Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 170(1): 17-33, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28666118

RESUMO

RAS proteins are binary switches, cycling between ON and OFF states during signal transduction. These switches are normally tightly controlled, but in RAS-related diseases, such as cancer, RASopathies, and many psychiatric disorders, mutations in the RAS genes or their regulators render RAS proteins persistently active. The structural basis of the switch and many of the pathways that RAS controls are well known, but the precise mechanisms by which RAS proteins function are less clear. All RAS biology occurs in membranes: a precise understanding of RAS' interaction with membranes is essential to understand RAS action and to intervene in RAS-driven diseases.


Assuntos
Proteínas ras/metabolismo , Animais , Membrana Celular/metabolismo , Anormalidades Congênitas/metabolismo , Humanos , Transtornos Mentais/metabolismo , Mutação , Neoplasias/metabolismo , Filogenia , Transdução de Sinais , Leveduras , Proteínas ras/química , Proteínas ras/genética
2.
Genes Dev ; 30(15): 1704-17, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27516533

RESUMO

Autophagy degrades and is thought to recycle proteins, other macromolecules, and organelles. In genetically engineered mouse models (GEMMs) for Kras-driven lung cancer, autophagy prevents the accumulation of defective mitochondria and promotes malignancy. Autophagy-deficient tumor-derived cell lines are respiration-impaired and starvation-sensitive. However, to what extent their sensitivity to starvation arises from defective mitochondria or an impaired supply of metabolic substrates remains unclear. Here, we sequenced the mitochondrial genomes of wild-type or autophagy-deficient (Atg7(-/-)) Kras-driven lung tumors. Although Atg7 deletion resulted in increased mitochondrial mutations, there were too few nonsynonymous mutations to cause generalized mitochondrial dysfunction. In contrast, pulse-chase studies with isotope-labeled nutrients revealed impaired mitochondrial substrate supply during starvation of the autophagy-deficient cells. This was associated with increased reactive oxygen species (ROS), lower energy charge, and a dramatic drop in total nucleotide pools. While starvation survival of the autophagy-deficient cells was not rescued by the general antioxidant N-acetyl-cysteine, it was fully rescued by glutamine or glutamate (both amino acids that feed the TCA cycle and nucleotide synthesis) or nucleosides. Thus, maintenance of nucleotide pools is a critical challenge for starving Kras-driven tumor cells. By providing bioenergetic and biosynthetic substrates, autophagy supports nucleotide pools and thereby starvation survival.


Assuntos
Autofagia , Neoplasias Pulmonares/metabolismo , Nucleotídeos/metabolismo , Proteínas ras/metabolismo , Animais , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Linhagem Celular Tumoral , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Deleção de Genes , Variação Genética , Genoma Mitocondrial/genética , Glutamina/farmacologia , Neoplasias Pulmonares/fisiopatologia , Camundongos , Mitocôndrias/metabolismo , Nucleosídeos/farmacologia , Oxirredução
3.
Bioorg Med Chem Lett ; 30(11): 127144, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32276831

RESUMO

Ras proteins are small GTPases which regulate cellular proliferation, differentiation, and apoptosis. Constitutively active mutant Ras are expressed in ~15-20% human cancers, and K-Ras mutations account for ~85% of all Ras mutations. Despite the significance of Ras proteins in refractory cancers, there is no anti-Ras drug available in clinic. Since K-Ras must interact with the plasma membrane (PM) for biological activity, inhibition of the K-Ras/PM interaction is a tractable approach to block oncogenic K-Ras activity. Here, we discovered chalcones 1 and 8 exhibit anti-K-Ras activity, and show that the compounds mislocalize K-Ras from the PM and block oncogenic K-Ras signal output. Also, 1 inhibits the growth of K-Ras-driven human cancer cells. Our data suggest that 1 could be a promising starting point for developing anti-K-Ras cancer drug.


Assuntos
Chalconas/química , Transdução de Sinais , Proteínas ras/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Chalconas/metabolismo , Chalconas/farmacologia , Cães , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Células Madin Darby de Rim Canino , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas ras/metabolismo
4.
Front Oncol ; 12: 923915, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912247

RESUMO

Ferroptosis has emerged as a new type of programmed cell death that can be harnessed for cancer therapy. The concept of ferroptosis was for the first time proposed in in the early 2000s, as an iron-dependent mode of regulated cell death caused by unrestricted lipid peroxidation (LPO) and subsequent plasma membrane rupture. Since the discovery and characterization of ferroptosis, a wealth of research has improved our understanding of the main pathways regulating this process, leading to both the repurposing and the development of small molecules. However, ferroptosis is still little understood and several aspects remain to be investigated. For instance, it is unclear whether specific oncogenes, cells of origin or tumor niches impose specific susceptibility/resistance to ferroptosis or if there are some ferroptosis-related genes that may be used as bona fide pan-cancer targetable dependencies. In this context, even though RAS-driven cancer cell lines seemed to be selectively sensitive to ferroptosis inducers, subsequent studies have questioned these results, indicating that in some cases mutant RAS is necessary, but not sufficient to induce ferroptosis. In this perspective, based on publicly available genomic screening data and the literature, we discuss the relationship between RAS-mutation and ferroptosis susceptibility in cancer.

5.
Cancer Cell ; 39(5): 678-693.e11, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33740421

RESUMO

Many cancers, including pancreatic ductal adenocarcinoma (PDAC), depend on autophagy-mediated scavenging and recycling of intracellular macromolecules, suggesting that autophagy blockade should cause tumor starvation and regression. However, until now autophagy-inhibiting monotherapies have not demonstrated potent anti-cancer activity. We now show that autophagy blockade prompts established PDAC to upregulate and utilize an alternative nutrient procurement pathway: macropinocytosis (MP) that allows tumor cells to extract nutrients from extracellular sources and use them for energy generation. The autophagy to MP switch, which may be evolutionarily conserved and not cancer cell restricted, depends on activation of transcription factor NRF2 by the autophagy adaptor p62/SQSTM1. NRF2 activation by oncogenic mutations, hypoxia, and oxidative stress also results in MP upregulation. Inhibition of MP in autophagy-compromised PDAC elicits dramatic metabolic decline and regression of transplanted and autochthonous tumors, suggesting the therapeutic promise of combining autophagy and MP inhibitors in the clinic.


Assuntos
Autofagia/fisiologia , Carcinoma Ductal Pancreático/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Autofagia/genética , Carcinoma Ductal Pancreático/imunologia , Camundongos , Fator 2 Relacionado a NF-E2/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Neoplasias Pancreáticas/imunologia , Pinocitose/imunologia , Pinocitose/fisiologia , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais/imunologia , Transdução de Sinais/fisiologia , Neoplasias Pancreáticas
6.
Int Rev Cell Mol Biol ; 361: 21-105, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34074494

RESUMO

The RAL proteins RALA and RALB belong to the superfamily of small RAS-like GTPases (guanosine triphosphatases). RAL GTPases function as molecular switches in cells by cycling through GDP- and GTP-bound states, a process which is regulated by several guanine exchange factors (GEFs) and two heterodimeric GTPase activating proteins (GAPs). Since their discovery in the 1980s, RALA and RALB have been established to exert isoform-specific functions in central cellular processes such as exocytosis, endocytosis, actin organization and gene expression. Consequently, it is not surprising that an increasing number of physiological functions are discovered to be controlled by RAL, including neuronal plasticity, immune response, and glucose and lipid homeostasis. The critical importance of RAL GTPases for oncogenic RAS-driven cellular transformation and tumorigenesis still attracts most research interest. Here, RAL proteins are key drivers of cell migration, metastasis, anchorage-independent proliferation, and survival. This chapter provides an overview of normal and pathological functions of RAL GTPases and summarizes the current knowledge on the involvement of RAL in human disease as well as current therapeutic targeting strategies. In particular, molecular mechanisms that specifically control RAL activity and RAL effector usage in different scenarios are outlined, putting a spotlight on the complexity of the RAL GTPase signaling network and the emerging theme of RAS-independent regulation and relevance of RAL.


Assuntos
Neoplasias/metabolismo , Transdução de Sinais , Proteínas ral de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Modelos Biológicos , Processamento de Proteína Pós-Traducional , Proteínas ral de Ligação ao GTP/química
7.
Cancers (Basel) ; 12(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120942

RESUMO

Genome-wide, loss-of-function screening can be used to identify novel vulnerabilities upon which specific tumor cells depend for survival. Functional Signature Ontology (FUSION) is a gene expression-based high-throughput screening (GE-HTS) method that allows researchers to identify functionally similar proteins, small molecules, and microRNA mimics, revealing novel therapeutic targets. FUSION uses cell-based high-throughput screening and computational analysis to match gene expression signatures produced by natural products to those produced by small interfering RNA (siRNA) and synthetic microRNA libraries to identify putative protein targets and mechanisms of action (MoA) for several previously undescribed natural products. We have used FUSION to screen for functional analogues to Kinase suppressor of Ras 1 (KSR1), a scaffold protein downstream of Ras in the Raf-MEK-ERK kinase cascade, and biologically validated several proteins with functional similarity to KSR1. FUSION incorporates bioinformatics analysis that may offer higher resolution of the endpoint readout than other screens which utilize Boolean outputs regarding a single pathway activation (i.e., synthetic lethal and cell proliferation). Challenges associated with FUSION and other high-content genome-wide screens include variation, batch effects, and controlling for potential off-target effects. In this review, we discuss the efficacy of FUSION to identify novel inhibitors and oncogene-induced changes that may be cancer cell-specific as well as several potential pitfalls within FUSION and best practices to avoid them.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa