Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 491(1): 25-32, 2017 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-28688764

RESUMO

Receptor Expressed in Lymphoid Tissues (RELT) is a human Tumor Necrosis Factor Receptor (TNFR) family member that has two identified homologous binding partners, RELL1 and RELL2. This study sought to further understand the pattern of RELT expression, the functional role of RELT family members, and the mechanism of RELT-induced apoptosis. RELT protein expression was detected in the spleen, lymph node, brain, breast and peripheral blood leukocytes (PBLs). A smaller than expected size of RELT was observed in PBLs, suggesting a proteolytically cleaved form of RELT. RELL1 and RELL2 overexpression activated the p38 MAPK pathway more substantially than RELT in HEK-293 cells, and this activation of p38 by RELT family members was blocked by dominant-negative mutant forms of OSR1 or TRAF2, implicating these molecules in RELT family member signaling. RELT was previously shown to induce apoptosis in human epithelial cells despite lacking the characteristic death domain (DD) found in other TNFRs. Seven deletion mutants of RELT that lacked differing portions of the intracellular domain were created to assess whether RELT possesses a novel DD. None of the deletion mutants induced apoptosis as efficiently as full-length RELT, a result that is consistent with a novel DD being located at the carboxyl-terminus. Interestingly, induction of apoptotic morphology by RELT overexpression was not prevented when signaling by FADD or Caspase-8 was blocked, indicating RELT induces apoptosis by a pathway distinct from other death-inducing TNFRs such as TNFR1. Collectively, this study provides more insights into RELT expression, RELT family member function, and the mechanism of RELT-induced death.


Assuntos
Apoptose/fisiologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células HEK293 , Humanos , Especificidade de Órgãos/fisiologia , Distribuição Tecidual
2.
Biomedicines ; 11(10)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37893069

RESUMO

This review highlights Receptor Expressed in Lymphoid Tissues (RELT), a Tumor Necrosis Factor Superfamily member, and its two paralogs, RELL1 and RELL2. Collectively, these three proteins are referred to as RELTfms and have gained much interest in recent years due to their association with cancer and other human diseases. A thorough knowledge of their physiological functions, including the ligand for RELT, is lacking, yet emerging evidence implicates RELTfms in a variety of processes including cytokine signaling and pathways that either promote cell death or survival. T cells from mice lacking RELT exhibit increased responses against tumors and increased inflammatory cytokine production, and multiple lines of evidence indicate that RELT may promote an immunosuppressive environment for tumors. The relationship of individual RELTfms in different cancers is not universal however, as evidence indicates that individual RELTfms may be risk factors in certain cancers yet appear to be protective in other cancers. RELTfms are important for a variety of additional processes related to human health including microbial pathogenesis, inflammation, behavior, reproduction, and development. All three proteins have been strongly conserved in all vertebrates, and this review aims to provide a clearer understanding of the current knowledge regarding these interesting proteins.

3.
Biochem Biophys Rep ; 24: 100868, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33367115

RESUMO

Receptor Expressed in Lymphoid Tissues (RELT) is a human tumor necrosis factor receptor superfamily member (TNFRSF) that is expressed most prominently in cells and tissues of the hematopoietic system. RELL1 and RELL2 are two homologs that physically interact with RELT and co-localize with RELT at the plasma membrane. This study sought to further elucidate the function of RELT by identifying novel protein interactions with RELT family members. The transcription factor MyoD family inhibitor domain-containing (MDFIC) was identified in a yeast two-hybrid genetic screen using RELL1 as bait. MDFIC co-localizes with RELT family members at the plasma membrane; this co-localization was most prominently observed with RELL1 and RELL2. In vitro co-immunoprecipitation (Co-IP) was utilized to demonstrate that MDFIC physically interacts with RELT, RELL1, and RELL2. Co-IP using deletion mutants of MDFIC and RELT identified regions important for physical association between MDFIC and RELT family members and a computational analysis revealed that RELT family members are highly disordered proteins. Immunohistochemistry of normal human lymph nodes revealed RELT staining that was most prominent in macrophages. Interestingly, the level of RELT staining significantly increased progressively in low and high-grade B-cell lymphomas versus normal lymph nodes. RELT co-staining with CD20 was observed in B-cell lymphomas, indicating that RELT is expressed in malignant B cells. Collectively, these results further our understanding of RELT-associated signaling pathways, the protein structure of RELT family members, and provide preliminary evidence indicating an association of RELT with B-cell lymphomas.

4.
Eur J Pharmacol ; 851: 161-173, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30817902

RESUMO

Polyphyllin VI (PP-VI) is one of the major saponins present in Paris polyphylla Sm., a medicinal plant primarily used for cancer treatment in China and India. However, its anti-metastatic activity remains largely unknown. The current study thus investigated the anti-metastatic activity of PP-VI in mouse mammary carcinoma 4T1 and human breast cancer MDA-MB-231 cells. The anti-metastatic effect of PP-VI was investigated at a sub-cytotoxic dose in migration and invasion assays in vitro. Experimental metastasis mouse model was used to examine the anti-metastatic effect of PP-VI in vivo. Additionally, target prediction, real-time PCR, Western blotting and luciferase assay were performed to identify the target gene of a pro-metastatic microRNA, miR-18a in 4T1 cells. The effect of PP-VI on the identified target of miR-18a was further investigated. The results showed that PP-VI impaired the viability of 4T1 and MDA-MB-231 cells. Moreover, when applied at a sub-cytotoxic dose, PP-VI suppressed the metastatic potential of 4T1 and MDA-MB-231 cells. Receptor expressed in lymphoid tissue (RELT)-like 2 (Rell2) was identified as a direct target of miR-18a with anti-metastatic functions in 4T1 and MDA-MB-231 cells. PP-VI treatment resulted in increased expression of Rell2 and decreased level of miR-18a in 4T1 and MDA-MB-231 cells. PP-VI treatment also attenuated miR-18a mimic or Rell2 siRNA-augmented migration of MDA-MB-231 cells. The current work thus demonstrates for the first time that targeted regulation of Rell2 by miR-18a is in part implicated in the anti-metastatic effect of PP-VI in breast cancer cells, providing novel pharmacological insights into the anti-cancer effect of PP-VI.


Assuntos
Neoplasias da Mama/patologia , Proteínas de Transporte/genética , Proteínas de Membrana/genética , MicroRNAs/genética , Saponinas/farmacologia , Animais , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase S do Ciclo Celular/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa