Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 107(7): 4822-4832, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38490540

RESUMO

The Finnish Ayrshire (FAY) belongs to the Nordic Red breeds and is characterized by high milk yield, high milk components, good fertility, and functional conformation. The FAY breeding program is based on genomic selection. Despite the benefits of selection on breeding values, autozygosity in the genome may increase due to selection, and increased autozygosity may cause inbreeding depression in selected traits. However, there is lack of studies concerning selection signatures in the FAY after genomic selection introduction. The aim of this study was to identify signatures of selection in FAY after the introduction of genomic selection. Genomic data included 45,834 SNPs. The genotyped animals were divided into 2 groups: animals born before genomic selection introduction (6,108 cows) and animals born after genomic selection introduction (47,361 cows). We identified the selection signatures using 3 complementary methods: 2 based on identification of selection signatures from runs of homozygosity (ROH) islands and one based on the decay of site-specific extended haplotype between populations at SNP sites (Rsb). In total, we identified 34 ROH islands on chromosomes 1, 3, 6, 8, 12-15, 17, 19, 22, and 26 in FAY animals born before genomic selection (between 1980 and 2011) and 30 ROH islands on chromosomes 1-3, 13-17, 22, and 25-26 in FAY animals born after genomic selection introduction (between 2015 and 2020). We additionally detected 22 ΔROH islands on chromosomes 2-3, 11, 13, 14, 16, 18, 20, and 25-26. Finally, a total of 31 Rsb regions on chromosomes 2, 3, 14, 18, 20, and 25 were identified. Based on the results, genomic selection has favored certain alleles and haplotypes on genomic regions related to traits relevant in the FAY breeding program: milk production, fertility, growth, beef production traits, and feed efficiency. Several genes related to these traits (e.g., PLA2G4A, MECR, CHUK, COX15, RICTOR, SHISA9, and SEMA4G) overlapped or partially overlapped the observed selection signature regions. The association of genotypes within these regions and their effects on traits relevant in the FAY breeding program should be studied and genetic regions undergoing selection monitored in the FAY population.


Assuntos
Cruzamento , Genômica , Genótipo , Polimorfismo de Nucleotídeo Único , Seleção Genética , Animais , Bovinos/genética , Feminino , Genoma , Fenótipo , Leite
2.
BMC Genomics ; 23(1): 373, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581549

RESUMO

BACKGROUND: Runs of homozygosity (ROH) are continuous homozygous regions typically located in the DNA sequence of diploid organisms. Identifications of ROH that lead to reduced performance can provide valuable insight into the genetic architecture of complex traits. Here, we systematically investigated the population genetic structure of five Anhui indigenous pig breeds (AHIPs), and compared them to those of five Western commercial pig breeds (WECPs). Furthermore, we examined the occurrence and distribution of ROHs in the five AHIPs and estimated the inbreeding coefficients based on the ROHs (FROH) and homozygosity (FHOM). Finally, we identified genomic regions with high frequencies of ROHs and annotated candidate genes contained therein. RESULTS: The WECPs and AHIPs were clearly differentiated into two separate clades consistent with their geographical origins, as revealed by the population structure and principal component analysis. We identified 13,530 ROHs across all individuals, of which 4,555 and 8,975 ROHs were unique to AHIPs and WECPs, respectively. Most ROHs identified in our study were short (< 10 Mb) or medium (10-20 Mb) in length. WECPs had significantly higher numbers of short ROHs, and AHIPs generally had longer ROHs. FROH values were significantly lower in AHIPs than in WECPs, indicating that breed improvement and conservation programmes were successful in AHIPs. On average, FROH and FHOM values were highly correlated (0.952-0.991) in AHIPs and WECPs. A total of 27 regions had a high frequency of ROHs and contained 17 key candidate genes associated with economically important traits in pigs. Among these, nine candidate genes (CCNT2, EGR2, MYL3, CDH13, PROX1, FLVCR1, SETD2, FGF18, and FGF20) found in WECPs were related to muscular and skeletal development, whereas eight candidate genes (CSN1S1, SULT1E1, TJP1, ZNF366, LIPC, MCEE, STAP1, and DUSP) found in AHIPs were associated with health, reproduction, and fatness traits. CONCLUSION: Our findings provide a useful reference for the selection and assortative mating of pig breeds, laying the groundwork for future research on the population genetic structures of AHIPs, ultimately helping protect these local varieties.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Animais , Genótipo , Homozigoto , Endogamia , Suínos/genética
3.
BMC Genomics ; 22(1): 7, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407115

RESUMO

BACKGROUND: Population history, production system and within-breed selection pressure impacts the genome architecture resulting in reduced genetic diversity and increased frequency of runs of homozygosity islands. This study tested the hypothesis that production systems geared towards specific traits of importance or natural or artificial selection pressures influenced the occurrence and distribution of runs of homozygosity (ROH) in the South African sheep population. The Illumina OvineSNP50 BeadChip was used to genotype 400 sheep belonging to 13 breeds from South Africa representing mutton, pelt and mutton and wool dual-purpose breeds, including indigenous non-descript breeds that are reared by smallholder farmers. To get more insight into the autozygosity and distribution of ROH islands of South African breeds relative to global populations, 623 genotypes of sheep from worldwide populations were included in the analysis. Runs of homozygosity were computed at cut-offs of 1-6 Mb, 6-12 Mb, 12-24 Mb, 24-48 Mb and > 48 Mb, using the R package detectRUNS. The Golden Helix SVS program was used to investigate the ROH islands. RESULTS: A total of 121,399 ROH with mean number of ROH per animal per breed ranging from 800 (African White Dorper) to 15,097 (Australian Poll Dorset) were obtained. Analysis of the distribution of ROH according to their size showed that, for all breeds, the majority of the detected ROH were in the short (1-6 Mb) category (88.2%). Most animals had no ROH > 48 Mb. Of the South African breeds, the Nguni and the Blackhead Persian displayed high ROH based inbreeding (FROH) of 0.31 ± 0.05 and 0.31 ± 0.04, respectively. Highest incidence of common runs per SNP across breeds was observed on chromosome 10 with over 250 incidences of common ROHs. Mean proportion of SNPs per breed per ROH island ranged from 0.02 ± 0.15 (island ROH224 on chromosome 23) to 0.13 ± 0.29 (island ROH175 on chromosome 15). Seventeen (17) of the islands had SNPs observed in single populations (unique ROH islands). The MacArthur Merino (MCM) population had five unique ROH islands followed by Blackhead Persian and Nguni with three each whilst the South African Mutton Merino, SA Merino, White Vital Swakara, Karakul, Dorset Horn and Chinese Merino each had one unique ROH island. Genes within ROH islands were associated with predominantly metabolic and immune response traits and predomestic selection for traits such as presence or absence of horns. CONCLUSIONS: Overall, the frequency and patterns of distribution of ROH observed in this study corresponds to the breed history and implied selection pressures exposed to the sheep populations under study.


Assuntos
Endogamia , Polimorfismo de Nucleotídeo Único , Animais , Austrália , Genótipo , Homozigoto , Humanos , Ovinos/genética , África do Sul
4.
Anim Genet ; 50(4): 334-346, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31199540

RESUMO

Overlapping runs of homozygosity (ROH islands) shared by the majority of a population are hypothesized to be the result of selection around a target locus. In this study we investigated the impact of selection for coat color within the Noriker horse on autozygosity and ROH patterns. We analyzed overlapping homozygous regions (ROH islands) for gene content in fragments shared by more than 50% of horses. Long-term assortative mating of chestnut horses and the small effective population size of leopard spotted and tobiano horses resulted in higher mean genome-wide ROH coverage (SROH ) within the range of 237.4-284.2 Mb, whereas for bay, black and roan horses, where rotation mating is commonly applied, lower autozygosity (SROH from 176.4-180.0 Mb) was determined. We identified seven common ROH islands considering all Noriker horses from our dataset. Specific islands were documented for chestnut, leopard spotted, roan and bay horses. The ROH islands contained, among others, genes associated with body size (ZFAT, LASP1 and LCORL/NCAPG), coat color (MC1R in chestnut and the factor PATN1 in leopard spotted horses) and morphogenesis (HOXB cluster in all color strains except leopard spotted horses). This study demonstrates that within a closed population sharing the same founders and ancestors, selection on a single phenotypic trait, in this case coat color, can result in genetic fragmentation affecting levels of autozygosity and distribution of ROH islands and enclosed gene content.


Assuntos
Tamanho Corporal , Cor de Cabelo , Cavalos/genética , Animais , Genética Populacional , Técnicas de Genotipagem , Homozigoto , Cavalos/classificação , Polimorfismo de Nucleotídeo Único
5.
Animals (Basel) ; 14(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38998043

RESUMO

The Istrian (IS) and the Pag sheep (PS) are local Croatian breeds which provide significant income for the regional economy and have a cultural and traditional importance for the inhabitants. The aim of this study was to estimate some important population specific genetic parameters in IS (N = 1293) and PS (N = 2637) based on genome wide SNPs. Estimates of linkage disequilibrium effective population size (Ne) evidenced more genetic variability in PS (Ne = 838) compared to IS (Ne = 197), regardless of historical time (both recent and ancient genetic variability). The discrepancy in the recent genetic variability between these breeds was additionally confirmed by the estimates of genomic inbreeding (FROH), which was estimated to be notably higher in IS (FROH>2 = 0.062) than in PS (FROH>2 = 0.029). The average FROH2-4, FROH4-8, FROH8-16, and FROH>16 were 0.26, 1.65, 2.14, and 3.72 for IS and 0.22, 0.61, 0.75, and 1.58 for PS, thus evidencing a high contribution of recent inbreeding in the overall inbreeding. One ROH island with > 30% of SNP incidence in ROHs was detected in IS (OAR6; 34,253,440-38,238,124 bp) while there was no ROH islands detected in PS. Seven genes (CCSER1, HERC3, LCORL, NAP1L5, PKD2, PYURF, and SPP1) involved in growth, feed intake, milk production, immune responses, and resistance were associated with the found autozygosity. The results of this study represent the first comprehensive insight into genomic variability of these two Croatian local sheep breeds and will serve as a baseline for setting up the most promising strategy of genomic Optimum Contribution Selection.

6.
Anim Biosci ; 37(8): 1355-1366, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38665087

RESUMO

OBJECTIVE: The analysis of runs of homozygosity (ROH) has been applied to assess the level of inbreeding and identify selection signatures in various livestock species. The objectives of this study were to characterize the ROH pattern, estimate the rate of inbreeding, and identify signatures of selection in the red-brown Korean native chickens. METHODS: The Illumina 60K single nucleotide polymorphism chip data of 651 chickens was used in the analysis. Runs of homozygosity were analysed using the PLINK v1.9 software. Inbreeding coefficients were estimated using the GCTA software and their correlations were examined. Genomic regions with high levels of ROH were explored to identify selection signatures. RESULTS: A total of 32,176 ROH segments were detected in this study. The majority of the ROH segments were shorter than 4 Mb. The average ROH inbreeding coefficients (FROH) varied with the length of ROH segments. The means of inbreeding coefficients calculated from different methods were also variable. The correlations between different inbreeding coefficients were positive and highly variable (r = 0.18-1). Five ROH islands harbouring important quantitative trait loci were identified. CONCLUSION: This study assessed the level of inbreeding and patterns of homozygosity in Red-brown native Korean chickens. The results of this study suggest that the level of recent inbreeding is low which indicates substantial progress in the conservation of red-brown Korean native chickens. Additionally, Candidate genomic regions associated with important production traits were detected in homozygous regions.

7.
Anim Biosci ; 37(10): 1683-1691, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38754845

RESUMO

OBJECTIVE: Yellow Korean native chicken (KNC-Y) is one of the five pure Korean indigenous chicken breeds that were restored through a government project in 1992. KNC-Y is recognized for its superior egg production performance compared to other KNC lines. In this study, we performed runs of homozygosity (ROH) analysis to discover selection signatures associated with egg production traits in the KNC-Y population. METHODS: A total of 675 DNA samples from KNC-Y were genotyped to generate single nucleotide polymorphism (SNP) data using custom 60K Affymetrix SNP chips. ROH analysis was performed using PLINK software, with predefined parameters set for the analysis. The threshold of ROH island was defined as the top 1% frequency of SNPs withing the ROH among the population. RESULTS: In the KNC-Y population, a total of 29,958 runs of homozygosity (ROH) fragments were identified. The average total length of ROH was 120.84 Mb, with each ROH fragment having an average length of 2.71 Mb. The calculated ROH-based inbreeding coefficient (FROH) was 0.13. Furthermore, we revealed the presence of ROH islands on chromosomes 1, 2, 4, 5, 7, 8, and 11. Within the identified regions, a total of 111 genes were annotated, and among them were genes related to economic traits, including PRMT3, ANO5, HDAC4, LSS, PLA2G4A, and PTGS2. Most of the overlapping quantitative trait locus regions with ROH islands were found to be associated with production traits. CONCLUSION: This study conducted a comprehensive analysis of ROH in the KNC-Y population. Notably, among the findings, the PTGS2 gene is believed to play a crucial role in influencing the laying performance of KNC-Y.

8.
Genes (Basel) ; 14(12)2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38136955

RESUMO

Reproductive traits hold considerable economic importance in pig breeding and production. However, candidate genes underpinning the reproductive traits are still poorly identified. In the present study, we executed a genome-wide association study (GWAS) and runs of homozygosity (ROH) analysis using the PorcineSNP50 BeadChip array for 585 Yorkshire pigs. Results from the GWAS identified two genome-wide significant and eighteen suggestive significant single nucleotide polymorphisms (SNPs) associated with seven reproductive traits. Furthermore, we identified candidate genes, including ELMO1, AOAH, INSIG2, NUP205, LYPLAL1, RPL34, LIPH, RNF7, GRK7, ETV5, FYN, and SLC30A5, which were chosen due to adjoining significant SNPs and their functions in immunity, fertilization, embryonic development, and sperm quality. Several genes were found in ROH islands associated with spermatozoa, development of the fetus, mature eggs, and litter size, including INSL6, TAF4B, E2F7, RTL1, CDKN1C, and GDF9. This study will provide insight into the genetic basis for pig reproductive traits, facilitating reproduction improvement using the marker-based selection methods.


Assuntos
Estudo de Associação Genômica Ampla , Sêmen , Gravidez , Feminino , Suínos/genética , Masculino , Animais , Reprodução/genética , Homozigoto , Fenótipo
9.
Animals (Basel) ; 13(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36830386

RESUMO

To achieve sustainable development of the poultry industry, the effective conservation of genetic resources has become increasingly important. In the present study, we systematically elucidated the population structure, conservation priority, and runs of homozygosity (ROH) patterns of Chinese native chicken breeds. We used a high-density genotyping dataset of 157 native chickens from eight breeds. The population structure showed different degrees of population stratification among the breeds. Chahua chicken was the most differentiated breed from the other breeds (Nei = 0.0813), and the Wannan three-yellow chicken (WanTy) showed the lowest degree of differentiation (Nei = 0.0438). On the basis of contribution priority, Xiaoshan chicken had the highest contribution to the total gene diversity (1.41%) and the maximum gene diversity of the synthetic population (31.1%). WanTy chicken showed the highest contribution to the total allelic diversity (1.31%) and the maximum allelic diversity of the syntenic population (17.0%). A total of 5242 ROH fragments and 5 ROH island regions were detected. The longest ROH fragment was 41.51 Mb. A comparison of the overlapping genomic regions between the ROH islands and QTLs in the quantitative trait loci (QTL) database showed that the annotated candidate genes were involved in crucial economic traits such as immunity, carcass weight, drumstick and leg muscle development, egg quality and egg production, abdominal fat precipitation, body weight, and feed intake. In conclusion, our findings revealed that Chahua, Xiaoshan, and WanTy should be the priority conservation breeds, which will help optimize the conservation and breeding programs for Chinese indigenous chicken breeds.

10.
Genes (Basel) ; 10(7)2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261764

RESUMO

Intensive artificial and natural selection have shaped substantial variation among European horse breeds. Whereas most equine selection signature studies employ divergent genetic population structures in order to derive specific inter-breed targets of selection, we screened a total of 1476 horses originating from 12 breeds for the loss of genetic diversity by runs of homozygosity (ROH) utilizing a 670,000 single nucleotide polymorphism (SNP) genotyping array. Overlapping homozygous regions (ROH islands) indicating signatures of selection were identified by breed and similarities/dissimilarities between populations were evaluated. In the entire dataset, 180 ROH islands were identified, whilst 100 islands were breed specific, all other overlapped in 36 genomic regions with at least one ROH island of another breed. Furthermore, two ROH hot spots were determined at horse chromosome 3 (ECA3) and ECA11. Besides the confirmation of previously documented target genes involved in selection for coat color (MC1R, STX17, ASIP), body size (LCORL/NCAPG, ZFAT, LASP1, HMGA2), racing ability (PPARGC1A), behavioral traits (GRIN2B, NTM/OPCML) and gait patterns (DMRT3), several putative target genes related to embryonic morphogenesis (HOXB), energy metabolism (IGFBP-1, IGFBP-3), hair follicle morphogenesis (KRT25, KRT27, INTU) and autophagy (RALB) were highlighted. Furthermore, genes were pinpointed which might be involved in environmental adaptation of specific habitats (UVSSA, STXBP4, COX11, HLF, MMD).


Assuntos
Cruzamento , Homozigoto , Cavalos/genética , Proteína Agouti Sinalizadora/genética , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Transporte/genética , Moléculas de Adesão Celular/genética , Proteínas do Citoesqueleto/genética , Ontologia Genética , Genoma , Proteína HMGA2/genética , Proteínas de Homeodomínio/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Queratinas Específicas do Cabelo/genética , Proteínas de Membrana/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Polimorfismo de Nucleotídeo Único , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Proteínas de Transporte Vesicular/genética , Proteínas ral de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa