interaction. FERRY displays preferential binding to certain groups of transcripts, including mRNAs encoding mitochondrial proteins. Deletion of FERRY subunits reduces the endosomal localization of transcripts in cells and has a significant impact on mRNA levels. Clinical studies show that genetic disruption of FERRY causes severe brain damage. We found that, in neurons, FERRY co-localizes with mRNA on early endosomes, and mRNA loaded FERRY-positive endosomes are in close proximity of mitochondria. FERRY thus transforms endosomes into mRNA carriers and plays a key role in regulating mRNA distribution and transport.


Assuntos
Endossomos , Proteínas rab5 de Ligação ao GTP , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Endossomos/metabolismo , Transporte Biológico , Endocitose/fisiologia
3.
Proc Natl Acad Sci U S A ; 120(52): e2307423120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109552

RESUMO

Hepatitis E virus (HEV) is a major cause of acute hepatitis worldwide. As the other positive-strand RNA viruses, it is believed to replicate its genome in a membrane-associated replication complex. However, current understanding of the host factors required for productive HEV infection is limited and the site as well as the composition of the HEV replication complex are still poorly characterized. To identify host factors required for HEV RNA replication, we performed a genome-wide CRISPR/Cas9 screen in permissive human cell lines harboring subgenomic HEV replicons allowing for positive and negative selection. Among the validated candidates, Ras-related early endosomal protein Rab5A was selected for further characterization. siRNA-mediated silencing of Rab5A and its effectors APPL1 and EEA1, but not of the late and recycling endosome components Rab7A and Rab11A, respectively, significantly reduced HEV RNA replication. Furthermore, pharmacological inhibition of Rab5A and of dynamin-2, required for the formation of early endosomes, resulted in a dose-dependent decrease of HEV RNA replication. Colocalization studies revealed close proximity of Rab5A, the HEV ORF1 protein, corresponding to the viral replicase, as well as HEV positive- and negative-strand RNA. In conclusion, we successfully exploited CRISPR/Cas9 and selectable subgenomic replicons to identify host factors of a noncytolytic virus. This approach revealed a role for Rab5A and early endosomes in HEV RNA replication, likely by serving as a scaffold for the establishment of functional replication complexes. Our findings yield insights into the HEV life cycle and the virus-host interactions required for productive infection.


Assuntos
Vírus da Hepatite E , Hepatite E , Humanos , Vírus da Hepatite E/genética , Sistemas CRISPR-Cas , Endossomos/genética , Endossomos/metabolismo , Replicação Viral/genética , RNA Viral/genética
4.
J Biol Chem ; 300(8): 107553, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002672

RESUMO

The plasma membrane (PM) is constantly exposed to various stresses from the extracellular environment, such as heat and oxidative stress. These stresses often cause the denaturation of membrane proteins and destabilize PM integrity, which is essential for normal cell viability and function. For maintenance of PM integrity, most eukaryotic cells have the PM quality control (PMQC) system, which removes damaged membrane proteins by endocytosis. Removal of damaged proteins from the PM by ubiquitin-mediated endocytosis is a key mechanism for the maintenance of PM integrity, but the importance of the early endosome in the PMQC system is still not well understood. Here we show that key proteins in early/sorting endosome function, Vps21p (yeast Rab5), Vps15p (phosphatidylinositol-3 kinase subunit), and Vps3p/8p (CORVET complex subunits), are involved in maintaining PM integrity. We found that Vps21p-enriched endosomes change the localization in the vicinity of the PM in response to heat stress and then rapidly fuse and form the enlarged compartments to efficiently transport Can1p to the vacuole. Additionally, we show that the deubiquitinating enzyme Doa4p is also involved in the PM integrity and its deletion causes the mislocalization of Vps21p to the vacuolar lumen. Interestingly, in cells lacking Doa4p or Vps21p, the amounts of free ubiquitin are decreased, and overexpression of ubiquitin restored defective cargo internalization in vps9Δ cells, suggesting that defective PM integrity in vps9Δ cells is caused by lack of free ubiquitin.


Assuntos
Membrana Celular , Endocitose , Endossomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas rab5 de Ligação ao GTP , Endocitose/fisiologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Membrana Celular/metabolismo , Endossomos/metabolismo , Resposta ao Choque Térmico/fisiologia , Vacúolos/metabolismo , Vacúolos/genética , Temperatura Alta , Ubiquitina/metabolismo , Proteínas rab de Ligação ao GTP
5.
J Biol Chem ; 300(3): 105750, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360271

RESUMO

Extracellular vesicles-mediated exchange of miRNA cargos between diverse types of mammalian cells is a major mechanism of controlling cellular miRNA levels and activity, thus regulating the expression of miRNA-target genes in both donor and recipient cells. Despite tremendous excitement related to extracellular vesicles-associated miRNAs as biomarkers or having therapeutic potential, the mechanism of selective packaging of miRNAs into endosomes and multivesicular bodies for subsequent extracellular export is poorly studied due to the lack of an in vitro assay system. Here, we have developed an in vitro assay with endosomes isolated from mammalian macrophage cells to follow miRNA packaging into endocytic organelles. The synthetic miRNAs, used in the assay, get imported inside the isolated endosomes during the in vitro reaction and become protected from RNase in a time- and concentration-dependent manner. The selective miRNA accumulation inside endosomes requires both ATP and GTP hydrolysis and the miRNA-binding protein HuR. The HuR-miRNA complex binds and stimulates the endosomal RalA GTPase to facilitate the import of miRNAs into endosomes and their subsequent export as part of the extracellular vesicles. The endosomal targeting of miRNAs is also very much dependent on the endosome maturation process that is controlled by Rab5 protein and ATP. In summary, we provide an in vitro method to aid in the investigation of the mechanism of miRNA packaging process for its export from mammalian macrophage cells.


Assuntos
Proteína Semelhante a ELAV 1 , Endossomos , Macrófagos , MicroRNAs , Proteínas ral de Ligação ao GTP , Trifosfato de Adenosina/metabolismo , Endossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Humanos , Proteínas ral de Ligação ao GTP/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Macrófagos/metabolismo , Células HEK293
6.
J Cell Sci ; 136(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37539494

RESUMO

Clathrin-mediated vesicle trafficking plays central roles in post-Golgi transport. In yeast (Saccharomyces cerevisiae), the AP-1 complex and GGA adaptors are predicted to generate distinct transport vesicles at the trans-Golgi network (TGN), and the epsin-related proteins Ent3p and Ent5p (collectively Ent3p/5p) act as accessories for these adaptors. Recently, we showed that vesicle transport from the TGN is crucial for yeast Rab5 (Vps21p)-mediated endosome formation, and that Ent3p/5p are crucial for this process, whereas AP-1 and GGA adaptors are dispensable. However, these observations were incompatible with previous studies showing that these adaptors are required for Ent3p/5p recruitment to the TGN, and thus the overall mechanism responsible for regulation of Vps21p activity remains ambiguous. Here, we investigated the functional relationships between clathrin adaptors in post-Golgi-mediated Vps21p activation. We show that AP-1 disruption in the ent3Δ5Δ mutant impaired transport of the Vps21p guanine nucleotide exchange factor Vps9p transport to the Vps21p compartment and severely reduced Vps21p activity. Additionally, GGA adaptors, the phosphatidylinositol-4-kinase Pik1p and Rab11 GTPases Ypt31p and Ypt32p were found to have partially overlapping functions for recruitment of AP-1 and Ent3p/5p to the TGN. These findings suggest a distinct role of clathrin adaptors for Vps21p activation in the TGN-endosome trafficking pathway.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas rab de Ligação ao GTP , Rede trans-Golgi , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Clatrina/metabolismo , Endossomos/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Rede trans-Golgi/metabolismo , Fator de Transcrição AP-1/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
7.
Development ; 149(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189830

RESUMO

Within a cell, vesicles play a crucial role in the transport of membrane material and proteins to a given target membrane, and thus regulate a variety of cellular functions. Vesicular transport occurs by means of, among others, endocytosis, where cargoes are taken up by the cell and are processed further upon vesicular trafficking, i.e. transported back to the plasma membrane via recycling endosomes or the degraded by fusion of the vesicles with lysosomes. During evolution, a variety of vesicles with individual functions arose, with some of them building up highly specialised subcellular compartments. In this study, we have analysed the biosynthesis of a new vesicular compartment present in the valve cells of Drosophila melanogaster. We show that the compartment is formed by invaginations of the plasma membrane and grows via re-routing of the recycling endosomal pathway. This is achieved by inactivation of other membrane-consuming pathways and a plasma membrane-like molecular signature of the compartment in these highly specialised heart cells.


Assuntos
Drosophila melanogaster , Endossomos , Animais , Membrana Celular/metabolismo , Drosophila melanogaster/metabolismo , Endocitose , Endossomos/metabolismo , Valvas Cardíacas/metabolismo , Transporte Proteico , Proteínas rab de Ligação ao GTP/metabolismo
8.
FASEB J ; 38(11): e23716, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38847490

RESUMO

Tumor hypoxia has been associated with cancer progression, angiogenesis, and metastasis via modifications in the release and cargo composition of extracellular vesicles secreted by tumor cells. Indeed, hypoxic extracellular vesicles are known to trigger a variety of angiogenic responses via different mechanisms. We recently showed that hypoxia promotes endosomal signaling in tumor cells via HIF-1α-dependent induction of the guanine exchange factor ALS2, which activates Rab5, leading to downstream events involved in cell migration and invasion. Since Rab5-dependent signaling is required for endothelial cell migration and angiogenesis, we explored the possibility that hypoxia promotes the release of small extracellular vesicles containing ALS2, which in turn activate Rab5 in recipient endothelial cells leading to pro-angiogenic properties. In doing so, we found that hypoxia promoted ALS2 expression and incorporation as cargo within small extracellular vesicles, leading to subsequent transfer to recipient endothelial cells and promoting cell migration, tube formation, and downstream Rab5 activation. Consequently, ALS2-containing small extracellular vesicles increased early endosome size and number in recipient endothelial cells, which was followed by subsequent sequestration of components of the ß-catenin destruction complex within endosomal compartments, leading to stabilization and nuclear localization of ß-catenin. These events converged in the expression of ß-catenin target genes involved in angiogenesis. Knockdown of ALS2 in donor tumor cells precluded its incorporation into small extracellular vesicles, preventing Rab5-downstream events and endothelial cell responses, which depended on Rab5 activity and guanine exchange factor activity of ALS2. These findings indicate that vesicular ALS2, secreted in hypoxia, promotes endothelial cell events leading to angiogenesis. Finally, these events might explain how tumor angiogenesis proceeds in hypoxic conditions.


Assuntos
Movimento Celular , Vesículas Extracelulares , Fatores de Troca do Nucleotídeo Guanina , Transdução de Sinais , beta Catenina , Proteínas rab5 de Ligação ao GTP , Humanos , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , beta Catenina/metabolismo , Vesículas Extracelulares/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Linhagem Celular Tumoral
9.
Cell Mol Life Sci ; 81(1): 195, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38653877

RESUMO

The Notch pathway is an evolutionarily conserved signaling system that is intricately regulated at multiple levels and it influences different aspects of development. In an effort to identify novel components involved in Notch signaling and its regulation, we carried out protein interaction screens which identified non-muscle myosin II Zipper (Zip) as an interacting partner of Notch. Physical interaction between Notch and Zip was further validated by co-immunoprecipitation studies. Immunocytochemical analyses revealed that Notch and Zip co-localize within same cytoplasmic compartment. Different alleles of zip also showed strong genetic interactions with Notch pathway components. Downregulation of Zip resulted in wing phenotypes that were reminiscent of Notch loss-of-function phenotypes and a perturbed expression of Notch downstream targets, Cut and Deadpan. Further, synergistic interaction between Notch and Zip resulted in highly ectopic expression of these Notch targets. Activated Notch-induced tumorous phenotype of larval tissues was enhanced by over-expression of Zip. Notch-Zip synergy resulted in the activation of JNK pathway that consequently lead to MMP activation and proliferation. Taken together, our results suggest that Zip may play an important role in regulation of Notch signaling.


Assuntos
Proteínas de Drosophila , Proteínas de Membrana , Cadeias Pesadas de Miosina , Receptores Notch , Transdução de Sinais , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Receptores Notch/metabolismo , Receptores Notch/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Asas de Animais/metabolismo , Asas de Animais/crescimento & desenvolvimento , Drosophila/metabolismo , Drosophila/genética , Fenótipo , Metaloproteinases da Matriz/metabolismo , Metaloproteinases da Matriz/genética , Proliferação de Células , Miosina Tipo II/metabolismo , Miosina Tipo II/genética
10.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35121658

RESUMO

Pathogenic variants in surfactant proteins SP-B and SP-C cause surfactant deficiency and interstitial lung disease. Surfactant proteins are synthesized as precursors (proSP-B, proSP-C), trafficked, and processed via a vesicular-regulated secretion pathway; however, control of vesicular trafficking events is not fully understood. Through the Undiagnosed Diseases Network, we evaluated a child with interstitial lung disease suggestive of surfactant deficiency. Variants in known surfactant dysfunction disorder genes were not found in trio exome sequencing. Instead, a de novo heterozygous variant in RAB5B was identified in the Ras/Rab GTPases family nucleotide binding domain, p.Asp136His. Functional studies were performed in Caenorhabditis elegans by knocking the proband variant into the conserved position (Asp135) of the ortholog, rab-5 Genetic analysis demonstrated that rab-5[Asp135His] is damaging, producing a strong dominant negative gene product. rab-5[Asp135His] heterozygotes were also defective in endocytosis and early endosome (EE) fusion. Immunostaining studies of the proband's lung biopsy revealed that RAB5B and EE marker EEA1 were significantly reduced in alveolar type II cells and that mature SP-B and SP-C were significantly reduced, while proSP-B and proSP-C were normal. Furthermore, staining normal lung showed colocalization of RAB5B and EEA1 with proSP-B and proSP-C. These findings indicate that dominant negative-acting RAB5B Asp136His and EE dysfunction cause a defect in processing/trafficking to produce mature SP-B and SP-C, resulting in interstitial lung disease, and that RAB5B and EEs normally function in the surfactant secretion pathway. Together, the data suggest a noncanonical function for RAB5B and identify RAB5B p.Asp136His as a genetic mechanism for a surfactant dysfunction disorder.


Assuntos
Variação Genética/genética , Precursores de Proteínas/genética , Proteína C Associada a Surfactante Pulmonar/genética , Proteínas Associadas a Surfactantes Pulmonares/genética , Proteínas rab5 de Ligação ao GTP/genética , Células Epiteliais Alveolares/metabolismo , Animais , Caenorhabditis elegans/genética , Humanos , Pulmão/metabolismo , Doenças Pulmonares Intersticiais/genética , Surfactantes Pulmonares/metabolismo
11.
J Biol Chem ; 299(11): 105311, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797694

RESUMO

While the role of endocytosis in focal adhesion turnover-coupled cell migration has been established in addition to its conventional role in cellular functions, the molecular regulators and precise molecular mechanisms that underlie this process remain largely unknown. In this study, we report that proto-oncoprotein hematopoietic PBX-interacting protein (HPIP) localizes to focal adhesions as well as endosomal compartments along with RUN FYVE domain-containing protein 3 (RUFY3) and Rab5, an early endosomal protein. HPIP contains two coiled-coil domains (CC1 and CC2) that are necessary for its association with Rab5 and RUFY3 as CC domain double mutant, that is, mtHPIPΔCC1-2 failed to support it. Furthermore, we show that HPIP and RUFY3 activate Rab5 by serving as noncanonical guanine nucleotide exchange factors of Rab5. In support of this, either deletion of coiled-coil domains or silencing of HPIP or RUFY3 impairs Rab5 activation and Rab5-dependent cell migration. Mechanistic studies further revealed that loss of HPIP or RUFY3 expression severely impairs Rab5-mediated focal adhesion disassembly, FAK activation, fibronectin-associated-ß1 integrin trafficking, and thus cell migration. Together, this study underscores the importance of HPIP and RUFY3 as noncanonical guanine nucleotide exchange factors of Rab5 and in integrin trafficking and focal adhesion turnover, which implicates in cell migration.


Assuntos
Adesões Focais , Fatores de Troca do Nucleotídeo Guanina , Movimento Celular , Endocitose , Adesões Focais/genética , Adesões Focais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Humanos , Linhagem Celular , Linhagem Celular Tumoral
12.
J Cell Sci ; 135(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35343566

RESUMO

Lysosomes mediate degradation of macromolecules to their precursors for cellular recycling. Additionally, lysosome-related organelles mediate cell type-specific functions. Chédiak-Higashi syndrome is an autosomal, recessive disease, in which loss of the protein LYST causes defects in lysosomes and lysosome-related organelles. The molecular function of LYST, however, is largely unknown. Here, we dissected the function of the yeast LYST homolog, Bph1. We show that Bph1 is an endosomal protein and an effector of the minor Rab5 isoform Ypt52. Strikingly, bph1Δ mutant cells have lipidated Atg8 on their endosomes, which is sorted via late endosomes into the vacuole lumen under non-autophagy-inducing conditions. In agreement with this, proteomic analysis of bph1Δ vacuoles reveals an accumulation of Atg8, reduced flux via selective autophagy, and defective endocytosis. Additionally, bph1Δ cells have reduced autophagic flux under starvation conditions. Our observations suggest that Bph1 is a novel Rab5 effector that maintains endosomal functioning. When Bph1 is lost, Atg8 is lipidated at endosomes even during normal growth and ends up in the vacuole lumen. Thus, our results contribute to the understanding of the role of LYST-related proteins and associated diseases.


Assuntos
Síndrome de Chediak-Higashi , Proteínas de Saccharomyces cerevisiae , Autofagia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Síndrome de Chediak-Higashi/metabolismo , Endossomos/metabolismo , Humanos , Lisossomos/metabolismo , Proteínas/metabolismo , Proteômica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo
13.
J Gene Med ; 26(1): e3649, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282155

RESUMO

BACKGROUND: Ovarian cancer is one of the most common cancers in women. Profiles changes of microRNAs (miRNAs) are closely linked to malignant tumors. In the present study, we investigated expression of miR-451a in high-grade serous ovarian cancer (HGSOC). We also investigated the potential pathological roles and the likely mechanism of miR-451a in the development of HGSOC using animal models and cell lines. METHODS: Using bioinformatics techniques and a real-time PCR, we analyzed differently expressed miRNAs in HGSOC compared to normal tissue. MTT (i.e. 3-[4, 5-dimethyl thiazol-2-yl]-2,5-diphenyl tetrazolium bromide), EDU (i.e. 5-ethynyl-2'-deoxyuridine) and transwell assays were performed to investigate the effect of miR-451a on the proliferation and migration of HGSOC SKOV-3 cells. A dual luciferase reporter assay was performed to verify the targeting relationship of miR-451 and RAB5A (one of the Rab GTPase proteins that regulates endocytosis and vesicle transport). Also, we analyzed levels of the RAB5A mRNA and protein by real-time PCR, western blotting and immunohistochemistry assays in HGSOC cells and tissues. Finally, we performed in vivo experiments using HGSOC mice. RESULTS: miR-451a was substantially upregulated in HGSOC and associated with favorable clinical characteristics. miR-451a knockdown significantly increased growth and metastasis of HGSOC cell line SKOV-3 through Ras/Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling. In addition, RAB5A, an early endosome marker, was shown to be a direct target of miR-451a. Moreover, RAB5A is correlated with unfavorable clinical features and shows independent prognostic significance in HGSOC. CONCLUSIONS: We found that the miR-451a/RAB5A axis is associated with tumorigenesis and progression through the Ras/Raf/MEK/ERK pathway, providing prognostic indicators and therapeutic targets for patients with HGSOC.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Proteínas rab5 de Ligação ao GTP , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases/genética , MicroRNAs/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Neoplasias Ovarianas/genética , Proteínas rab5 de Ligação ao GTP/genética
14.
J Transl Med ; 22(1): 316, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549133

RESUMO

BACKGROUND: Propofol is a widely used anesthetic and sedative, which has been reported to exert an anti-inflammatory effect. TLR4 plays a critical role in coordinating the immuno-inflammatory response during sepsis. Whether propofol can act as an immunomodulator through regulating TLR4 is still unclear. Given its potential as a sepsis therapy, we investigated the mechanisms underlying the immunomodulatory activity of propofol. METHODS: The effects of propofol on TLR4 and Rab5a (a master regulator involved in intracellular trafficking of immune factors) were investigated in macrophage (from Rab5a-/- and WT mice) following treatment with lipopolysaccharide (LPS) or cecal ligation and puncture (CLP) in vitro and in vivo, and peripheral blood monocyte from sepsis patients and healthy volunteers. RESULTS: We showed that propofol reduced membrane TLR4 expression on macrophages in vitro and in vivo. Rab5a participated in TLR4 intracellular trafficking and both Rab5a expression and the interaction between Rab5a and TLR4 were inhibited by propofol. We also showed Rab5a upregulation in peripheral blood monocytes of septic patients, accompanied by increased TLR4 expression on the cell surface. Propofol downregulated the expression of Rab5a and TLR4 in these cells. CONCLUSIONS: We demonstrated that Rab5a regulates intracellular trafficking of TLR4 and that propofol reduces membrane TLR4 expression on macrophages by targeting Rab5a. Our study not only reveals a novel mechanism for the immunomodulatory effect of propofol but also indicates that Rab5a may be a potential therapeutic target against sepsis.


Assuntos
Propofol , Sepse , Camundongos , Humanos , Animais , Propofol/farmacologia , Propofol/uso terapêutico , Propofol/metabolismo , Receptor 4 Toll-Like/metabolismo , Modelos Animais de Doenças , Macrófagos/metabolismo , Sepse/complicações , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo
15.
New Phytol ; 244(3): 840-854, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39262026

RESUMO

Style penetration by pollen tubes is essential for reproductive success, a process requiring canonical Rab5s in Arabidopsis. However, functional loss of Arabidopsis Vps9a, the gene encoding for guanine nucleotide exchange factor (GEF) of Rab5s, did not affect male transmission, implying the presence of a compensation program or redundancy. By combining genetic, cytological, and molecular approaches, we report that Arabidopsis Vps9b is a pollen-preferential gene, redundantly mediating pollen tube penetration of style with Vps9a. Vps9b is functionally interchangeable with Vps9a, whose functional distinction results from distinct expression profiles. Functional loss of Vps9a and Vps9b results in the mis-targeting of Rab5-dependent tonoplast proteins, defective vacuolar biogenesis, disturbed distribution of post-Golgi vesicles, increased cellular turgor, cytosolic acidification, and disrupted organization of actin microfilaments (MF) in pollen tubes, which collectively lead to the failure of pollen tubes to grow through style.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Tubo Polínico , Isoformas de Proteínas , Vacúolos , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/genética , Tubo Polínico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Vacúolos/metabolismo , Citoesqueleto de Actina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Complexo de Golgi/metabolismo , Mutação/genética
16.
Int J Mol Sci ; 25(19)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39408688

RESUMO

The triple combination therapy for cystic fibrosis (CF), including elexacaftor, tezacaftor and ivacaftor (ETI or Trikafta), has been shown to improve lung function and reduce pulmonary exacerbations, thereby enhancing the quality of life for most CF patients. Recent findings suggest that both the individual components and ETI may have potential off-target effects, highlighting the need to understand how these modulators impact cellular physiology, particularly in cells that do not express CF transmembrane conductance regulator (CFTR). We used HEK293 cells, as a cell model not expressing the CFTR protein, to evaluate the effect of ETI and each of its components on autophagic machinery and on the Rab5/7 components of the Rab pathway. We firstly demonstrate that the single modulators Teza and Iva, and the combinations ET and ETI, increased ROS production in the absence of their target while decreasing it in cells expressing the CFTR ∆F508del. This increase in cellular stress was followed by an increase in the total level of polyubiquitinated proteins as well as the p62 level and LC3II/LC3I ratio. Furthermore, we found that ETI had the opposite effect on Rabs by increasing Rab5 levels while decreasing Rab7. Interestingly, these changes were abolished by the expression of mutated CFTR. Overall, our data suggest that in the absence of their target, both the individual modulators and ETI increased ROS production and halted both autophagic flux and plasma membrane protein recycling.


Assuntos
Aminofenóis , Autofagia , Benzodioxóis , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Estresse Oxidativo , Quinolonas , Espécies Reativas de Oxigênio , Proteínas rab5 de Ligação ao GTP , proteínas de unión al GTP Rab7 , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Autofagia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , proteínas de unión al GTP Rab7/metabolismo , Células HEK293 , Quinolonas/farmacologia , Aminofenóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Benzodioxóis/farmacologia , Fibrose Cística/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Indóis/farmacologia , Combinação de Medicamentos , Pirazóis/farmacologia , Piridinas , Quinolinas
17.
J Biol Chem ; 298(9): 102281, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863437

RESUMO

Rab22 and Rab31 belong to the Rab5 subfamily of GTPases that regulates endocytic traffic and endosomal sorting. Rab22 and Rab31 (a.k.a. Rab22b) are closely related and share 87% amino acid sequence similarity, but they show distinct intracellular localization and function in the cell. Rab22 is localized to early endosomes and regulates early endosomal recycling, while Rab31 is mostly localized to the Golgi complex with only a small fraction in the endosomes at steady state. The specific determinants that affect this differential localization, however, are unclear. In this study, we identify a novel membrane targeting domain (MTD) consisting of the C-terminal hypervariable domain (HVD), interswitch loop (ISL), and N-terminal domain as a major determinant of endosomal localization for Rab22 and Rab31, as well as Rab5. Rab22 and Rab31 share the same N-terminal domain, but we find Rab22 chimeras with Rab31 HVD exhibit phenotypic Rab31 localization to the Golgi complex, while Rab31 chimeras with the Rab22 HVD localize to early endosomes, similar to wildtype Rab22. We also find that the Rab22 HVD favors interaction with the early endosomal effector protein Rabenosyn-5, which may stabilize the Rab localization to the endosomes. The importance of effector interaction in endosomal localization is further demonstrated by the disruption of Rab22 endosomal localization in Rabenosyn-5 knockout cells and by the shift of Rab31 to the endosomes in Rabenosyn-5-overexpressing cells. Taken together, we have identified a novel MTD that mediates localization of Rab5 subfamily members to early endosomes via interaction with an effector such as Rabenosyn-5.


Assuntos
Endossomos , Complexo de Golgi , Proteínas rab de Ligação ao GTP , Animais , Cricetinae , Endossomos/enzimologia , Complexo de Golgi/enzimologia , Células HEK293 , Humanos , Células PC12 , Domínios Proteicos , Transporte Proteico , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Vesículas Transportadoras/metabolismo , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
18.
Neurobiol Dis ; 178: 106010, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702318

RESUMO

Mutations or triplication of the alpha synuclein (ASYN) gene contribute to synucleinopathies including Parkinson's disease (PD), Dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Recent evidence suggests that ASYN also plays an important role in amyloid-induced neurotoxicity, although the mechanism(s) remains unknown. One hypothesis is that accumulation of ASYN alters endolysosomal pathways to impact axonal trafficking and processing of the amyloid precursor protein (APP). To define an axonal function for ASYN, we used a transgenic mouse model of synucleinopathy that expresses a GFP-human ASYN (GFP-hASYN) transgene and an ASYN knockout (ASYN-/-) mouse model. Our results demonstrate that expression of GFP-hASYN in primary neurons derived from a transgenic mouse impaired axonal trafficking and processing of APP. In addition, axonal transport of BACE1, Rab5, Rab7, lysosomes and mitochondria were also reduced in these neurons. Interestingly, axonal transport of these organelles was also affected in ASYN-/- neurons, suggesting that ASYN plays an important role in maintaining normal axonal transport function. Therefore, selective impairment of trafficking and processing of APP by ASYN may act as a potential mechanism to induce pathological features of Alzheimer's disease (AD) in PD patients.


Assuntos
Doença de Parkinson , Sinucleinopatias , Humanos , Camundongos , Animais , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Secretases da Proteína Precursora do Amiloide , Precursor de Proteína beta-Amiloide/genética , Ácido Aspártico Endopeptidases , Doença de Parkinson/genética , Camundongos Transgênicos , Lisossomos/metabolismo
19.
J Cell Sci ; 134(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33737317

RESUMO

Rab5 and Rab7a are the main determinants of early and late endosomes and are important regulators of endosomal progression. The transport from early endosomes to late endosome seems to be regulated through an endosomal maturation switch, where Rab5 is gradually exchanged by Rab7a on the same endosome. Here, we provide new insight into the mechanism of endosomal maturation, for which we have discovered a stepwise Rab5 detachment, sequentially regulated by Rab7a. The initial detachment of Rab5 is Rab7a independent and demonstrates a diffusion-like first-phase exchange between the cytosol and the endosomal membrane, and a second phase, in which Rab5 converges into specific domains that detach as a Rab5 indigenous endosome. Consequently, we show that early endosomal maturation regulated through the Rab5-to-Rab7a switch induces the formation of new fully functional Rab5-positive early endosomes. Progression through stepwise early endosomal maturation regulates the direction of transport and, concomitantly, the homeostasis of early endosomes.


Assuntos
Endossomos , Proteínas rab5 de Ligação ao GTP , Endossomos/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
20.
J Cell Sci ; 134(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34657963

RESUMO

His domain protein tyrosine phosphatase (HD-PTP; also known as PTPN23) collaborates with endosomal sorting complexes required for transport (ESCRTs) to sort endosomal cargo into intralumenal vesicles, forming the multivesicular body (MVB). Completion of MVB sorting is accompanied by maturation of the endosome into a late endosome, an event that requires inactivation of the early endosomal GTPase Rab5 (herein referring to generically to all isoforms). Here, we show that HD-PTP links ESCRT function with endosomal maturation. HD-PTP depletion prevents MVB sorting, while also blocking cargo from exiting Rab5-rich endosomes. HD-PTP-depleted cells contain hyperphosphorylated Rabaptin-5 (also known as RABEP1), a cofactor for the Rab5 guanine nucleotide exchange factor Rabex-5 (also known as RABGEF1), although HD-PTP is unlikely to directly dephosphorylate Rabaptin-5. In addition, HD-PTP-depleted cells exhibit Rabaptin-5-dependent hyperactivation of Rab5. HD-PTP binds directly to Rabaptin-5, between its Rabex-5- and Rab5-binding domains. This binding reaction involves the ESCRT-0/ESCRT-III binding site in HD-PTP, which is competed for by an ESCRT-III peptide. Jointly, these findings indicate that HD-PTP may alternatively scaffold ESCRTs and modulate Rabex-5-Rabaptin-5 activity, thereby helping to coordinate the completion of MVB sorting with endosomal maturation.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Endossomos , Receptores ErbB , Proteínas de Transporte Vesicular , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Lisossomos/metabolismo , Domínios Proteicos , Transporte Proteico , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa