Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Acta Oncol ; 62(11): 1566-1573, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37603112

RESUMO

BACKGROUND: The purpose of this study was to introduce an experimental radiobiological setup used for in vivo irradiation of a mouse leg target in multiple positions along a proton beam path to investigate normal tissue- and tumor models with varying linear energy transfer (LET). We describe the dosimetric characterizations and an acute- and late-effect assay for normal tissue damage. METHODS: The experimental setup consists of a water phantom that allows the right hind leg of three to five mice to be irradiated at the same time. Absolute dosimetry using a thimble (Semiflex) and a plane parallel (Advanced Markus) ionization chamber and Monte Carlo simulations using Geant4 and SHIELD-HIT12A were applied for dosimetric validation of positioning along the spread-out Bragg peak (SOBP) and at the distal edge and dose fall-off. The mice were irradiated in the center of the SOBP delivered by a pencil beam scanning system. The SOBP was 2.8 cm wide, centered at 6.9 cm depth, with planned physical single doses from 22 to 46 Gy. The biological endpoint was acute skin damage and radiation-induced late damage (RILD) assessed in the mouse leg. RESULTS: The dose-response curves illustrate the percentage of mice exhibiting acute skin damage, and at a later point, RILD as a function of physical doses (Gy). Each dose-response curve represents a specific severity score of each assay, demonstrating a higher ED50 (50% responders) as the score increases. Moreover, the results reveal the reversible nature of acute skin damage as a function of time and the irreversible nature of RILD as time progresses. CONCLUSIONS: We want to encourage researchers to report all experimental details of their radiobiological setups, including experimental protocols and model descriptions, to facilitate transparency and reproducibility. Based on this study, more experiments are being performed to explore all possibilities this radiobiological experimental setup permits.


Assuntos
Terapia com Prótons , Prótons , Animais , Camundongos , Reprodutibilidade dos Testes , Terapia com Prótons/métodos , Radiometria/métodos , Modelos Teóricos , Método de Monte Carlo
2.
J Cell Mol Med ; 23(5): 3336-3344, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30761739

RESUMO

The mechanisms of radiation-induced liver damage are poorly understood. We investigated if tumour necrosis factor (TNF)-α acts synergistically with irradiation, and how its activity is influenced by platelet endothelial cell adhesion molecule-1 (PECAM-1). We studied murine models of selective single-dose (25 Gy) liver irradiation with and without TNF-α application (2 µg/mouse; i.p.). In serum of wild-type (wt)-mice, irradiation induced a mild increase in hepatic damage marker aspartate aminotransferase (AST) in comparison to sham-irradiated controls. AST levels further increased in mice treated with both irradiation and TNF-α. Accordingly, elevated numbers of leucocytes and increased expression of the macrophage marker CD68 were observed in the liver of these mice. In parallel to hepatic damage, a consecutive decrease in expression of hepatic PECAM-1 was found in mice that received radiation or TNF-α treatment alone. The combination of radiation and TNF-α induced an additional significant decline of PECAM-1. Furthermore, increased expression of hepatic lipocalin-2 (LCN-2), a hepatoprotective protein, was detected at mRNA and protein levels after irradiation or TNF-α treatment alone and the combination of both. Signal transducer and activator of transcription-3 (STAT-3) seems to be involved in the signalling cascade. To study the involvement of PECAM-1 in hepatic damage more deeply, the liver of both wt- and PECAM-1-knock-out-mice were selectively irradiated (25 Gy). Thereby, ko-mice showed higher liver damage as revealed by elevated AST levels, but also increased hepatoprotective LCN-2 expression. Our studies show that TNF-α has a pivotal role in radiation-induced hepatic damage. It acts in concert with irradiation and its activity is modulated by PECAM-1, which mediates pro- and anti-inflammatory signalling.


Assuntos
Fígado/metabolismo , Fígado/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Radiação Ionizante , Fator de Necrose Tumoral alfa/toxicidade , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Aspartato Aminotransferases/sangue , Cinética , Leucócitos/metabolismo , Lipocalina-2/metabolismo , Fígado/efeitos da radiação , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/metabolismo
3.
Int J Mol Sci ; 20(4)2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30781399

RESUMO

Radiotherapy for treatment of hepatocellular carcinoma causes severe side effects, including acute hepatitis and chronic fibrosis. Complementary and alternative medicine (CAM) has emerged as an important part of integrative medicine in the management of diseases. Antrodia cinnamomea (AC), a valuable medicinal fungus originally found only in Taiwan, has been shown to possess anti-oxidation, vaso-relaxtation, anti-inflammation, anti-hepatitis, and anti-cancer effects. In this paper we evaluate the protective effects of ethanol extract of Antrodia cinnamomea (ACE) against radiotoxicity both in normal liver cell line CL48 and in tumor-bearing mice. In CL48, ACE protects cells by eliminating irradiation-induced reactive oxygen species (ROS) through the induction of Nrf2 and the downstream redox system enzymes. The protective effect of ACE was also demonstrated in tumor-bearing mice by alleviating irradiation-induced acute hepatitis. ACE could also protect mice from CCl4-induced hepatitis. Since both radiation and CCl4 cause free radicals, these results indicate that ACE likely contains active components that protect normal liver cells from free radical attack and can potentially benefit hepatocellular carcinoma (HCC) patients during radiotherapy.


Assuntos
Antrodia/química , Hepatite/tratamento farmacológico , Protetores contra Radiação/uso terapêutico , Doença Aguda , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citoproteção/efeitos dos fármacos , Feminino , Sequestradores de Radicais Livres/farmacologia , Hepatite/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/efeitos da radiação , Humanos , Inflamação/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Transporte Proteico/efeitos dos fármacos , Protetores contra Radiação/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Soluções , Raios X
4.
JHEP Rep ; 6(6): 101063, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38737600

RESUMO

Background & Aims: Inoperable hepatocellular carcinoma (HCC) can be treated by stereotactic body radiotherapy. However, carbon ion radiotherapy (CIRT) is more effective for sparing non-tumorous liver. High linear energy transfer could promote therapy efficacy. Japanese and Chinese studies on hypofractionated CIRT have yielded excellent results. Because of different radiobiological models and the different etiological spectrum of HCC, applicability of these results to European cohorts and centers remains questionable. The aim of this prospective study was to assess safety and efficacy and to determine the optimal dose of CIRT with active raster scanning based on the local effect model (LEM) I. Methods: CIRT was performed every other day in four fractions with relative biological effectiveness (RBE)-weighted fraction doses of 8.1-10.5 Gy (total doses 32.4-42.0 Gy [RBE]). Dose escalation was performed in five dose levels with at least three patients each. The primary endpoint was acute toxicity after 4 weeks. Results: Twenty patients received CIRT (median age 74.7 years, n = 16 with liver cirrhosis, Child-Pugh scores [CP] A5 [n = 10], A6 [n = 4], B8 [n = 1], and B9 [n = 1]). Median follow up was 23 months. No dose-limiting toxicities and no toxicities exceeding grade II occurred, except one grade III gamma-glutamyltransferase elevation 12 months after CIRT, synchronous to out-of-field hepatic progression. During 12 months after CIRT, no CP elevation occurred. The highest dose level could be applied safely. No local recurrence developed during follow up. The objective response rate was 80%. Median overall survival was 30.8 months (1/2/3 years: 75%/64%/22%). Median progression-free survival was 20.9 months (1/2/3 years: 59%/43%/43%). Intrahepatic progression outside of the CIRT target volume was the most frequent pattern of progression. Conclusions: CIRT of HCC yields excellent local control without dose-limiting toxicity. Impact and implications: To date, safety and efficacy of carbon ion radiotherapy for hepatocellular carcinoma have only been evaluated prospectively in Japanese and Chinese studies. The optimal dose and fractionation when using the local effect model for radiotherapy planning are unknown. The results are of particular interest for European and American particle therapy centers, but also of relevance for all specialists involved in the treatment and care of patients with hepatocellular carcinoma, as we present the first prospective data on carbon ion radiotherapy in hepatocellular carcinoma outside of Asia. The excellent local control should encourage further use of carbon ion radiotherapy for hepatocellular carcinoma and design of randomized controlled trials. Clinical Trials Registration: The study is registered at ClinicalTrials.gov (NCT01167374).

5.
Technol Health Care ; 32(2): 595-604, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37483028

RESUMO

BACKGROUND: Without timely and effective interventions or treatments, radiation-induced liver damage (RILD) can lead to serious consequences for the patients and their families. OBJECTIVE: To investigate the protective effect of intermittent hypobaric hypoxia preconditioning (IHHP) in RILD. METHODS: Male adult SD rats were randomly divided into 8 groups including one control group, one only irradiation group and other experimental groups. Blood routine tests and liver function tests were all assessed with abdominal venous blood. Moreover, hematoxylin eosin (HE) staining and immunohistochemistry assay were used to detect the histopathological changes and expressions of transforming growth factor-ß1 (TGF-ß1), tumor necrosis factor α (TNF-α) and hypoxia-inducible factor 1α (HIF-1α) in radiated liver sections. RESULTS: Blood routing tests showed that RBC, WBC and Hb were all significantly increased while the differences of these results between different groups with same simulated altitude were approximate. However, liver function in the IHHP plus irradiation at 4000 m group was significantly decreased (P< 0.05) compared to only irradiation groups, and the manifestation of HE and lower positive expression of TNF-α showed improved histopathological changes in the liver section. Furthermore, no significant difference of HIF-1α expression between any two groups treated with IHHP was observed. CONCLUSION: IHHP at the altitude of 4000 m group could alleviate the radioactive liver damage by downregulating TNF-α and less strong positive expression of TGF-ß1. Furthermore, patients exposed to radiation might benefit from this treatment to prevent or reduce the RILD.


Assuntos
Fator de Crescimento Transformador beta1 , Fator de Necrose Tumoral alfa , Humanos , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Hipóxia , Fígado
6.
Cancers (Basel) ; 16(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473310

RESUMO

In patients with esophageal cancer undergoing neoadjuvant chemoradiotherapy (nCRT), subsequent restaging with F-18-fluorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography (PET-CT) can reveal the presence of interval metastases, such as liver metastases, in approximately 10% of cases. Nevertheless, it is not uncommon in clinical practice to observe focal FDG uptake in the liver that is not associated with liver metastases but rather with radiation-induced liver injury (RILI), which can result in the overstaging of the disease. Liver radiation damage is also a concern during distal esophageal cancer radiotherapy due to its proximity to the left liver lobe, typically included in the radiation field. Post-CRT, if FDG activity appears in the left or caudate liver lobes, a thorough investigation is needed to confirm or rule out distant metastases. The increased FDG uptake in liver lobes post-CRT often presents a diagnostic dilemma. Distinguishing between radiation-induced liver disease and metastasis is vital for appropriate patient management, necessitating a combination of imaging techniques and an understanding of the factors influencing the radiation response. Diagnosis involves identifying new foci of hepatic FDG avidity on PET/CT scans. Geographic regions of hypoattenuation on CT and well-demarcated regions with specific enhancement patterns on contrast-enhanced CT scans and MRI are characteristic of radiation-induced liver disease (RILD). Lack of mass effect on all three modalities (CT, MRI, PET) indicates RILD. Resolution of abnormalities on subsequent examinations also helps in diagnosing RILD. Moreover, it can also help to rule out occult metastases, thereby excluding those patients from further surgery who will not benefit from esophagectomy with curative intent.

7.
JHEP Rep ; 5(4): 100689, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36937990

RESUMO

Background & Aims: Transcatheter arterial chemoembolisation (TACE) is recommended for patients with hepatocellular carcinoma devoid of macrovascular invasion or extrahepatic spread but not eligible for curative therapies. We compared the efficacy and safety of the combination of a single TACE and external conformal radiotherapy (CRT) vs. classical TACE. Methods: TACERTE was an open-labelled, randomised controlled trial with a 1:1 allocation rate to two or three TACE (arm A) or one TACE + CRT (arm B). Participants had a mean age of 70 years, and 86% were male. The aetiology was alcohol in 85%. The primary endpoint was liver progression-free survival (PFS) in the intention-to-treat population. The typical CRT schedule was 54 Gy in 18 sessions of 3 Gy. Results: Of the 120 participants randomised, 64 were in arm A and 56 in arm B; 100 participants underwent the planned schedule and defined the 'per-protocol' group. In intention-to-treat participants, the liver PFS at 12 and 18 months were 59% and 19% in arm A and 61% and 36% in arm B (hazard ratio [HR] 0.69; 95% CI 0.40-1.18; p = 0.17), respectively. In the per-protocol population, treated liver PFS tended to be better in arm B (HR 0.61; 95% CI 0.34-1.06; p = 0.081) than in arm A. Liver-related grade III-IV adverse events were more frequent in arm B than in arm A. Median overall survival reached 30 months (95% CI 23-35) in arm A and 22 months (95% CI 15.7-26.2) in arm B. Conclusions: Although TACE + CRT tended to improve local control, this first Western randomised controlled trial showed that the combined strategy failed to increase PFS or overall survival and led more frequently to liver-related adverse effects. Impact and implications: Hepatocellular carcinoma is frequently treated by arterial embolisation of the tumour and more recently by external radiotherapy. We tried to determine whether combination of the two treatments (irradiation after embolisation) might produce interesting results. Our results in this prospective randomised study were not able to demonstrate a beneficial effect of combining embolisation and irradiation in these patients. On the contrary, we observed more adverse effects with the combined treatment. Clinical Trials Registration: NCT01300143.

8.
Radiat Oncol ; 17(1): 59, 2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35346270

RESUMO

BACKGROUND: Stereotactic body radiotherapy (SBRT) is an established local treatment method for patients with hepatic oligometastasis or oligoprogression. Liver metastases often occur in close proximity to radiosensitive organs at risk (OARs). This limits the possibility to apply sufficiently high doses needed for optimal local control. Online MR-guided radiotherapy (oMRgRT) is expected to hold potential to improve hepatic SBRT by offering superior soft-tissue contrast for enhanced target identification as well as the benefit of gating and daily real-time adaptive treatment. The MAESTRO trial therefore aims to assess the potential advantages of adaptive, gated MR-guided SBRT compared to conventional SBRT at a standard linac using an ITV (internal target volume) approach. METHODS: This trial is conducted as a prospective, randomized, three-armed phase II study in 82 patients with hepatic metastases (solid malignant tumor, 1-3 hepatic metastases confirmed by magnetic resonance imaging (MRI), maximum diameter of each metastasis ≤ 5 cm (in case of 3 metastases: sum of diameters ≤ 12 cm), age ≥ 18 years, Karnofsky Performance Score ≥ 60%). If a biologically effective dose (BED) ≥ 100 Gy (α/ß = 10 Gy) is feasible based on ITV-based planning, patients will be randomized to either MRgRT or ITV-based SBRT. If a lesion cannot be treated with a BED ≥ 100 Gy, the patient will be treated with MRgRT at the highest possible dose. Primary endpoint is the non-inferiority of MRgRT at the MRIdian Linac® system compared to ITV-based SBRT regarding hepatobiliary and gastrointestinal toxicity CTCAE III or higher. Secondary outcomes investigated are local, locoregional (intrahepatic) and distant tumor control, progression-free survival, overall survival, possible increase of BED using MRgRT if the BED is limited with ITV-based SBRT, treatment-related toxicity, quality of life, dosimetric parameters of radiotherapy plans as well as morphological and functional changes in MRI. Potential prognostic biomarkers will also be evaluated. DISCUSSION: MRgRT is known to be both highly cost- and labor-intensive. The MAESTRO trial aims to provide randomized, higher-level evidence for the dosimetric and possible consecutive clinical benefit of MR-guided, on-table adaptive and gated SBRT for dose escalation in critically located hepatic metastases adjacent to radiosensitive OARs. TRIAL REGISTRATION: The study has been prospectively registered on August 30th, 2021: Clinicaltrials.gov, "Magnetic Resonance-guided Adaptive Stereotactic Body Radiotherapy for Hepatic Metastases (MAESTRO)", NCT05027711.


Assuntos
Neoplasias Hepáticas , Radiocirurgia , Humanos , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/secundário , Imageamento por Ressonância Magnética , Estudos Prospectivos , Qualidade de Vida , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem
9.
JHEP Rep ; 4(8): 100498, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35860434

RESUMO

Hepatocellular carcinoma (HCC) accounts for 90% of liver tumours and is one of the leading causes of mortality. Cirrhosis due to viral hepatitis, alcohol or steatohepatitis is the major risk factor, while liver dysfunction due to cirrhosis is a deciding factor in its treatment. The treatment modalities for HCC include liver transplant, hepatectomy, radiofrequency ablation, transarterial chemoembolisation, transarterial radioembolisation, targeted therapy, immunotherapy, and radiation therapy. The role of radiation therapy has been refined with the increasing use of stereotactic body radiation therapy (SBRT). Trials over the past two decades have shown the efficacy and safety of SBRT in recurrent and definitive HCC, leading to its acceptance and adoption in some more recent guidelines. However, high quality level I evidence supporting its use is currently lacking. Smaller randomised trials of external beam radiation therapy suggest high efficacy of radiation therapy compared to other treatments for patients with unresectable HCC, and phase III trials comparing SBRT with other modalities are ongoing. In this review, we discuss the rationale for SBRT in HCC and present evidence on its efficacy, associated toxicity, and technological advances.

10.
JHEP Rep ; 4(7): 100508, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35712694

RESUMO

Background & Aims: High-dose irradiation is an essential tool to help control the growth of hepatic tumors, but it can cause radiation-induced liver disease (RILD). This life-threatening complication manifests itself months following radiation therapy and is characterized by fibrosis of the pericentral sinusoids. In this study, we aimed to establish a mouse model of RILD to investigate the underlying mechanism of radiation-induced liver fibrosis. Methods: Using a small animal image-guided radiation therapy platform, an irradiation scheme delivering 50 Gy as a single dose to a focal point in mouse livers was designed. Tissues were analyzed 1 and 6 days, and 6 and 20 weeks post-irradiation. Irradiated livers were assessed by histology, immunohistochemistry, imaging mass cytometry and RNA sequencing. Mitochondrial function was assessed using high-resolution respirometry. Results: At 6 and 20 weeks post-irradiation, pericentral fibrosis was visible in highly irradiated areas together with immune cell infiltration and extravasation of red blood cells. RNA sequencing analysis showed gene signatures associated with acute DNA damage, p53 activation, senescence and its associated secretory phenotype and fibrosis. Moreover, gene profiles of mitochondrial damage and an increase in mitochondrial DNA heteroplasmy were detected. Respirometry measurements of hepatocytes in vitro confirmed irradiation-induced mitochondrial dysfunction. Finally, the highly irradiated fibrotic areas showed markers of reactive oxygen species such as decreased glutathione and increased lipid peroxides and a senescence-like phenotype. Conclusions: Based on our mouse model of RILD, we propose that irradiation-induced mitochondrial DNA instability contributes to the development of fibrosis via the generation of excessive reactive oxygen species, p53 pathway activation and a senescence-like phenotype. Lay summary: Irradiation is an efficient cancer therapy, however, its applicability to the liver is limited by life-threatening radiation-induced hepatic fibrosis. We have developed a new mouse model of radiation-induced liver fibrosis, that recapitulates the human disease. Our model highlights the role of mitochondrial DNA instability in the development of irradiation-induced liver fibrosis. This new model and subsequent findings will help increase our understanding of the hepatic reaction to irradiation and to find strategies that protect the liver, enabling the expanded use of radiotherapy to treat hepatic tumors.

11.
Clin Transl Radiat Oncol ; 35: 70-75, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35633653

RESUMO

Background: For small primary liver tumors, favorable outcomes have been reported with both of proton beam therapy (PBT) and X-ray therapy (XRT). However, no clear criteria have been proposed in the cases for which and when of PBT or XRT has to be used. The aim of this study is to investigate cases that would benefit from PBT based on the predicted rate of hepatic toxicity. Materials and methods: Eligible patients were those who underwent PBT for primary liver tumors with a maximum diameter of ≤ 5 cm and Child-Pugh grade A (n = 40). To compare the PBT-plan, the treatment plan using volumetric modulated arc therapy was generated as the XRT-plan. The rate of predicted hepatic toxicity was estimated using five normal tissue complication probability (NTCP) models with three different endpoints. The differences in NTCP values (ΔNTCP) were calculated to determine the relative advantage of PBT. Factors predicting benefits of PBT were analyzed by logistic regression analysis. Results: From the dose-volume histogram comparisons, an advantage of PBT was found in sparing of the normal liver receiving low doses. The factors predicting the benefit of PBT differed depending on the selected NTCP model. From the five models, the total tumor diameter (sum of the target tumors), location (hepatic hilum vs other), and number of tumors (1 vs 2) were significant factors. Conclusions: From the radiation-related hepatic toxicity, factors were identified to predict benefits of PBT in primary liver tumors with Child-Pugh grade A, with the maximum tumor diameter of ≤ 5 cm.

12.
Cancers (Basel) ; 13(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919073

RESUMO

BACKGROUND: Radioembolization (RE) with yttrium-90 (90Y) resin microspheres yields heterogeneous response rates in with primary or secondary liver cancer. Radiation-induced liver disease (RILD) is a potentially life-threatening complication with higher prevalence in cirrhotics or patients exposed to previous chemotherapies. Advances in RILD prevention may help increasing tolerable radiation doses to improve patient outcomes. This study aimed to evaluate the impact of post-therapeutic RILD-prophylaxis in a cohort of intensely pretreated liver metastatic breast cancer patients; Methods: Ninety-three patients with liver metastases of breast cancer received RE between 2007 and 2016. All Patients received RILD prophylaxis for 8 weeks post-RE. From January 2014, RILD prophylaxis was changed from ursodeoxycholic acid (UDCA) and prednisolone (standard prophylaxis [SP]; n = 59) to pentoxifylline (PTX), UDCA and low-dose low molecular weight heparin (LMWH) (modified prophylaxis (MP); n = 34). The primary endpoint was toxicity including symptoms of RILD; Results: Dose exposure of normal liver parenchyma was higher in the modified vs. standard prophylaxis group (47.2 Gy (17.8-86.8) vs. 40.2 Gy (12.5-83.5), p = 0.017). All grade RILD events (mild: bilirubin ≥ 21 µmol/L (but <30 µmol/L); severe: (bilirubin ≥ 30 µmol/L and ascites)) were observed more frequently in the SP group than in the MP group, albeit without significance (7/59 vs. 1/34; p = 0.140). Severe RILD occurred in the SP group only (n = 2; p > 0.1). ALBI grade increased in 16.7% patients in the MP and in 27.1% patients in the SP group, respectively (group difference not significant); Conclusions: At established dose levels, mild or severe RILD events proved rare in our cohort. RILD prophylaxis with PTX, UDCA and LMWH appears to have an independent positive impact on OS in patients with metastatic breast cancer and may reduce the frequency and severity of RILD. Results of this study as well as pathophysiological considerations warrant further investigations of RILD prophylaxis presumably targeting combinations of anticoagulation (MP) and antiinflammation (SP) to increase dose prescriptions in radioembolization.

13.
Front Oncol ; 11: 760090, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970485

RESUMO

BACKGROUND: Information about radiation-induced liver disease (RILD) in hepatocellular carcinoma (HCC) patients preexisting hepatitis B cirrhosis with portal vein tumor thrombus (PVTT) extended to the main portal vein treated with stereotactic body radiotherapy (SBRT) is still inadequate and the predictive markers for RILD have not been cleared in these patients. The aim of the study is to identify factors that can be used to predict RILD and to evaluate the influence of RILD in these patients. METHODS: In our study, 59 patients were analyzed and evaluated from December 2015 to June 2019, according to the entry criteria. After treatment, 59 patients were followed up within the first month and then every 3 months. Hematology test, tumor markers, three-phasic CT scan of the lungs, and CT or MRI scan of the liver were performed at each follow up. RESULTS: Median overall survival time was 10.7 months (range, 5.8 to 14.9). RILD appeared in 17 of the 59 patients (28.8%) at the 3rd month after SBRT. In the univariate analysis, not only the CP score class (A or B) but also each different pretreatment CP score (p < 0.05) was a significant predictive factor of RILD. More RILD cases were detected with the increase of CP score. The recovery rate decreased as the baseline CP score increased (p < 0.05). It was found that the overall survival time was affected by only baseline CP score and RILD (p < 0.05). CONCLUSIONS: The development of RILD has a dependency on the CP score in these patients. CP scores before treatment and RILD are significantly associated with overall survival. SBRT is an effective and safe method for patients with CP ≤ B7. For patients with CP-B8, liver function should be monitored more frequently. It is not safe enough for the SBRT treatment in CP-B9 patients.

14.
Cancer Radiother ; 25(6-7): 723-728, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34391649

RESUMO

The aim of this article is to review unrecognized toxicities resulting from radiation therapy of digestive neoplasms. Due to their precocious occurrence, acute toxicities are well-known by radiation oncologist, and their treatment well-established. Thus, acute toxicities will not be described in this review. We will focus on incidence, diagnosis, and management of late and uncommon toxicities occurring in the digestive tract and digestive organs. Prevention, by respecting healthy tissues constraints, is the main tool to reduce incidence of those rare complications. Nonetheless, once installed, late toxicities remain a major burden in terms of quality of life and can even be life threatening. Hence, information and education about their diagnosis and management is important.


Assuntos
Neoplasias do Sistema Digestório/radioterapia , Lesões por Radiação/complicações , Canal Anal/efeitos da radiação , Duodeno/efeitos da radiação , Esôfago/efeitos da radiação , Humanos , Incidência , Pâncreas/efeitos da radiação , Lesões por Radiação/epidemiologia , Reto/efeitos da radiação , Estômago/efeitos da radiação
15.
Expert Rev Gastroenterol Hepatol ; 14(12): 1195-1201, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32886888

RESUMO

INTRODUCTION: Stereotactic Body Radiotherapy (SBRT) in liver tumors allows ablative radiation doses in tumors preserving the liver tissue. However, liver is a parallel organ allowing high doses in a small region to preserve its function. If this is not possible, radio-induced liver toxicity is produced. Radio-induced liver toxicity or radio-induced liver disease (RILD) is the most serious toxicity in liver radiotherapy. AREAS COVERED: In this review, we analyzed published literature on PubMed and MEDLINE. We included papers in English language with information about RILD characteristics, diagnostic, risk factors, pathophysiology, and treatment. All citations were evaluated for relevant content and validation. EXPERT OPINION: The study of RILD is fundamental before the implementation of liver SBRT. Radio-induced liver toxicity is a complication that can be fatal for patients. This is a diagnosis of exclusion and it is essential that experts in the treatment of hepatic SBRT know about it and anticipate its development. The study and development of molecular or imaging biomarkers could be key in their diagnosis and prevention.


Assuntos
Fígado/efeitos da radiação , Radiocirurgia/efeitos adversos , Biomarcadores/análise , Biomarcadores/sangue , Diagnóstico Diferencial , Humanos , Hepatopatias/diagnóstico , Hepatopatias/etiologia , Hepatopatias/fisiopatologia , Lesões por Radiação/diagnóstico , Lesões por Radiação/etiologia , Lesões por Radiação/fisiopatologia , Fatores de Risco
16.
Radiother Oncol ; 148: 89-96, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32344262

RESUMO

BACKGROUND AND PURPOSE: Radiation-induced lung damage (RILD) is a common consequence of lung cancer radiotherapy (RT) with unclear evolution over time. We quantify radiological RILD longitudinally and correlate it with dosimetry and respiratory morbidity. MATERIALS AND METHODS: CTs were available pre-RT and at 3, 6, 12 and 24-months post-RT for forty-five subjects enrolled in a phase 1/2 clinical trial of isotoxic, dose-escalated chemoradiotherapy for locally advanced non-small cell lung cancer. Fifteen CT-based measures of parenchymal, pleural and lung volume change, and anatomical distortions, were calculated. Respiratory morbidity was assessed with the Medical Research Council (MRC) dyspnoea score and spirometric pulmonary function tests (PFTs): FVC, FEV1, FEV1/FVC and DLCO. RESULTS: FEV1, FEV1/FVC and MRC scores progressively declined post-RT; FVC decreased by 6-months before partially recovering. Radiologically, an early phase (3-6 months) of acute inflammation was characterised by reversible parenchymal change and non-progressive anatomical distortion. A phase of chronic scarring followed (6-24 months) with irreversible parenchymal change, progressive volume loss and anatomical distortion. Post-RT increase in contralateral lung volume was common. Normal lung volume shrinkage correlated longitudinally with mean lung dose (r = 0.30-0.40, p = 0.01-0.04). Radiological findings allowed separation of patients with predominant acute versus chronic RILD; subjects with predominantly chronic RILD had poorer pre-RT lung function. CONCLUSIONS: CT-based measures enable detailed quantification of the longitudinal evolution of RILD. The majority of patients developed progressive lung damage, even when the early phase was absent or mild. Pre-RT lung function and RT dosimetry may allow to identify subjects at increased risk of RILD.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Testes de Função Respiratória , Tomografia Computadorizada por Raios X
17.
Radiother Oncol ; 135: 100-106, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31015154

RESUMO

PURPOSE: To predict the probability of radiation-induced liver toxicity (RILT) and implement the normal tissue complication probability (NTCP) model-based approach considering confidence intervals (CIs) to select patients for new treatment techniques, such as proton beam therapy, based on a certain NTCP reduction (ΔNTCP) threshold for primary liver cancer patients. METHODS AND MATERIALS: Common Toxicity Criteria for Adverse Events (CTCAE) grade ≥2 RILT was scored. The Lyman NTCP models predicting the probability of CTCAE grade ≥2 RILT as a function of the fraction-size adjusted mean liver dose (MLD), using reference fraction size = 2 Gy/fraction and α/ß ratio = 2 Gy, were fitted using the maximum likelihood method. At certain combinations of MLDs, ΔNTCP with a CI was evaluated by the delta method. RESULTS: Of the 239 patients, the incidence of CTCAE grade ≥2 RILT was 55% (46% in the Child-Pugh (CP)-A vs. 81% in the CP-B/C, p < 0.001). Among 180 CP-A patients, 40% who had viral hepatitis infections experienced toxicity vs. 32% in the nonhepatitis subgroup. The MLD was 18 Gy in the toxicity group vs. 16.1 Gy in the nontoxicity group (p = 0.002). The estimated NTCP model parameters specific to the patient subgroups and the ΔNTCP with CI assuming a particular CP classification and viral hepatitis infection status were considerably different which possible changed treatment decision. CONCLUSIONS: Patients with CP-A and viral hepatitis infection or CP-B/C cirrhosis had greater susceptibility to CTCAE grade ≥2 RILT. The estimated NTCP and ΔNTCP for individual patients along with a consideration of uncertainties improve the reliability of the NTCP model-based approach.


Assuntos
Neoplasias Hepáticas/radioterapia , Fígado/efeitos da radiação , Lesões por Radiação/epidemiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Probabilidade , Incerteza
18.
Cardiovasc Intervent Radiol ; 42(3): 405-412, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30603976

RESUMO

PURPOSE: To investigate clinical feasibility, technical success and toxicity of 166Ho-radioembolization (166Ho-RE) as new approach for treatment of hepatocellular carcinomas (HCC) and to assess postinterventional calculation of exact dosimetry through quantitative analysis of MR images. MATERIALS AND METHODS: From March 2017 to April 2018, nine patients suffering from HCC were treated with 166Ho-RE. To calculate mean doses on healthy liver/tumor tissue, MR was performed within the first day after treatment. For evaluation of hepatotoxicity and to rule out radioembolization-induced liver disease (REILD), the Model for End-Stage Liver Disease (MELD) Score, the Common Terminology Criteria for Adverse Events and specific laboratory parameters were used 1-day pre- and posttreatment and after 60 days. After 6 months, MR/CT follow-up was performed. RESULTS: In five patients the right liver lobe, in one patient the left liver lobe and in three patients both liver lobes were treated. Median administered activity was 3.7 GBq (range 1.7-5.9 GBq). Median dose on healthy liver tissue was 41 Gy (21-55 Gy) and on tumor tissue 112 Gy (61-172 Gy). Four patients suffered from mild postradioembolization syndrome. No significant differences in median MELD-Score were observed pre-, posttherapeutic and 60 days after 166Ho-RE. No deterioration of liver function and no indicators of REILD were observed. One patient showed a complete response, four a partial response, three a stable disease and one a progressive disease at the 6 months follow-up. CONCLUSION: 166Ho-RE seems to be a feasible and safe treatment option with no significant hepatotoxicity for treatment of HCC.


Assuntos
Braquiterapia/métodos , Carcinoma Hepatocelular/radioterapia , Hólmio/uso terapêutico , Neoplasias Hepáticas/radioterapia , Radioisótopos/uso terapêutico , Idoso , Carcinoma Hepatocelular/diagnóstico por imagem , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Fígado/diagnóstico por imagem , Testes de Função Hepática , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Microesferas , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento
19.
J Clin Exp Hepatol ; 9(3): 345-353, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360027

RESUMO

Given the high mortality rate and clinical impact associated with sinusoidal obstruction syndrome (SOS), many studies have attempted to better characterize the disease and potential treatment strategies. However, the unpredictability of SOS onset represents a major obstacle when developing reproducible and controlled clinical trials in humans. Similarly, although in vitro studies have elucidated many of the molecular and cellular mechanisms of SOS, they often lack clinical relevance and translatability, highlighting the importance of experimental in vivo research. Animal models have greatly varied in the approach used to induce SOS in accordance with the numerous causes of human disease. Thus far, the most common and prevalent model is the monocrotaline-induced model in rats, which has served as the basis for both new diagnostic and treatment studies and has been revised over the last 20 years to optimize its use. Furthermore, radiotherapy, oxaliplatin-based chemotherapy, and even hematopoietic stem cell transplantation have been recently used to better replicate human SOS in animals. Nevertheless, because of the novelty of such research, further studies should be conducted to better understand the reproducibility and applicability of these newer models. Thus, this review seeks to summarize the methods and results of experimental in vivo models of SOS and compare the efficacy of these various adaptations.

20.
Radiat Oncol ; 13(1): 206, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30348194

RESUMO

BACKGROUND: Radiotherapy of liver metastases is commonly being performed with photon-beam based stereotactic body radiation therapy (SBRT). The high risk for radiation-induced liver disease (RILD) is a limiting factor in these treatments. The use of proton-beam based SBRT could potentially improve the sparing of the healthy part of the liver. The aim of this study was to use estimations of normal tissue complication probability (NTCP) to identify liver-metastases patients that could benefit from being treated with intensity-modulated proton therapy (IMPT), based on the reduction of the risk for RILD. METHODS: Ten liver metastases patients, previously treated with photon-beam based SBRT, were retrospectively planned with IMPT. A CTV-based robust optimisation (accounting for setup and range uncertainties), combined with a PTV-based conventional optimisation, was performed. A robustness criterion was defined for the CTV (V95% > 98% for at least 10 of the 12 simulated scenarios). The NTCP was estimated for different endpoints using the Lyman-Kutcher-Burman model. The ΔNTCP (NTCPIMPT - NTCPSBRT) for RILD was registered for each patient. The patients for which the NTCP (RILD) < 5% were also identified. A generic relative biological effectiveness of 1.1 was assumed for the proton beams. RESULTS: For all patients, the objectives set for the PTV and the robustness criterion set for the CTV were fulfilled with the IMPT plans. An improved sparing of the healthy part of the liver, right kidney, lungs, spinal cord and the skin was achieved with the IMPT plans, compared to the SBRT plans. Mean liver doses larger than the threshold value of 32 Gy led to NTCP values for RILD exceeding 5% (7 patients with SBRT and 3 patients with the IMPT plans). ΔNTCP values (RILD) ranging between - 98% and - 17% (7 patients) and between 0 and 2% (3 patients), were calculated. CONCLUSIONS: In this study, liver metastases patients that could benefit from being treated with IMPT, based on the NTCP reductions, were identified. The clinical implementation of such a model-based approach to select liver metastases patients to proton therapy needs to be made with caution while considering the uncertainties involved in the NTCP estimations.


Assuntos
Hepatopatias/etiologia , Neoplasias Hepáticas/radioterapia , Fótons/efeitos adversos , Terapia com Prótons/efeitos adversos , Lesões por Radiação/etiologia , Radiocirurgia/efeitos adversos , Radioterapia de Intensidade Modulada/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Humanos , Hepatopatias/patologia , Masculino , Prognóstico , Lesões por Radiação/patologia , Dosagem Radioterapêutica , Eficiência Biológica Relativa , Estudos Retrospectivos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa