Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 758
Filtrar
1.
Annu Rev Biochem ; 93(1): 79-108, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38594920

RESUMO

DEAD- and DExH-box ATPases (DDX/DHXs) are abundant and highly conserved cellular enzymes ubiquitously involved in RNA processing. By remodeling RNA-RNA and RNA-protein interactions, they often function as gatekeepers that control the progression of diverse RNA maturation steps. Intriguingly, most DDX/DHXs localize to membraneless organelles (MLOs) such as nucleoli, nuclear speckles, stress granules, or processing bodies. Recent findings suggest not only that localization to MLOs can promote interaction between DDX/DHXs and their targets but also that DDX/DHXs are key regulators of MLO formation and turnover through their condensation and ATPase activity.In this review, we describe the molecular function of DDX/DHXs in ribosome biogenesis, messenger RNA splicing, export, translation, and storage or decay as well as their association with prominent MLOs. We discuss how the enzymatic function of DDX/DHXs in RNA processing is linked to DDX/DHX condensation, the accumulation of ribonucleoprotein particles and MLO dynamics. Future research will reveal how these processes orchestrate the RNA life cycle in MLO space and DDX/DHX time.


Assuntos
RNA Helicases DEAD-box , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/química , Humanos , Animais , RNA/metabolismo , RNA/genética , RNA/química , Splicing de RNA , Organelas/metabolismo , Organelas/genética , Ribossomos/metabolismo , Ribossomos/genética , Dobramento de RNA , Processamento Pós-Transcricional do RNA , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Nucléolo Celular/metabolismo , Nucléolo Celular/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
2.
Cell ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38925112

RESUMO

Most mammalian genes have multiple polyA sites, representing a substantial source of transcript diversity regulated by the cleavage and polyadenylation (CPA) machinery. To better understand how these proteins govern polyA site choice, we introduce CPA-Perturb-seq, a multiplexed perturbation screen dataset of 42 CPA regulators with a 3' scRNA-seq readout that enables transcriptome-wide inference of polyA site usage. We develop a framework to detect perturbation-dependent changes in polyadenylation and characterize modules of co-regulated polyA sites. We find groups of intronic polyA sites regulated by distinct components of the nuclear RNA life cycle, including elongation, splicing, termination, and surveillance. We train and validate a deep neural network (APARENT-Perturb) for tandem polyA site usage, delineating a cis-regulatory code that predicts perturbation response and reveals interactions between regulatory complexes. Our work highlights the potential for multiplexed single-cell perturbation screens to further our understanding of post-transcriptional regulation.

3.
Cell ; 184(23): 5775-5790.e30, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34739832

RESUMO

RNA, DNA, and protein molecules are highly organized within three-dimensional (3D) structures in the nucleus. Although RNA has been proposed to play a role in nuclear organization, exploring this has been challenging because existing methods cannot measure higher-order RNA and DNA contacts within 3D structures. To address this, we developed RNA & DNA SPRITE (RD-SPRITE) to comprehensively map the spatial organization of RNA and DNA. These maps reveal higher-order RNA-chromatin structures associated with three major classes of nuclear function: RNA processing, heterochromatin assembly, and gene regulation. These data demonstrate that hundreds of ncRNAs form high-concentration territories throughout the nucleus, that specific RNAs are required to recruit various regulators into these territories, and that these RNAs can shape long-range DNA contacts, heterochromatin assembly, and gene expression. These results demonstrate a mechanism where RNAs form high-concentration territories, bind to diffusible regulators, and guide them into compartments to regulate essential nuclear functions.


Assuntos
Núcleo Celular/metabolismo , RNA/metabolismo , Animais , Núcleo Celular/efeitos dos fármacos , Homólogo 5 da Proteína Cromobox/metabolismo , Cromossomos/metabolismo , DNA/metabolismo , DNA Satélite/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dactinomicina/farmacologia , Feminino , Genoma , Células HEK293 , Heterocromatina/metabolismo , Humanos , Camundongos , Modelos Biológicos , Família Multigênica , RNA Polimerase II/metabolismo , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Processamento Pós-Transcricional do RNA/genética , Splicing de RNA/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica/efeitos dos fármacos
4.
Cell ; 181(3): 621-636.e22, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32259487

RESUMO

Long noncoding RNAs (lncRNAs) evolve more rapidly than mRNAs. Whether conserved lncRNAs undergo conserved processing, localization, and function remains unexplored. We report differing subcellular localization of lncRNAs in human and mouse embryonic stem cells (ESCs). A significantly higher fraction of lncRNAs is localized in the cytoplasm of hESCs than in mESCs. This turns out to be important for hESC pluripotency. FAST is a positionally conserved lncRNA but is not conserved in its processing and localization. In hESCs, cytoplasm-localized hFAST binds to the WD40 domain of the E3 ubiquitin ligase ß-TrCP and blocks its interaction with phosphorylated ß-catenin to prevent degradation, leading to activated WNT signaling, required for pluripotency. In contrast, mFast is nuclear retained in mESCs, and its processing is suppressed by the splicing factor PPIE, which is highly expressed in mESCs but not hESCs. These findings reveal that lncRNA processing and localization are previously under-appreciated contributors to the rapid evolution of function.


Assuntos
Espaço Intracelular/genética , RNA Longo não Codificante/metabolismo , Células-Tronco/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Splicing de RNA/genética , RNA Longo não Codificante/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Células-Tronco/patologia
5.
Cell ; 169(3): 523-537.e15, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28431250

RESUMO

The distribution of sense and antisense strand DNA mutations on transcribed duplex DNA contributes to the development of immune and neural systems along with the progression of cancer. Because developmentally matured B cells undergo biologically programmed strand-specific DNA mutagenesis at focal DNA/RNA hybrid structures, they make a convenient system to investigate strand-specific mutagenesis mechanisms. We demonstrate that the sense and antisense strand DNA mutagenesis at the immunoglobulin heavy chain locus and some other regions of the B cell genome depends upon localized RNA processing protein complex formation in the nucleus. Both the physical proximity and coupled activities of RNA helicase Mtr4 (and senataxin) with the noncoding RNA processing function of RNA exosome determine the strand-specific distribution of DNA mutations. Our study suggests that strand-specific DNA mutagenesis-associated mechanisms will play major roles in other undiscovered aspects of organismic development.


Assuntos
Linfócitos B/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Núcleo Celular/metabolismo , DNA Helicases/metabolismo , Exorribonucleases/genética , Instabilidade Genômica , Cadeias Pesadas de Imunoglobulinas/genética , Camundongos , Enzimas Multifuncionais , Proteínas Nucleares/genética , RNA Helicases , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/genética
6.
Mol Cell ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39032489

RESUMO

The modular Integrator complex is a transcription regulator that is essential for embryonic development. It attenuates coding gene expression via premature transcription termination and performs 3'-processing of non-coding RNAs. For both activities, Integrator requires endonuclease activity that is harbored by an RNA cleavage module consisting of INTS4-9-11. How correct assembly of Integrator modules is achieved remains unknown. Here, we show that BRAT1 and WDR73 are critical biogenesis factors for the human cleavage module. They maintain INTS9-11 inactive during maturation by physically blocking the endonuclease active site and prevent premature INTS4 association. Furthermore, BRAT1 facilitates import of INTS9-11 into the nucleus, where it is joined by INTS4. Final BRAT1 release requires locking of the mature cleavage module conformation by inositol hexaphosphate (IP6). Our data explain several neurodevelopmental disorders caused by BRAT1, WDR73, and INTS11 mutations as Integrator assembly defects and reveal that IP6 is an essential co-factor for cleavage module maturation.

7.
Mol Cell ; 83(13): 2258-2275.e11, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37369199

RESUMO

The pre-mRNA life cycle requires intron processing; yet, how intron-processing defects influence splicing and gene expression is unclear. Here, we find that TTDN1/MPLKIP, which is encoded by a gene implicated in non-photosensitive trichothiodystrophy (NP-TTD), functionally links intron lariat processing to spliceosomal function. The conserved TTDN1 C-terminal region directly binds lariat debranching enzyme DBR1, whereas its N-terminal intrinsically disordered region (IDR) binds the intron-binding complex (IBC). TTDN1 loss, or a mutated IDR, causes significant intron lariat accumulation, as well as splicing and gene expression defects, mirroring phenotypes observed in NP-TTD patient cells. A Ttdn1-deficient mouse model recapitulates intron-processing defects and certain neurodevelopmental phenotypes seen in NP-TTD. Fusing DBR1 to the TTDN1 IDR is sufficient to recruit DBR1 to the IBC and circumvents the functional requirement for TTDN1. Collectively, our findings link RNA lariat processing with splicing outcomes by revealing the molecular function of TTDN1.


Assuntos
Síndromes de Tricotiodistrofia , Animais , Camundongos , Íntrons/genética , Síndromes de Tricotiodistrofia/genética , RNA Nucleotidiltransferases/genética , Splicing de RNA
8.
Annu Rev Biochem ; 84: 325-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25784054

RESUMO

Throughout their lifetimes, messenger RNAs (mRNAs) associate with proteins to form ribonucleoproteins (mRNPs). Since the discovery of the first mRNP component more than 40 years ago, what is known as the mRNA interactome now comprises >1,000 proteins. These proteins bind mRNAs in myriad ways with varying affinities and stoichiometries, with many assembling onto nascent RNAs in a highly ordered process during transcription and precursor mRNA (pre-mRNA) processing. The nonrandom distribution of major mRNP proteins observed in transcriptome-wide studies leads us to propose that mRNPs are organized into three major domains loosely corresponding to 5' untranslated regions (UTRs), open reading frames, and 3' UTRs. Moving from the nucleus to the cytoplasm, mRNPs undergo extensive remodeling as they are first acted upon by the nuclear pore complex and then by the ribosome. When not being actively translated, cytoplasmic mRNPs can assemble into large multi-mRNP assemblies or be permanently disassembled and degraded. In this review, we aim to give the reader a thorough understanding of past and current eukaryotic mRNP research.


Assuntos
Ribonucleoproteínas/química , Transporte Ativo do Núcleo Celular , Animais , Humanos , Biossíntese de Proteínas , Splicing de RNA , Estabilidade de RNA , RNA Mensageiro/metabolismo , Transcrição Gênica
9.
Mol Cell ; 82(13): 2505-2518.e7, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35688157

RESUMO

In mammalian cells, spurious transcription results in a vast repertoire of unproductive non-coding RNAs, whose deleterious accumulation is prevented by rapid decay. The nuclear exosome targeting (NEXT) complex plays a central role in directing non-functional transcripts to exosome-mediated degradation, but the structural and molecular mechanisms remain enigmatic. Here, we elucidated the architecture of the human NEXT complex, showing that it exists as a dimer of MTR4-ZCCHC8-RBM7 heterotrimers. Dimerization preconfigures the major MTR4-binding region of ZCCHC8 and arranges the two MTR4 helicases opposite to each other, with each protomer able to function on many types of RNAs. In the inactive state of the complex, the 3' end of an RNA substrate is enclosed in the MTR4 helicase channel by a ZCCHC8 C-terminal gatekeeping domain. The architecture of a NEXT-exosome assembly points to the molecular and regulatory mechanisms with which the NEXT complex guides RNA substrates to the exosome.


Assuntos
Exossomos , RNA , Núcleo Celular/genética , Núcleo Celular/metabolismo , RNA Helicases DEAD-box/metabolismo , DNA Helicases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/genética , Exossomos/metabolismo , Humanos , Ligação Proteica , RNA/genética , RNA/metabolismo , RNA Helicases/metabolismo , Estabilidade de RNA/genética
10.
Mol Cell ; 82(16): 2967-2981.e6, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35830855

RESUMO

We generate high-precision measurements of the in vivo rates of both chemical steps of pre-mRNA splicing across the genome-wide complement of substrates in yeast by coupling metabolic labeling, multiplexed primer-extension sequencing, and kinetic modeling. We demonstrate that the rates of intron removal vary widely, splice-site sequences are primary determinants of 1st step but have little apparent impact on 2nd step rates, and the 2nd step is generally faster than the 1st step. Ribosomal protein genes (RPGs) are spliced faster than non-RPGs at each step, and RPGs share evolutionarily conserved properties that may contribute to their faster splicing. A genetic variant defective in the 1st step of the pathway reveals a genome-wide defect in the 1st step but an unexpected, transcript-specific change in the 2nd step. Our work demonstrates that extended co-transcriptional association is an important determinant of splicing rate, a conclusion at odds with recent claims of ultra-fast splicing.


Assuntos
Precursores de RNA , Splicing de RNA , Íntrons/genética , Cinética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
Mol Cell ; 82(5): 1035-1052.e9, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35182477

RESUMO

The nucleus is highly compartmentalized through the formation of distinct classes of membraneless domains. However, the composition and function of many of these structures are not well understood. Using APEX2-mediated proximity labeling and RNA sequencing, we surveyed human transcripts associated with nuclear speckles, several additional domains, and the lamina. Remarkably, speckles and lamina are associated with distinct classes of retained introns enriched in genes that function in RNA processing, translation, and the cell cycle, among other processes. In contrast to the lamina-proximal introns, retained introns associated with speckles are relatively short, GC-rich, and enriched for functional sites of RNA-binding proteins that are concentrated in these domains. They are also highly differentially regulated across diverse cellular contexts, including the cell cycle. Thus, our study provides a resource of nuclear domain-associated transcripts and further reveals speckles and lamina as hubs of distinct populations of retained introns linked to gene regulation and cell cycle progression.


Assuntos
Núcleo Celular , Proteínas de Ligação a RNA , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Humanos , Íntrons/genética , Splicing de RNA , Proteínas de Ligação a RNA/genética
12.
Genes Dev ; 36(3-4): 195-209, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35177537

RESUMO

The 3' ends of almost all eukaryotic mRNAs are generated in an essential two-step processing reaction: endonucleolytic cleavage of an extended precursor followed by the addition of a poly(A) tail. By reconstituting the reaction from overproduced and purified proteins, we provide a minimal list of 14 polypeptides that are essential and two that are stimulatory for RNA processing. In a reaction depending on the polyadenylation signal AAUAAA, the reconstituted system cleaves pre-mRNA at a single preferred site corresponding to the one used in vivo. Among the proteins, cleavage factor I stimulates cleavage but is not essential, consistent with its prominent role in alternative polyadenylation. RBBP6 is required, with structural data showing it to contact and presumably activate the endonuclease CPSF73 through its DWNN domain. The C-terminal domain of RNA polymerase II is dispensable. ATP, but not its hydrolysis, supports RNA cleavage by binding to the hClp1 subunit of cleavage factor II with submicromolar affinity.


Assuntos
Poliadenilação , Precursores de RNA , Animais , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Mamíferos/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
13.
Genes Dev ; 36(3-4): 106-107, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35193945

RESUMO

It is every biochemist's dream to reconstitute a biological process in vitro using defined components, because doing so not only reduces a biological phenomenon to one or a series of biochemical reactions, but also defines the minimal list of essential components. In this issue of Genes & Development, Boreikaite and colleagues (pp. 210-224) and Schmidt and colleagues (pp. 195-209) report their independent reconstitution of human pre-mRNA 3' end processing.


Assuntos
Precursores de RNA , Processamento Pós-Transcricional do RNA , Humanos , Precursores de RNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética
14.
Annu Rev Genet ; 55: 161-181, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34416117

RESUMO

CRISPR-Cas adaptive immune systems in bacteria and archaea utilize short CRISPR RNAs (crRNAs) to guide sequence-specific recognition and clearance of foreign genetic material. Multiple crRNAs are stored together in a compact format called a CRISPR array that is transcribed and processed into the individual crRNAs. While the exact processing mechanisms vary widely, some CRISPR-Cas systems, including those encoding the Cas9 nuclease, rely on a trans-activating crRNA (tracrRNA). The tracrRNA was discovered in 2011 and was quickly co-opted to create single-guide RNAs as core components of CRISPR-Cas9 technologies. Since then, further studies have uncovered processes extending beyond the traditional role of tracrRNA in crRNA biogenesis, revealed Cas nucleases besides Cas9 that are dependent on tracrRNAs, and established new applications based on tracrRNA engineering. In this review, we describe the biology of the tracrRNA and how its ongoing characterization has garnered new insights into prokaryotic immune defense and enabled key technological advances.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Cinetoplastídeos , Archaea/genética , Biologia , Sistemas CRISPR-Cas/genética , RNA/genética , RNA Guia de Cinetoplastídeos/genética
15.
Mol Cell ; 81(1): 127-138.e4, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33212019

RESUMO

Riboswitches are thought generally to function by modulating transcription elongation or translation initiation. In rare instances, ligand binding to a riboswitch has been found to alter the rate of RNA degradation by directly stimulating or inhibiting nearby cleavage. Here, we show that guanidine-induced pseudoknot formation by the aptamer domain of a guanidine III riboswitch from Legionella pneumophila has a different effect, stabilizing mRNA by protecting distal cleavage sites en masse from ribonuclease attack. It does so by creating a coaxially base-paired obstacle that impedes scanning from a monophosphorylated 5' end to those sites by the regulatory endonuclease RNase E. Ligand binding by other riboswitch aptamers peripheral to the path traveled by RNase E does not inhibit distal cleavage. These findings reveal that a riboswitch aptamer can function independently of any overlapping expression platform to regulate gene expression by acting directly to prolong mRNA longevity in response to ligand binding.


Assuntos
Proteínas de Bactérias/metabolismo , Endorribonucleases/metabolismo , Legionella pneumophila/metabolismo , Dobramento de RNA , RNA Bacteriano/metabolismo , Riboswitch , Proteínas de Bactérias/genética , Endorribonucleases/genética , Legionella pneumophila/genética , RNA Bacteriano/genética
16.
Mol Cell ; 81(17): 3589-3603.e13, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34324863

RESUMO

Transcription elongation has emerged as a regulatory hub in gene expression of metazoans. A major control point occurs during early elongation before RNA polymerase II (Pol II) is released into productive elongation. Prior research has linked BRD4 with transcription elongation. Here, we use rapid BET protein and BRD4-selective degradation along with quantitative genome-wide approaches to investigate direct functions of BRD4 in Pol II transcription regulation. Notably, as an immediate consequence of acute BRD4 loss, promoter-proximal pause release is impaired, and transcriptionally engaged Pol II past this checkpoint undergoes readthrough transcription. An integrated proteome-wide analysis uncovers elongation and 3'-RNA processing factors as core BRD4 interactors. BRD4 ablation disrupts the recruitment of general 3'-RNA processing factors at the 5'-control region, which correlates with RNA cleavage and termination defects. These studies, performed in human cells, reveal a BRD4-mediated checkpoint and begin to establish a molecular link between 5'-elongation control and 3'-RNA processing.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Nucleares/fisiologia , Elongação da Transcrição Genética/fisiologia , Fatores de Transcrição/fisiologia , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Expressão Gênica , Histonas/metabolismo , Humanos , Camundongos , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/fisiologia , Fatores de Transcrição/metabolismo , Terminação da Transcrição Genética/fisiologia , Transcrição Gênica/genética , Transcrição Gênica/fisiologia
17.
Mol Cell ; 78(3): 411-422.e4, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32220646

RESUMO

Metazoan microRNAs require specific maturation steps initiated by Microprocessor, comprising Drosha and DGCR8. Lack of structural information for the assembled complex has hindered an understanding of how Microprocessor recognizes primary microRNA transcripts (pri-miRNAs). Here we present a cryoelectron microscopy structure of human Microprocessor with a pri-miRNA docked in the active site, poised for cleavage. The basal junction is recognized by a four-way intramolecular junction in Drosha, triggered by the Belt and Wedge regions that clamp over the ssRNA. The belt is important for efficiency and accuracy of pri-miRNA processing. Two dsRBDs form a molecular ruler to measure the stem length between the two dsRNA-ssRNA junctions. The specific organization of the dsRBDs near the apical junction is independent of Drosha core domains, as observed in a second structure in the partially docked state. Collectively, we derive a molecular model to explain how Microprocessor recognizes a pri-miRNA and accurately identifies the cleavage site.


Assuntos
MicroRNAs/química , Proteínas de Ligação a RNA/química , Ribonuclease III/química , Microscopia Crioeletrônica , Humanos , MicroRNAs/metabolismo , Modelos Moleculares , Conformação Proteica , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismo
18.
Mol Cell ; 79(3): 488-503.e11, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32585128

RESUMO

Transcription elongation rates influence RNA processing, but sequence-specific regulation is poorly understood. We addressed this in vivo, analyzing RNAPI in S. cerevisiae. Mapping RNAPI by Miller chromatin spreads or UV crosslinking revealed 5' enrichment and strikingly uneven local polymerase occupancy along the rDNA, indicating substantial variation in transcription speed. Two features of the nascent transcript correlated with RNAPI distribution: folding energy and GC content in the transcription bubble. In vitro experiments confirmed that strong RNA structures close to the polymerase promote forward translocation and limit backtracking, whereas high GC in the transcription bubble slows elongation. A mathematical model for RNAPI elongation confirmed the importance of nascent RNA folding in transcription. RNAPI from S. pombe was similarly sensitive to transcript folding, as were S. cerevisiae RNAPII and RNAPIII. For RNAPII, unstructured RNA, which favors slowed elongation, was associated with faster cotranscriptional splicing and proximal splice site use, indicating regulatory significance for transcript folding.


Assuntos
RNA Polimerase III/genética , RNA Polimerase II/genética , RNA Polimerase I/genética , RNA Fúngico/química , Saccharomyces cerevisiae/genética , Elongação da Transcrição Genética , Composição de Bases , Sequência de Bases , Sítios de Ligação , Cromatina/química , Cromatina/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Regulação Fúngica da Expressão Gênica , Ligação Proteica , Dobramento de RNA , RNA Polimerase I/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase III/metabolismo , Sítios de Splice de RNA , Splicing de RNA , RNA Fúngico/genética , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Termodinâmica
19.
Trends Biochem Sci ; 48(3): 244-258, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36344372

RESUMO

RNA-dependent DEAD-box ATPases (DDXs) are emerging as major regulators of RNA-containing membrane-less organelles (MLOs). On the one hand, oligomerizing DDXs can promote condensate formation 'in cis', often using RNA as a scaffold. On the other hand, DDXs can disrupt RNA-RNA and RNA-protein interactions and thereby 'in trans' remodel the multivalent interactions underlying MLO formation. In this review, we discuss the best studied examples of DDXs modulating MLOs in cis and in trans. Further, we illustrate how this contributes to the dynamic assembly and turnover of MLOs which might help cells to modulate RNA sequestration and processing in a temporal and spatial manner.


Assuntos
Condensados Biomoleculares , Organelas , Adenosina Trifosfatases , RNA , RNA Helicases DEAD-box
20.
Physiol Rev ; 100(2): 673-694, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31751167

RESUMO

The central dogma of molecular biology illustrates the importance of mRNAs as critical mediators between genetic information encoded at the DNA level and proteomes/metabolomes that determine the diverse functional outcome at the cellular and organ levels. Although the total number of protein-producing (coding) genes in the mammalian genome is ~20,000, it is evident that the intricate processes of cardiac development and the highly regulated physiological regulation in the normal heart, as well as the complex manifestation of pathological remodeling in a diseased heart, would require a much higher degree of complexity at the transcriptome level and beyond. Indeed, in addition to an extensive regulatory scheme implemented at the level of transcription, the complexity of transcript processing following transcription is dramatically increased. RNA processing includes post-transcriptional modification, alternative splicing, editing and transportation, ribosomal loading, and degradation. While transcriptional control of cardiac genes has been a major focus of investigation in recent decades, a great deal of progress has recently been made in our understanding of how post-transcriptional regulation of mRNA contributes to transcriptome complexity. In this review, we highlight some of the key molecular processes and major players in RNA maturation and post-transcriptional regulation. In addition, we provide an update to the recent progress made in the discovery of RNA processing regulators implicated in cardiac development and disease. While post-transcriptional modulation is a complex and challenging problem to study, recent technological advancements are paving the way for a new era of exciting discoveries and potential clinical translation in the context of cardiac biology and heart disease.


Assuntos
Cardiopatias/metabolismo , Coração/embriologia , Miocárdio/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias/tratamento farmacológico , Cardiopatias/genética , Cardiopatias/patologia , Humanos , Morfogênese , Miocárdio/patologia , Estabilidade de RNA , RNA Mensageiro/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa